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Abstract

According to the recent rule released by Health and Human Services (HHS),

healthcare data can be outsourced to cloud computing services for medical s-

tudies. A major concern about outsourcing healthcare data is its associated

privacy issues. However, previous solutions have focused on cryptographic tech-

niques which introduce significant cost when applied to healthcare data with

high-dimensional sensitive attributes. To address these challenges, we propose

a privacy-preserving framework to transit insensitive data to commercial public

cloud and the rest to trusted private cloud. Under the framework, we design two

protocols to provide personalized privacy protections and defend against poten-

tial collusion between the public cloud service provider and the data users. We

derive provable privacy guarantees and bounded data distortion to validate the

proposed protocols. Extensive experiments over real-world datasets are con-

ducted to demonstrate that the proposed protocols maintain high usability and

scale well to large datasets.
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1. Introduction

Gaining access to healthcare data is a vital requirement for medical prac-

titioners and pharmaceutical researchers to study characteristics of diseases.

In recent years, the proliferation of cloud computing services enables hospitals

and institutions to transit their healthcare data to the cloud, which provides5

ubiquitous data access and on-demand high quality services at a low cost. On

January 25, 2013, the U.S. Department of Health and Human Services (HHS)

released the Omnibus Rule [1], which defines cloud service providers (CSPs) as

business associates for healthcare data. Currently, many CSPs, including Box,

Microsoft, Verizon and Dell, have announced their support for this business10

associate agreement.

Despite the benefits of healthcare cloud services, the associated privacy is-

sues are widely concerned by individuals and governments [1, 2]. Privacy risks

rise when outsourcing personal healthcare records to cloud due to the sensitive

nature of health information and the social and legal implications for its disclo-15

sure. A natural method is to encrypt healthcare data before transiting them to

cloud [3, 4, 5]. However, processing encrypted data is not efficient and is limited

to specific operations, and thus is not suitable for healthcare data with versatile

usages. An alternative solution is applying existing privacy-preserving data pub-

lishing (PPDP) techniques, such as partition-based anonymization [6, 7, 8, 9],20

and differential privacy [10, 11, 12, 13], to the outsourced healthcare data. How-

ever, as we show below, when the following practical requirements are consid-

ered, the existing works are not applicable in the context of healthcare data

outsourcing.

• High-dimensional sensitive healthcare attributes. In real-world s-25

cenario, hospitals and healthcare institutions often collect and maintain

many different healthcare attributes (e.g., blood pressure, heart rate) of

their patients. We investigate two real-life healthcare datasets owned by

an anonymous hospital in Shenzhen, China, and both contain more than
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100 attributes. However, due to limited access of high-dimensional health-30

care data, most previous PPDP works have focused on low-dimensional

datasets, while the case of high-dimensional data has been overlooked.

Partition-based anonymization techniques [6, 7, 8, 9] usually assume that

the data only contains a single sensitive attribute, or support only low-

dimensional data due to the curse of dimensionality. Differential privacy35

algorithms [10, 11, 12, 13] are designed for data with limited dimensions

of sensitive attributes. In the case of high-dimensional sensitive data, dif-

ferential privacy techniques will inject a huge amount a of noise to results,

thus, makes the results useless.

• Personalized protection at attribute level. Different individuals may40

have different privacy preferences. For example, some individuals are sen-

sitive about their blood related records, while others may care about skin

related records. Existing personalized protection techniques have focused

on personalized access control (e.g., attribute-based encryption [14]) or

personalized sensitivities of a single dimension [8], while none has investi-45

gated personalized sensitivities over multiple data dimensions.

• Collusion resistance. In practice, the outsourced CSP and the data

users (DUs), e.g., medical practitioners and pharmaceutical researchers,

may collude together due to various incentives [4, 15]. Under such collu-

sion, the whole dataset stored in the cloud as well as the adopted privacy-50

preserving scheme will be disclosed. Nonetheless, most existing PPDP

approaches [16, 6, 7, 8, 10, 11, 12, 13] do not consider this collusion.

To satisfy the above practical requirements, we propose a privacy-preserving

framework to outsource healthcare data to a hybrid cloud. The hybrid cloud

[17] consists of a private cloud that keeps sensitive data within hospitals or55

institutions, and a public commercial cloud that handles the rest of the dataset.

Based on this type of cloud, the proposed framework moves the attributes that

are insensitive to any individual to the public cloud while keeping the rest on
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the private cloud. To answer DUs’ queries, the private cloud sends sanitized

data to the public cloud to compute results.60

In this framework, we propose an optimal sanitization protocol to achieve

personalized privacy protections for high-dimensional sensitive data with min-

imal data distortion. To support high-dimensional data, we exploit the merits

of both partition-based anonymization and differential privacy. Instead of di-

rectly enforcing differential privacy conditions on each sensitive attribute, we65

first inject differential privacy in the process of partitioning, and then pro-

vide attribute-level protection via partition-based anonymization. As such, the

randomness injected to ensure differential privacy is only related to the par-

tition process, which is independent of attribute dimensionality. To achieve

such hybrid privacy protection, a partition algorithm with minimal distortion70

is proposed. In the sanitization protocol, the clouds perform data partition to

anonymize the whole dataset based on the amount of distortion required for pri-

vacy preservation, which is computed on the private cloud. As such, the public

cloud does not have access to the sensitive data stored on the private cloud, but

obtains the optimal partition results based on the distortion information. To75

resist collusion, partition selections are randomized to prevent the public CSP

and the DUs from gaining extra knowledge from the partition results. Further-

more, we also propose a greedy protocol to reduce the computational cost. We

validate the proposed protocols by formal privacy and usability analyses and

evaluate their performance using real-world healthcare datasets.80

The main contributions of this paper are threefold. First, we propose a

privacy-preserving framework for high-dimensional healthcare data outsourc-

ing. To the best of our knowledge, this is the first framework considering high-

dimensional sensitive attributes and personalized privacy requirements over d-

ifferent attributes. Second, through formal analytic study, we derive provable85

privacy guarantees and bounded data distortion achieved by the proposed frame-

work. We show that the proposed framework can defend against the collusion

between the public cloud and the DUs while still retaining high usability. Final-

ly, for the first time, we conduct experiments on real-world healthcare datasets
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with high-dimensional sensitive attributes to validate the proposed framework.90

The rest of the paper is organized as follows. Section 3 defines the prob-

lem. Section 2 reviews related work. Section 4 overviews the privacy-preserving

outsourcing framework and two sanitization protocols, followed by privacy and

usability analysis in Section 5. Experimental evaluations are reported in Section

6. Section 7 concludes the paper.95

2. Related Work

Previous works on privacy-preserving data outsourcing mainly adopt encryp-

tion techniques to protect sensitive data [4, 18, 3, 5]. Yuan et al. [4] encrypt the

biometric database before outsourcing it to the cloud, which can perform kNN

search in the encrypted database. Li et al. [18] leverage Hierarchical Predicate100

Encryption to establish a scalable framework for authorized private keyword

search on cloud data. Cao et al. [3] enables privacy-preserving multi-keyword

ranked search over encrypted cloud data. Nonetheless, these solutions are lim-

ited to specific operations, which is not suitable for healthcare data outsourcing

that supports a variety of queries. Besides, encryption leads to large overhead105

when answering queries.

Another brand of privacy-preserving approaches are PPDP techniques. Ba-

sically, the works on privacy protection in data publishing can be divided in-

to two categories, partition-based approaches and differential privacy. Many

partition-based privacy models are proposed to tackle different privacy concern-110

s. k-anonymity [19] is developed to prevent adversaries with Qausi-Identifier

(QI) background knowledge from re-identifying an individual with a probability

higher than 1
k . Fragmentation is used in [16] to break sensitive associations

among attributes. Other privacy models consider the privacy attack where ad-

versaries associate an individual with a particular sensitive value. �-diversity115

[20, 6] aims to bound this inference confidence to be no larger than 1
� . (α, k)-

anonymity [21] further enhances privacy protection by combining the privacy

requirements of k-anonymity and �-diversity. Apart from the QI background
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knowledge, some works make different adversary assumptions. LKC-privacy

[7] is proposed to solve the high dimension problem in healthcare data. LKC-120

privacy makes an assumption that the background knowledge of adversaries is

bounded by L values of QI attributes to limit the power of adversaries. Wong

et al. [22] assumes that adversaries know the anonymization algorithm. This

extra knowledge can help adversaries breach the privacy, which is called mini-

mality attack. The notion of personalized privacy is proposed by Xiao et al. [8]125

to allow each individual to specify his/her own privacy preference on a single

sensitive attribute. This model makes assumptions that the sensitive attribute

has a taxonomy tree and each individual specifies a guarding node in the taxon-

omy tree as his/her privacy preference. The privacy is violated if the inference

confidence on any sensitive value in the subtree of individual’s guarding node is130

higher than the pre-defined threshold. Xiao et al.’s approach specifies different

privacy level on a single sensitive attribute, while our work consider individuals’

privacy preferences at attribute level. Nevertheless, none of these approaches

are designed for high-dimensional data outsourcing with collusion resistance,

in which case they lack the consideration of multiple sensitive attributes and135

personalized privacy concerns at the attribute level.

Recently differential privacy has gained considerable attention as a substi-

tute for partition-based approaches. Numerous approaches [10, 23, 12, 13] are

proposed for enforcing ε-differential privacy in data publishing. Several works

[24, 11, 25] try to handle the multi-dimension issue in differential privacy. Ding140

et al. [25] present a general framework to release multi-dimensional data cubes

by optimally selecting part of a data cube for publication. Peng et al. [24]

and Cormode et al. [11] introduce differentially private indices to reduce errors

on multi-dimensional datasets. However, the multi-dimensional issues discussed

in differential privacy are usually limited to be less than 20, while datasets145

with higher dimension are not covered. Besides, none of these approaches are

designed for data outsourcing with collusion resistance.

Hybrid cloud is a new framework proposed for secure cloud computing. Sedic

[26] modifies MapReduce’s file system to move sanitized data to the public cloud
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Table 1: Notational conventions

A Privacy mechanism

D,D′ Two neighboring datasets

D̃ The anonymized version of D

I Insensitive attribute

|I| Dimension of insensitive attributes

H Healthcare attribute

|H| Dimension of healthcare attributes

D̂ a partial dataset of D

K The number of QI partitions

α Inference confidence threshold

ε Differential privacy parameter

εk Differential privacy parameter allocated to the kth partition operation

dk The kth partition

dik A candidate for the kth partition

E(k,D) Minimal distortion of a dataset D with k partitions

Error(dik) Distortion of a partition dik

Edik (k,D) Minimal distortion of a dataset D with k partitions, and the kth partition

is set to be dik

and keep sensitive data on the private cloud. Privacy-aware data retrieval on150

hybrid cloud is investigated in [27]. Different from these works, we consider the

salient features of real healthcare data, and provide privacy protection against

collusion between the public CSP and the DUs.

3. Problem Definition

3.1. System Model155

The notational conventions used in this paper are summarized in Table 1.

System Architecture. We consider the scenario where a hospital needs

to transit its healthcare data to the cloud to provide ubiquitous data access
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and services at low cost. To provide privacy protection of individuals’ data,

the hospital outsources the healthcare data to a hybrid cloud, which consists160

of a private cloud that keeps sensitive data within the hospital and a pub-

lic commercial cloud that handles the rest of the dataset. Fig. 1 illustrates

the healthcare outsourcing architecture, where a data holder (e.g., a hospital)

outsources a healthcare dataset D to the hybrid cloud, and authorized DUs

(e.g., medical practitioners and pharmaceutical researchers) to gain access to165

the healthcare data from the cloud for medical data analysis. In particular, the

data holder first splits the original dataset into insensitive and sensitive parts,

and outsources them to the private cloud and public cloud, respectively. Then,

to provide privacy protection, a series of operations are performed at the private

and public clouds to sanitize the dataset before it can be accessed by DUs. After170

sanitization, authorized DUs can post queries on the cloud for data analysis.

Healthcare Dataset. The healthcare dataset D contains records of multi-

ple healthcare attributes {ID, I1, ..., I |I|, H1, ..., H |H|} over different individuals
{t1, ..., tn}. ID is the explicit identifier, which should be replaced by pseudo ID

(PID). I = {I1, ..., I |I|} is comprised of attributes that are insensitive to al-175

l individuals and H = {H1, ..., H |H|} is the union of all individuals’ sensitive

attributes. Note that I normally consists of non-healthcare attributes such as

gender and age that can be obtained by adversaries from other sources like on-

line social networks [6, 7]. As such, the common insensitive attributes are in

I while all the differences in personal privacy requirements are left in H. The180

dataset is divided into {PID,H1, ..., H |H|} and {PID, I1, ..., I |I|}, which are

outsourced to the private cloud and the public cloud, respectively. The autho-

rized DUs post queries to the private cloud, and the private cloud communicates

with the public cloud to generate results. To preserve individual’s privacy, the

information shared with the public cloud should be carefully sanitized.185

Personal Privacy Requirements. An individual has personal privacy

requirements on his/her healthcare information. To present personal privacy

requirements, sensitive set is defined.
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Figure 1: System architecture for healthcare hybrid cloud

Definition 1 (Sensitive Set). For a tuple ti ∈ D, its sensitive set Si is a subset

of Hi, where Hi � {H1
i , ..., H

|H|
i } is the set of all H attributes of ti.190

Si is a subset of healthcare attributes that is private to ti, while other health-

care attributes Hi\Si are non-sensitive and can be published directly. Different

tuples (i.e., individuals) in D can specify different sensitive sets.

Threat Model. The CSP that owns the public cloud, referred to as the

public CSP, is considered as honest-but-curious, that is, the public CSP correctly195

follows the protocol, yet attempts to learn private information from its received

data. Moreover, the DUs may collude with the public CSP to compromise

individual’s privacy. Note that the private cloud is owned by the data holder

and is considered to be trustworthy.

Specifically, the public CSP knows Ii = {I1i , ..., I |I|i } of a target individual200

ti, and wants to infer ti’s sensitive values Si. Based on Ii and additional in-

formation received from the private cloud as well as the DUs, the public CSP

can infer the real value rji of ti’s sensitive attribute Sj
i ∈ Si with confidence

Pr[Sj
i = rji ].

3.2. Privacy and Data Distortion Measures205

Privacy Measure. To quantify the strength of privacy protection, we

adopt the most popular privacy models: confidence bound [6] and ε-differential
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privacy [10]. In order to protect the personal sensitive values, anonymization on

attributes should be used. To anonymize a dataset D, a generalization function

is used to map D to a partition set, which is defined as follows.210

Definition 2 (Partition set). A partition set {d1, ..., dK} for a dataset D is a

set of partitions that satisfies the following two conditions: i) a partition set is

a set of disjoint partitions such that
⋃K

k=1 dk = D, and ii) the I attribute values

of all tuples in a disjoint partition dk are mapped to the same generalized range

that has no intersection with other partitions’ generalized range.215

For example, if I = {age, gender}, and there are two tuples {PID =

1, age = 18, gender = male} and {PID = 2, age = 25, gender = female}
in a partition, then generalized range of this partition is {PID = {1, 2}, age =

[18, 25], gender = any}.
Based on the notion of partition set, α-confidence bound is defined as follows.220

Definition 3 (α-confidence bound). Let α ∈ [0, 1] be a privacy threshold. We

say that a privacy mechanism A : D → D̃ satisfies α-confidence bound if for

any ti ∈ D̃ and any of its sensitive attribute Sj
i ∈ Si, given Ii, an adversary can

only infer the real value rji of Sj
i with confidence Pr[Sj

i = rji ] ≤ α.

However, according to the notion ofminimality in anonymization [22], anonymiza-225

tion mechanisms aim to achieve privacy guarantee with minimal data distor-

tion, and this deterministic attempt provides a loophole for attacks. Thus, the

anonymized results for queries may leak private information to the DUs. To

thwart such privacy breach, differential privacy protection is needed to random-

ize the anonymization results. The intuition of differential privacy is that the230

removal or addition of a single record does not significantly affect the outcome

of any analysis.

Definition 4 (ε-differential privacy). A randomized mechanism A ensures ε-

differential privacy if for any datasets D and D′ differing on at most one tuple,

Pr[A(D) = O] ≤ eε × Pr[A(D′) = O], (1)

for all O ∈ Range(A), where Range(A) is the set of possible outputs of A.
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Roughly speaking, the parameter ε is positive and specified by the data

holder. The smaller value of ε provides stronger privacy guarantee.235

We use a privacy measure, denoted as (α, ε)-privacy, which combines the

above two measures to quantify the strength of privacy protection: i) person-

alized protection at attribute level: an adversary’s inference confidence on a

sensitive attribute is bounded by α, and ii) collusion resistance: the partition

set is ε-differentially private.240

Data Distortion Measure. We first define two inference probabilities:

the original inference probability pi,j and the approximate inference probability

p̃i,j :

• pi,j : Before generalization on H, the inference probability of the jth H

attribute of a tuple ti is defined by pi,j =
vi,j

nk
, where vi,j is the frequency245

of the real value of Hj
i and nk is the size of the partition.

• p̃i,j : After generalization on H, the inference probability of the jth H

attribute of a tuple ti is defined by p̃i,j =
ṽi,j

nk
, where ṽi,j is the frequency

of the real value of Hj
i in the partition.

Then, we use overall sum of error as the data distortion measure, which is

obtained by:

Error(D) =
∑
dk∈D

∑
ti∈dk

∑
j

|pi,j − p̃i,j |. (2)

3.3. Design Goal250

Our goal is to design a privacy-preserving outsourcing framework under the

hybrid cloud model. Specifically, the framework has the following objectives:

i) The framework should preserve (α, ε)-privacy for each personal sensitive set

Si even when the public CSP and the DUs collude together; ii) The framework

should retain the usability of the healthcare data as much as possible by min-255

imizing the data distortion Error(D); iii) The framework should be efficient,

that is, the computational and communication costs should be scalable with the

size of the dataset and the number of queries.
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Figure 2: Framework Overview

4. The Privacy-Preserving Outsourcing Framework

4.1. Overview260

The core idea of the privacy-preserving outsourcing framework is to share

partition strategy between clouds to derive sanitized data while keeping sensitive

data on the private cloud. To provide personalized protection on sensitive data,

the dataset is divided into multiple partitions and generalization operations are

applied on personal sensitive attributes. Partition information is shared between265

clouds to derive the optimal partition strategy. To ensure ε-differential priva-

cy, randomness is injected into each partition selection. Fig. 2 illustrates the

framework, where Ii,j is the generalized range of Ii, Ij , and H̃i is the sanitized

version of Hi to protect personal sensitive attributes. As the public CSP is un-

trusted, the private cloud guides the data partitioning without sharing sensitive270

data with the public cloud. To achieve this goal, we propose two sanitization

protocols, that is, an optimal sanitization protocol with minimal data distortion

and a greedy sanitization protocol with higher efficiency. After data partition

and generalization, the hybrid cloud answers DUs’ queries based on the sani-
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tized data. As such, the DUs can acquire knowledge no more than the sanitized275

data. Besides, randomization avoids privacy leakage from the partition results.

Thus, even when the public CSP and the DUs collude together, the framework

can still thwart the privacy breach of the sensitive data. As the sanitized data

is in the form of standard anonymized data tables [6, 7, 8], the cloud can easily

answer different types of queries.280

The protocols are built based on two components. The first component is

optimal partitioning, which aims to find a partition set that can satisfy personal-

ized privacy requirements with minimal data distortion. The second component

is privacy budget allocation, which optimally allocates different fractions of ran-

domness to each partition operation so that the final partition set is differentially285

private while the overall data distortion is minimized. The rest of this section

elaborates the two components and the sanitization protocols.

4.2. Optimal Partitioning

For a partition set with K partitions, we need (K − 1) sequential partition

operations. We formulate a dynamic programming problem to find the optimal290

partition sequence with minimal distortion.

The minimal distortion for a dataset D with k partitions E∗(k,D) is given

by:

E∗(k,D) = min
di
l

k∑
l=1

Error(dil), (3)

where dil is a possible lth partition for D, and Error(dil) is the error for dil

computed according to (2).

E∗(k,D) is computed via the following recursive rule:

E∗(k,D) = min
di
k∈D

(
E∗(k − 1, D\dik) + Error(dik)

)
, (4)

where dik is a possible kth partition dk, E
∗(k − 1, D\dik) the minimal error for

sanitizing partial dataset D\dik with k − 1 partitions. Therefore, our problem295

is to compute E∗(K,D), and keep all intermediate results, i.e. E∗(k− 1, D\dik)
and Error(dik), for each dik, k.
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The complexity of the dynamic programming (4) is O(|H| ·Km2|I|n), where

n is the number of tuples, m the maximum number of different values in I

appearing in D, |I| and |H| the dimensions (i.e., numbers of attributes) of300

I and H, respectively. In healthcare data, |I| is a small constant that does

not grow with the number of tuples n. Thus, the complexity of the dynamic

programming problem is polynomial time.

4.3. Privacy Budget Allocation

In order to ensure ε-differential privacy, randomness is injected into each

partition operation. According to exponential mechanism [23], outputs of higher

scores are assigned with exponentially greater probabilities. In our framework,

the selection of a partition probability is proportional to exp

(
− εkE

dik (k,D)
2ΔE

)
,

where εk is the privacy budget allocated to the kth partition operation, dik a

possible kth partition, ΔE the sensitivity function defined as

ΔE = max
∀k,i,D,di

k

|Edi
k(k,D)− Edi

k(k,D′)|, (5)

where dik stands for the ith sample output for the kth partition dk, k the number305

of output partitions.

Two parameters ΔE and εk need to be determined to decide the exponential

probability exp
(
− εkE(k,d,di

k)
2ΔE

)
. First, we quantify ΔE by the following lemma.

Lemma 1. Given two neighboring datasets D and D′, the difference between

the error of the kth partition operation on D and D′ is bounded as follows.

|Edi
k(k,D)− Edi

k(k,D′)| ≤ 2|H|
α

.

Proof. Assume that the changed tuple is in partition dk. nk denotes the number

of tuples in dk, and vk,j,h denotes the number of jth violated sensitive value h.310

There are two cases that may change Edi
k(k,D).

Case I: One tuple is added, and the inference confidence on its sensitive

attributes equal to α before the addition. In this case, for each violated H

attribute, only one more suppression for the violated value is needed. Then, we
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derive: |Edi
k(k,D)−Edi

k(k,D′)| = ∑
h |((vk,j,h+1)−�niα�)−(vk,j,h−�niα�)| =315

|H|.
Case II: One tuple is removed, and the removal of its non-sensitive attributes

makes sensitive attributes violate the α condition. Similar to Case I, the infer-

ence confidence on these violated attributes equal to α before the removal. In

this case, only one suppression for each violated sensitive values is needed. This320

is because x−1
y−1 < x

y , ∀0 < x < y. Before removal, for a H attribute, denote the

total number of values in the partition by y, the number of a violated value by

x. This case can be expressed by x
y ≤ α and x

y−1 ≥ α. By one suppression, we

can get x−1
y−1 < x

y ≤ α. Then, we derive:

|Edi
k(k,D)− Edi

k(k,D′)|
=

∑
j,h

|((vk,j,h + 1)− �niα�)− (vk,j,h − �niα�)|

≤|H| ·
⌊

ni

�niα�
⌋
≤ |H| · �niα�+ 1

α
· 1

�niα� ≤
2|H|
α

.

We can see that Case I is no worse than Case II because for each H attribute,325

at most one sensitive value may violates the α condition, while for Case II there

may be multiple. Therefore, the analysis of Case II derives the upper bound in

Lemma 1.

Next, we decide εk so that the total privacy budget ε is carefully allocated

to each probabilistic partition operation to minimize the expected error. The330

expectation of error can be expressed by the optimal error and the expected

additional error over the optimal error. We first derive the expected additional

error for a single partition operation.

Lemma 2. Let E[Δk] be the expected additional error over optimal error E∗(k,D)

when executing Line 8 in Algorithm 1, i.e., E[Δk] � E[Edk(k,D) − E∗(k,D)].
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We have

E[Δk] =

∑
di
k

(
Edi

k(k,D)− E∗(k,D)
)
exp

(
− εk(E

dik (k,D)−E∗(k,D))
2ΔE

)
∑

di
k
exp

(
− εk(E

di
k (k,D)−E∗(k,D))

2ΔE

) .

Due to space limitation, we omit the proof of the above lemma. The problem

of error minimization with respect to ε can be formulated as follows.335

min
εk

K−1∑
k=1

E[Δk] (6a)

subject to
K−1∑
k=1

εk = ε, (6b)

εk ≥ 0, ∀k, (6c)

where K is the number of partitions. The constraints ensure the ε condition.

The objective is to minimize the summation of the expected additional error

over the optimal error for each partition, so as to minimize the overall error.

Problem (6) is a convex problem shown by the following theorem.

Theorem 1. Problem (6) is convex, which has an optimal solution and can be340

solved in time complexity of O(K3) by standard convex solver [28].

Proof. Denote Edi
k(k,D) − E∗(k,D), ε′k = εk

2ΔE . We can rewrite E[Δk] as

E[	k] =
∑

i	Ei · exp{−ε′k�Ei}∑
i exp{−ε′k�Ei} . To show the convexity of Problem (6),

we need to show that the objective function is twice differentiable, that is, its

Hessian or second-order partial derivative matrix exists at each point in the

domain. Then the problem is convex if and only if its domain is convex and its

Hessian matrix is positive semi-definite [28]. The domain here is defined by the

linear constraints, which is a convex region. Now we study the Hessian of the

objective function. The first order derivative is given as:

∂
∑K−1

k=1 E[	k]

∂ε′k

=

(∑
i	Eie

−ε′k�Ei

)2

−
(∑

i	Ei
2e−ε′k�Ei

)(∑
i e

−ε′k�Ei

)
(∑

i e
−ε′k�Ei

)2 ≤ 0.

16



For second-order partial derivative with respect to εk and ε′k, we have
∂2 ∑K−1

k=1 E[�k]

∂ε′k∂ε
′
k′

=

0, ∀k, k′ ∈ 1, ...,K − 1, k 
= k′. And for all k′ = k, we have
∂2 ∑K−1

k=1 E[�k]

∂ε′k
2 ≥ 0

by using the Cauchy-Schwarz inequalities. Note that the equality stands if and

only if 	Ei = 1, ∀ 	 Ei.345

Based on the above analyses, it is easy to prove that its Hessian is positive

semi-definite. Therefore, we conclude that Problem (6) is convex.

Then, we show the time complexity of Problem (6). Since we can derive

the closed-form for the first and second order derivatives, according to [28],

convex optimization problems can be solved with time complexity of O(logm ·350

max (n3, n2m)), where n is the number of variables and m is the number of

constraints. In our case, n = K and m = 2. Thus, the time complexity for

solving our problem is O(K3).

The optimal εk in Problem (6) can be obtained via standard convex opti-

mization tools such as gradient search or simplex methods. Furthermore, notice355

that the time complexity O(K3) is a constant given the partition parameter K

and does not grow with the size of the input dataset.

4.4. Optimal Sanitization Protocol

After presenting the two core components in designing the sanitization pro-

tocols, we show Algorithm 1, which illustrates the optimal sanitization protocol360

OptPer. In this algorithm, dataset D is expressed as the full set of PIDs, and

partitions {dik} are expressed as sets of PIDs. The kth partitions of H and I

are denoted as Hdk
, Idk

, respectively. As such, the only information exchange

between clouds is the partition strategy expressed as groups of PIDs. OptPer

consists of the following two stages.365

Initialization (Line 1-3). First, the public could computes all possible

partition sets and sends them (groups of PIDs) to the private cloud. For all

possible partition sets, the private cloud computes {Error(dik)}, {E∗(k, D̂)},
where Error(dik) is the distortion for a possible partition dik and E∗(k, D̂) is the

minimal distortion for a partial dataset D̂ with k partitions. The distortions370

17



Algorithm 1 Optimal Sanitization Protocol (OptPer)

1: The public cloud computes all possible kth partitions {dik}, and sends {dik} to the private

cloud;

2: The private cloud computes {Error(dik)}, {E∗(k, D̂)}, ∀k, dik, D̂ ⊆ D according to (2),

(4);

3: The private cloud computes the optimal εk for the kth partition operation by solving (6);

4: for each k from K to 2 do

5: for each possible kth partition dik do

6: The private cloud computes Edik (k,D) = E∗(k − 1, D\dik) + Error(dik);

7: end for

8: The private cloud selects dk ← dik with probability ∝ exp

(
− εkE

dik (k,D)
2�E

)
, and updates

D: D ← D\dk;
9: The private cloud suppresses minimal number of sensitive values in Hdk to satisfy

personalized privacy requirements;

10: The private cloud sends dk to the public cloud for its generalization on on Idk ;

11: end for

are computed according to (2), (4). Based on distortions, the private cloud

allocates the privacy budget εk to each partition operation by solving Problem

(6).

Sequential Partitioning (Line 4-11). After computing the errors and

privacy budget of partition operations, the private cloud decides the partitions375

one by one. The private cloud randomizes each partition operation via expo-

nential mechanism, where the selection probability of a partition operation is

proportional to exp

(
− εkE

dik (k,D)
2ΔE

)
(Line 8). After selecting the kth partition,

the private cloud shares this partition strategy with the public cloud to perform

generalization and suppression.380

In the protocol, we generalize the insensitive attribute in a partition to the

same generalized range (Line 10). If a partition still violates the privacy require-

ments by Definition 3, we remove the violation by suppressing some sensitive

values from the partition. The suppression scheme is to remove the minimal

number of the violating sensitive values that satisfies the privacy requirements.385

The generalization and suppression operations generalize values to a coarser
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Algorithm 2 Greedy Sanitization Protocol (GrePer)
1: Initialize D as a single partition;

2: repeat

3: The public cloud enumerates all possible partition operation that divides an existing

partition, and sends them to the private cloud;

4: for each possible partition operation pi do

5: The private cloud computes E(pi): the partition distortion if applying pi;

6: end for

7: The private cloud selects pi with probability ∝ exp
(
− εkE(D,pi)

2(K−1)ΔE

)
, and updates D;

8: until There are K partitions

9: The private cloud suppresses minimal number of sensitive values in H to satisfy person-

alized privacy requirements;

10: The private cloud sends the selected partition strategy to the public cloud for its gener-

alization on on I;

range that is consistent with the original values.

4.5. Greedy Sanitization Protocol

OptPer achieves minimal data distortion and has good scalability in the case

of large dataset with high-dimensional sensitive attributes. Specifically, OptPer390

has linear complexity with respect to the dimension of senstive attributes and

number of users. Detailed complexity analysis can be found in Section 5.2.2.

However, as for data with high-dimensional insensitive attributes, the dynam-

ic programming adopted in OptPer still requires relatively high computational

costs and communication overhead. To cope with this case, we propose a more395

efficient algorithm called GrePer, as described in Algorithm 2. Instead of using

dynamic programming in OptPer, we greedily choose a single dimensional par-

tition operation ps based on the distortion after applying the operation. The

computation for partition error is the same as OptPer, where minimal sup-

pressions on sensitive values in each partition is applied to satisfy personalized400

privacy requirements. The detailed costs analysis is provided in the next section.

As described in Algorithm 2, GrePer iteratively applies a selected partition

operation until the dataset is cut into K partitions (Line 2-8). In each itera-

tion, GrePer computes the overall distortion of each possible cut, and selects
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a cut with a probability proportional to exp
(
− εkE(dj ,ps)

2(K−1)ΔE

)
. Similar to Algo-405

rithm 1, personalized privacy protections are guaranteed by generalization and

suppression (Line 9,10).

4.6. Handling New Healthcare Data

Note that there may be new healthcare records generated in hospital over

time. In this case, hospitals need periodically (e.g., annually or quarterly) out-410

source the new records to update the dataset in the cloud. Our framework

treats the new records in one period as an independent dataset, and sanitizes

the dataset to ensure the same (α, ε)-privacy. Note that there are no modifi-

cations to the old records that have been outsourced to the cloud. As there is

no overlap between the check-in timestamps of the new data and the old data,415

the partitions of the new dataset and the old dataset in the cloud are disjoint.

Therefore, the confidence bounding condition of the old dataset in the cloud is

not affected by the newly-outsourced dataset. Based on the parallel composi-

tion theory [29], the computations operate on disjoint subsets of the dataset,

the overall privacy guarantee depends only on the worst of the guarantees of420

each computation. If we apply partitioning independently to disjoint datasets

with the same ε-differential privacy guarantee, the overall dataset paritioning

still preserves ε-differential privacy. Thus, the overall dataset outsourced to the

cloud preserves (α, ε)-privacy.

5. Privacy and Usability Analysis425

5.1. Privacy Analysis

To prove the privacy validity of the protocols, we first show the privacy

gained by each partition operation.

Lemma 3. The selection of the kth partition operation in Algorithm 1 (Line

8) and Algorithm 2 (Line 7) ensures εk-differential privacy.430

Proof. w.l.o.g., we take the notations in Algorithm 1 for illustration. Given

two neighboring datasets D and D′, from Theorem 1, we have |Edi
k(k,D) −
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Edi
k(k,D′)| ≤ ΔE. Then, for the kth partition dk, the probability of selecting dik

fromD, denoted as Pr[dk ← dik|D] = exp

(
− εkE

dik (k,D)
2ΔE

)/∑
i exp

(
− εkE

dik (k,D)
2ΔE

)
,

enjoys

Pr[dk ← dik|D] ≤
exp

(
− εkE(k,D′,di

k)−ΔE
2ΔE

)
∑

i exp
(
− εkE(k,D′,di

k)+ΔE

2ΔE

) = eεk Pr[dk ← dik|D],

which proves this lemma according to Definition 4.

Based on Lemma 3, we can prove the correctness of the protocols by the

following theorem.

Theorem 2. OptPer and GrePer ensure (α, ε)-privacy even when the public

CSP and the DUs collude together.435

Proof. As CSPs are honest-but-curious, the sanitization protocols are correctly

executed. In both protocols, the sanitized data is generated by the probabilis-

tic partition operations. After partitioning, the protocols resolve the violations

of α-confidence bound by suppression and generalization, which guarantee the

α condition. The ε condition is ensured by the sequence of probabilistic par-440

tition operations. The sequential partition operations are conducted on the

same dataset. According to sequential composition [29], the partitioning result

achieves
∑

k εk-differential privacy, i.e. ε-differential privacy, which satisfies the

ε condition. As the private cloud answers queries according to sanitized data,

there is no extra privacy breach when answering queries posed by the DUs.445

Thus, the protocols achieve (α, ε)-privacy when the public CSP and the DUs

collude together.

Note that the threat model considered in this paper is curious-but-honest,

meaning that both CSPs exactly follow the proposed protocols, yet attempts

to learn private information. While how to defend malicious CSPs is rather a450

security issue, which is beyond the scope of this paper.
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5.2. Usability Analysis

5.2.1. Data Distortion

To provide accurate answers for queries, OptPer involves minimal data dis-

tortion which is bounded by the following theorems. We use E(K,D) to denote455

the overall distortion of the sanitized data output by OptPer, where K is the

number of partitions and D is the original data.

Theorem 3. OptPer minimizes the expected E(K,D).

Proof. According to the property of expectation, we have

E[E(K,D)] =

K−1∑
k=1

(E[Δk + E∗(k,D))] =

K−1∑
k=1

(
E[Δk] +

K−1∑
k=1

E∗(k,D)

)
. (7)

Since E∗(k,D) is constant, and Problem (6) minimizes
∑K−1

k=1 E[Δk], for all

k ∈ {1, ...,K − 1}. Thus, the expected E(K,D) is minimized.460

Next, we analyze the upper bound of the expected distortion incurred by

OptPer.

Theorem 4. Let E∗(K,D) be the minimal distortion without injecting random-

ness. The expected error of the sanitized data output by OptPer is up-bounded

by

E∗(K,D) +
2|H| · (e ε

2 +K − 2
)

α
.

Proof. To prove the upper bound of E[E(K,D)], we first derive the upper bound

for the expected error of a partition operation. For any error of a partition oper-

ation Edi
k(k,D), we have Edi

k(k,D)−E∗(k,D) ≥ 0 and Edi
k(k,D)−E∗(k,D) ≤

ΔE. Then, based on Lemma 2, the expected error of the kth partition E[Δk]

over the optimal error E∗(k,D) is bounded by the following inequalities.

E[Δk] =

∑
i

(
Edi

k(k,D)− E∗(k,D)
)
exp

(
− εk(E

dik (k,D)−E∗(k,D))
2ΔE

)
∑

i exp

(
− εk(E

di
k (k,D)−E∗(k,D))

2ΔE

)

≤
∑

i ΔE exp

(
− εk(E

dik (k,D)−E∗(k,D))
2ΔE

)
∑

i exp
(− εk

2

) ≤ ΔE · e εk
2 .
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The following inequalities use the fact that ex1 + ex2 ≤ ex1+x2 + 1 for any

non-negative real number x1, x2.

E[E(K,D)] ≤E∗(K,D) + ΔE ·
(
e

∑
k εk
2 +K − 2

)

≤E∗(K,D) +
2|H| · (e ε

2 +K − 2
)

α
.

From the upper bound derived by Theorem 4, we have the following obser-

vation:465

Corollary 1. The gap between the minimal error without randomness and the

error incurred by OptPer remains the same when the number of tuples grows.

The error gap is caused by randomization in OptPer to guarantee ε condition.

The constancy property of the error gap stated in Corollary 1 indicates that

OptPer maintains good utility scalability on large datasets.470

5.2.2. Computational Complexity and Communication Overhead

The overall complexity of OptPer is O(|H|(1+Km2|I|)n). m is up-bounded

by the maximum number of different values in I, which is a constant given I

and is much smaller than the number of individuals n. In healthcare data, I

is rather small while |H| is large, and |I|, |H| are constant that do not grow475

with n. Thus, given all the attributes contained in the data, the complexity

is linear with respect to the number of tuples n. The overall complexity of

GrePer is O(|I| · |H| ·Kmn), which largely reduces computational cost and is

scalable with |I|, compared with OptPer. Note that these computations are

one-time computations that are required for initial outsourcing. Thus, no extra480

computations are added to answering queries.

The information exchanges between clouds only contain partition strategies,

which are quite lightweight. The amounts of communication overhead incurred

by OptPer and GrePer are O(nm) and O(km), respectively. To answer queries,

the private cloud sends the PIDs that matches queries to the public cloud to485
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Figure 3: Errors vs. number of tuples (in thousands)

generate results, where the communication overhead is usually much less than

O(n).

6. Evaluation

In this section, we evaluate the performance of OptPer and GrePer on real-

world healthcare datasets.490

6.1. Experimental Setup

Hardware. All the experiments were conducted on 3.00 GHz Intel Core 2

E8400 PC with 2GB RAM, and all algorithms were implemented using C++.

Datasets. We employ two real-life healthcare checkup datasets, Checku-

plist1 and Checkuplist2, which are owned by an anonymous hospital in Shen-495
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Figure 4: Errors vs. the dimension of sensitive attribute

zhen, China. Both datasets contain checkup records of 40,332 individuals from

the year 2006 to 2011. Each record contains personal information and all health

checkup items of an individual. Normally, personal information is considered

insensitive while health checkup items are potentially sensitive [7]. After re-

moving explicit identifiers, Checkuplist1 and Checkuplist2 have 116 and 111500

attributes, respectively. In both datasets, personal information includes age,

gender and checkup time, which are considered to be the I attributes. Values of

I attributes are either numerical (age and checkup time) or categorical (gender).

The remaining attributes are H attributes corresponding to different checkup

items. The values of the healthcare attributes are the diagnostic results on a505

certain checkup item, which are categorical.
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Figure 5: Errors vs. number of partitions

Personalization settings. We generate personalization settings based on

previous personalization privacy protection work [8]. Tuples are randomly divid-

ed into three levels: 10% tuples in level 1, 60% tuples in level 2, and 30% tuples

in level 3. There are no sensitive attributes for level 1 tuples. For each level510

2 tuple, 30% of its H attributes are randomly selected as sensitive attributes,

while for each level 3 tuple, 60% of its H attributes are marked as sensitive.

The selection of sensitive attributes is independent for each tuple.

Baselines. We compare the performance of our protocols with traditional

anonymization [6] and differential privacy [10] approaches. For fair comparison,515

we extend these approaches to be applicable to high-dimensional dataset. The

anonymization approach, denoted as MulAnony, first decomposes the dataset
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into disjoint partial datasets that each partial dataset contains the tuples with

the same privacy requirements, and then applies anonymization on each par-

tial dataset independently. The comparison with MulAnony demonstrates the520

merits of the proposed optimal partition strategy and budget allocation. The

differential privacy approach, denoted as MulDiff, treats the union of sensi-

tive attributes as sensitive attributes, and applies randomized (differentially

private) multi-dimensional partitioning. The comparison between MulDiff and

our algorithms shows the benefits of considering personal requirements in the525

partitioning procedure.

6.2. Utility

To measure the utility of the protocols, we use relative error, which is defined

by the value of overall distortion divided by number of tuples. We test all

methods with three commonly used values of ε: 0.01, 0.1, 1, 2, and α is set to530

0.01.

We first vary the number of tuples from 10k to 40k, and keep |H| = 100

and K = 1000. Fig. 3 shows that the relative error decreases when number of

tuples increases. This is because more tuples are included in a partition and

average inference probability is lower. The error of MulAnony is significantly535

larger than that of other algorithms in almost all cases. This is because very

few tuples contain the same sensitive attribute set, and sensitive values of these

tuples can be the same, making a large number of suppressions to satisfy the

α condition. The errors of OptPer and GrePer stay lower than that of MulDiff

in all cases, which is caused by the differences in handling personal privacy540

requirements. Also note that errors of all algorithms decrease slightly when ε

increases. This is because when ε is larger, the privacy offered is weaker, and

the probability of selecting the optimal operation is larger.

Fig. 4 illustrates the errors under different dimensions of H, ranging from

10 to 100. Since the error of MulAnony is much higher than other algorithms,545

we do not depict the error of MulAnony in the figures. In all cases, the number

of tuples is set to 40k, and K is set to 1000. As depicted in Fig. 4, OptPer
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and GrePer outperform MulDiff significantly in high H dimension cases. The

reason is that OptPer and GrePer leverage the extra information of personalized

sensitive attributes to guide partition operations, while MulDiff treats all tuples550

with a uniform privacy setting, which involves more extra sensitive attributes

when the dimension of H is larger. The errors of all algorithms increase with

the H dimension. This is because when dimension is higher, there are more

sensitive values contained in the dataset.

We also investigate the utility of the three algorithms over the number of555

partitions K, with number of tuples set to 40k and H dimension set to 100.

Fig. 5 depicts that OptPer and GrePer produce much less errors than that of

MulDiff. And the errors of all algorithms increase with K. This is because when

K is larger, there are more partition operations, making randomized algorithms

more likely to select an operation with large error.560

Note that the errors of OptPer and GrePer increase linearly with K (Fig.

5) and |H| (Fig. 4). In our utility analysis, we derive the upper bound of

the expected error of OptPer in Theorem 4, which consists of the optimal er-

ror E∗(K,D) and the error introduced by randomization. Theorem 4 shows

that the error introduced by randomization grows linearly with K and |H|.565

The experimental results are consistent with the analytical result and further

demonstrate that the error of OptPer and GrePer scale linearly with K and H

dimension.

To validate our protocols under different personalized settings, we vary the

personalized settings as shown in Table 2. Fig. 6 depicts the errors of different570

algorithms under various personalized settings. The results demonstrate that

our protocols outperform baseline schemes in all the five personalized settings.

We also observe that the errors of all algorithms under distribution 1 and 2

are larger than other distributions. This is because the total number of sen-

sitive attributes under distribution 1 and 2 are larger than those under other575

distributions.

28



1 2 3 4 5
0

2

4

6

8

10

Personalization settings

R
el

at
iv

e 
er

ro
rs

OptPer
GrePer
MulDiv
MulAnony

(a) ε = 0.01

1 2 3 4 5
0

2

4

6

8

Personalization settings

R
el

at
iv

e 
er

ro
rs

OptPer
GrePer
MulDiv
MulAnony

(b) ε = 0.1

1 2 3 4 5
0

2

4

6

8

Personalization settings

R
el

at
iv

e 
er

ro
rs

OptPer
GrePer
MulDiv
MulAnony

(c) ε = 1

1 2 3 4 5
0

2

4

6

8

Personalization settings

R
el

at
iv

e 
er

ro
rs

OptPer
GrePer
MulDiv
MulAnony

(d) ε = 2

Figure 6: Errors vs. different personalized settings.

Table 2: Personalized settings

Distributions 1 2 3 4 5

Level 1 30% 10% 30% 60% 60%

Level 2 10% 60% 60% 10% 30%

Level 3 60% 30% 10% 30% 10%

6.3. Scalability

We test the scalability of OptPer and GrePer by varying the number of tuples

from 10k to 40k, with ε = 0.1, |H| = 1000 and K = 100. Fig. 7.(a) depicts
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Figure 7: Running time

the results. As expected, the running time of each algorithm grows linearly580

with the number of tuples, and GrePer runs much faster than OptPer in the

same settings. In Fig. 7.(b), we run both protocols on datasets with different

dimensions of sensitive attribute. The results demonstrate that both OptPer

and GrePer achieve linear complexity with respect to the dimension of sensitive

attribute.585

The results demonstrated in Fig. 7 are consistent with our complexity anal-

yses. As stated in previous sections, the complexities of OptPer and GrePer

are O(|H|(1 + Km2|I|)n) and O(|I| · |H| · Kmn), respectively. Since m stays

relatively the same when the number of tuple n increases, both algorithms have

linear computation costs. Considering the m part of the complexities, GrePer590

reduces O(m2|I|) to O(|I|m), compared with GrePer.

7. Conclusion

This paper studied the problem of privacy-preserving healthcare data out-

sourcing. A framework based on hybrid cloud was proposed to provide per-

sonalized privacy protection over high-dimensional healthcare data. Under the595

framework, we devised two sanitization protocols to anonymize the dataset on

the private and public clouds based on randomized data partitioning. The pro-

tocols are proved to be resistant to collusion between the public CSP and the
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DUs. Analytical results are derived to verify the usability and efficiency of

the protocols. Experiments on real-life datasets validate the superiority of our600

approaches over a number of baseline techniques.
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