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Abstract—The vision of Self-Organizing Networks (SON) has
been drawing considerable attention as a major axis for the
development of future networks. As an essential functionality
in SON, cell outage detection is developed to autonomously
detect macrocells or femtocells that are inoperative and unable
to provide service. Previous cell outage detection approaches
have mainly focused on macrocells while the outage issue in
the emerging femtocell networks is less discussed. However,
due to the two-tier macro-femto network architecture and the
small coverage nature of femtocells, it is challenging to enable
outage detection functionality in femtocell networks. Based on
the observation that spatial correlations among users can be
extracted to cope with these challenges, this paper proposes
a Cooperative femtocell Outage Detection (COD) architecture
which consists of a trigger stage and a detection stage. In the
trigger stage, we design a trigger mechanism that leverages
correlation information extracted through collaborative filtering
to efficiently trigger the detection procedure without inter-cell
communications. In the detection stage, to improve the detection
accuracy, we introduce a sequential cooperative detection rule to
process the spatially and temporally correlated user statistics. In
particular, the detection problem is formulated as a sequential
hypothesis testing problem, and the analytical results on the de-
tection performance are derived. Numerical studies for a variety
of femtocell deployments and configurations demonstrate that
COD outperforms the existing scheme in both communication
overhead and detection accuracy.

I. INTRODUCTION

Self-Organizing Networks (SON) have recently been rec-
ognized as an attractive paradigm for the next-generation cel-
lular systems by standardization bodies [1] [2], which enable
autonomic features in networks, including self-configuration,
self-optimization and self-healing [3] [4]. In the self-healing
mechanism, cell outage detection is considered to be one of
the fundamental functionalities, which aims to autonomously
detect cells in an outage state, i.e., cells that are inoperable
and cannot provide any service due to hardware failures,
software failures or even misconfigurations [2]. Cell outage
often results in decreased capacity and coverage gap. Such
degraded performance leads to high user churn rate and
high operational expenditures [5]. However, detecting outaged
cells is non-trivial. The outaged cells cannot be detected by
Operations Support System (OSS) when the detection systems
of the outaged cells malfunction [6]. In addition, it is difficult
for the cellular system management functions to detect outaged
cells directly when the outage is caused by misconfigurations.
Identifying these outaged cells usually requires unplanned site

visits and may take hours or even days [5]. To reduce manual
costs and detection delay, the cell outage detection function is
proposed in [2] to automatically identify the outaged cells by
users’ performance statistics analysis.

Most, if not all, previous cell outage detection approaches
have focused on macrocells [7] [8]. However, traditional
macrocell networks are likely to be supplemented with smaller
femtocells deployed within homes and enterprise environments
in the next-generation cellular networks [9], where outage
occurs more frequently because of inappropriate indoor human
interactions and unplanned deployment of large numbers of
femto access points (FAPs). Unfortunately, when applied in
femtocell networks, existing macrocell outage detection works
fall short due to the following distinct features of femtocell
networks.

• Dense deployments. Since there are normally tens or
hundreds of femtocells deployed within a macrocell, the
number of femtocells is much larger compared with
macrocells. The centralized statistics analysis adopted
by macrocell outage detection approaches [7] [8] will
involve high communication overhead if applied directly
in femtocell networks, which will degrade the femtocell
service.

• Vertical handover. Femtocell users can vertically han-
dover between femtocell and macrocell. However,this
vertical handover issue is not considered in the existing
macrocell outage detection approaches [7] [8]. In the
two-tier femto-macro cellular networks, when a femtocell
outage occurs, its users may handover to macrocell and
be unaware of the outage. This can be misleading in the
user statistics analysis.

• Sparse user statistics. Unlike macrocell with large cov-
erage, small scale indoor femtocell usually only supports
a few active users (typically 1 to 4 active mobile phones
in a residential setting [10]). Macrocell approaches [7]
[8], which are based on user statistics within one cell,
however, fall inaccurate due to the sparsity of user
statistics with high uncertainty caused by severe indoor
shadowing fading. In the worst case, femtocell with small
coverage may have no active users in certain time slots,
leading to the failure of these algorithms.

To overcome the aforementioned challenges in femtocell
networks, we propose an efficient detection architecture, re-
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ferred to as COD (Cooperative femtocell Outage Detection),
which consists of an intra-cell trigger stage and an inter-cell
detection stage. The core idea of this architecture includes
the following considerations: 1) To reduce communication
overhead, the trigger procedure runs on each FAP in a dis-
tributed manner without any inter-cell communications. We
design a low cost mechanism to trigger the detection for
possible outage femtocell via long term passive monitoring
users’ Reference Signal Received Power (RSRP) statistics. The
RSRP statistics are user’s basic physical layer measurements
on the linear average of the downlink reference signals across
the channel bandwidth [11]. 2) The trigger decisions are based
on spatial correlations among users’ RSRP statistics, rather
than disconnected devices [12] [13] or neighbor list [7] in
traditional approaches. The correlations of RSRP statistics are
leveraged to distinguish the vertical handover case and the
outage case. 3) To cope with the data sparsity issue, a detection
rule enables neighboring femtocells to cooperatively detect
outaged femtocells over a certain period of time, so as to
expand statistics over the space domain and the time domain
to obtain enough information. A data fusion rule is used to
process the statistics to make a final decision.

According to the above three guidelines, the key problems
behind this architecture are how to extract correlations of
intra-cell RSRP statistics in space domain and how to extract
correlations of inter-cell RSRP statistics in space and time do-
mains. We leverage collaborative filtering [14] and sequential
detection model [15] to tackle the two problems respectively.
In the trigger stage, each FAP predicts the current normal
statistics of its neighboring cells using collaborative filtering.
The trigger decision is made based on the comparison between
the predicted statistics and real statistics. In the detection
stage, statistics within an area, referred to as cooperation
range, are processed at the macrocell base station (MBS)
via the sequential detection model. The spatial characteristics
of statistics are exploited to derive the minimal time that is
needed to make a final decision.

To the best of our knowledge, this paper is the first work
to explore the outage detection problem in the context of
femtocell networks. The main contributions of this work can
be summarized as follows:

• This paper proposes a correlation based outage detection
architecture in consideration of the unique challenges in
femtocells. This architecture can be used as a gener-
al framework for designing femtocell outage detection
schemes.

• A distributed trigger mechanism is designed to reduce
the communication overhead and to address the verti-
cal handover issue. The trigger mechanism exploits the
spatial correlations of RSRP statistics via collaborative
filtering. The extracted spatial correlations enable the
trigger mechanism to make a trigger decision without any
inter-cell communication overhead.

• A cooperative detection rule is proposed to cope with
the data sparsity issue by extracting both spatial and
temporal correlations of RSRP statistics over multiple

femtocells. The detection problem is formulated as a
sequential hypothesis testing problem to minimize the
detection delay.

• We identify the impacts of the cooperation range and
the user density on detection performance by deriving
closed-form expressions. Analytical results show that the
expected detection delay is inversely proportional to the
user density and the cooperation area, and is independent
of the FAP’s transmission power.

• We conduct extensive numerical studies, and the evalua-
tion results show that the proposed approach outperforms
the conventional method in terms of communication cost
as well as detection accuracy.

The rest of the paper is organized as follows. Section II
describes the system model. Section III illustrates the rationale
of the proposed COD architecture. In Section IV, the trigger
mechanism used in the trigger stage of COD is introduced.
Section V formulates the cooperative outage detection problem
in the detection stage of COD as a sequential hypothesis test-
ing problem and derives analytical results. Numerical results
are presented in Section VI. Related works are reviewed in
Section VII. Finally, Section VIII concludes the paper.

II. SYSTEM MODEL

In this section, we introduce the network model, the user
model and the channel model.

A. Network Model

We consider a typical two-tier femtocell network architec-
ture where a set of femtocells F = {1, ..., F} are overlaid on
a macrocell. Femtocell f operates under FAP f . A femtocell
experiences outage with certain probability in the process of
operation. The outaged FAP cannot transmit or receive any
signal. We assume that the locations of FAPs are known to
the MBS. We also assume that the transmission powers of
FAPs are constant during the detection process. FAPs transmit
reference signals periodically in the downlink. The reference
signals, which facilitate user’s channel measurements (e.g.,
RSRP measurement), are sent back to the FAPs as feedback
messages.

B. User Model

The locations of the users are unknown. The users transmit
or receive data from their associated FAPs, and periodically
report the RSRP statistics of all neighboring cells to their
associated FAPs, providing guidance in handover and cell
reselection decisions. We assume that the users in an area
A follow a Poisson point process with density ρ, i.e., nA ∼
Poi(n; ρ|A|), where nA is the number of users within an area
A.

C. Channel Model

The channel gains of a user u to an FAP f are determined
based on the the model described in [16]:

h = (
do
du,f

)aeXu,f eYu,f , (1)
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Fig. 1: Cases in femtocell outage detection

where do is the reference distance (e.g., 1 m), du,f the distance
between the FAP f to the user u, and a the path loss exponent.
eXu,f and eYu,f are shadowing fading factor and multi-path
fading factor, respectively. The shadowing fading follows a
Gaussian distribution described by Xu,f ∼ N (0, σ), ∀u, f .
The multi-path fading is modeled by Rayleigh fading with
zero mean, and thus E[eYu,f ] = 0.

We assume that shadowing fading effects are independent
over time. Regarding this assumption, the RSRP statistics of
a user are independent random variables. Note that all RSRP
statistics can be characterized by Eq. (1). As such, the RSRP s-
tatistics at u are independent and identically distributed (i.i.d.),
and thus can be approximated as a Gaussian distribution using
the Central Limit Theorem (CLT). Then, the distribution can
be given as [17]:

ru ∼

{
N (No,

No
2

M ) H0

N (Pu +No,
(Pu+No)

2

M ) H1

(2)

where ru is user u’s RSRP statistics, Pu the received signal
strength at user u, No the noise power, and M the number of
signal samples, e.g., 5× 103 /ms for 5 MHz band. H0 stands
for the outage case and H1 for the normal case.

III. RATIONALE OF THE COD ARCHITECTURE

In this section, we first use a motivated example to illus-
trate the requirements of femtocell outage detection and our
observation. Then, we propose the COD architecture.

A. Requirements of Femtocell Outage Detection

Due to the unique features of the femtocell networks, the
following requirements need to be imposed when designing a
femtocell outage detection architecture.

First, the communication overhead should be minimized to
preserve the capacity of the femtocells. This can be achieved
by: 1) designing a distributed trigger mechanism that involves

much less communication overhead compared with the detec-
tion stage, and 2) minimizing the detection time (i.e., detection
delay) of the detection stage.

Second, the effectiveness of the outage detection should
be guaranteed even in the event of vertical handover. Fig. 1
illustrate the vertical handover issue in the two-tier femto-
macro architecture. In the normal case (Fig. 1(a)), all fem-
tocells operate normally and the user U1 is associated with
the femtocell FAP1. Then, U1 vertically handovers to the
MBS, which is caused by the movement of U1 (Fig. 1(b)) or
the outage of FAP1 (Fig. 1(c)). Unfortunately, many existing
approaches cannot differentiate the outage case (Fig. 1(c))
from the vertical handover case (Fig. 1(b)). In wireless LAN
diagnosis or fault detection, the detection procedures are
usually triggered by disconnected users [12] [13], which is
not applicable in femtocell outage detection since users can
handover to macrocell when there is no available femtocell
around (e.g., Fig. 1(c)). Neighbor list based approaches [7]
[18] are proposed to detect outages by looking at the changes
in the network topology. Whereas, when applied in femtocell
outage detection, the neighbor list based approaches derive the
same network topology for Fig. 1(b) and Fig. 1(c), and thus
cannot distinguish the outage case from the vertical handover
case. Thus, a trigger mechanism that can differentiate these
two cases is required.

Another unique feature of femtocell is that, the indoor fem-
tocell supports much fewer users compared with the macrocell.
Since severe indoor shadowing fading results in fluctuation of
user statistics, analysis based on the sparse user statistics may
lead to inaccurate results. To design a robust detection rule,
the accuracy should be guaranteed even when femtocells have
very few users.

B. Observation

To design a femtocell outage detection architecture that
achieves the aforementioned requirements, we further inves-
tigate the spatio-temporal correlations in RSRP statistics. In
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Fig. 1, U2 keeps moving in three cases, while U1 remains
in the same location in the normal case and the outage case
but moves away from FAP1 in the vertical handover case. The
tables in Fig. 1 show the corresponding RSRP statistics, which
are classified into three levels: 1(+) for strong received signal
from a certain FAP, 1(-) for weak received signals, and 0 for
no received signal. Comparing Fig. 1(a) and Fig. 1(c), U2’s
RSRP statistics from FAP2-FAP4 are the same while the RSRP
statistics from FAP1 are different. A previous study [19] shows
that users in close proximity have similar signal statistics, and
the estimation of location similarity is more accurate when
there are more FAPs nearby. Then, we can infer that the
locations of U2 in Fig. 1(a) and Fig. 1(c) are probably close,
and thus the RSRP from FAP1 should be similar in the two
figures if FAP1 is normal in Fig. 1(c). Thus, the difference of
RSRP from FAP1 in the two figures indicates that FAP1 may
experience outage in Fig. 1(c). On the other hand, comparing
Fig. 1(a) and Fig. 1(b), the locations of U2 are considered to be
quite different since U2’s RSRP from FAP2-FAP4 in the two
cases have weak correlation. Therefore, even though RSRP
statistics from FAP1 are very different in the two cases, we
cannot infer whether FAP1 experiences outage or not. Based
on the above analysis, we observe that an FAP can check
the states of neighboring FAPs by comparing current statistics
with historical statistics in normal cases.

Based on this observation, we can tackle the vertical han-
dover issue and enable the distributed trigger mechanism. In
the trigger mechanism, each femtocell monitors the state of its
neighboring femtocells based on correlations between current
RSRP statistics and historical RSRP statistics reported by the
users. Moreover, multiple femtocells can cooperatively process
RSRP statistics by further exploiting the correlations over a
period of time to cope with the user statistic sparsity issue.

C. COD Architecture Overview

The goal of COD is to detect outaged femtocells accurately
and efficiently by meeting the requirements discussed in
Section III-A. To achieve this goal, two stages are involved:
a distributed trigger stage with no inter-cell communications,
and a cooperative detection stage with high accuracy and little
delay. In the trigger stage, each FAP collects the user-reported
RSRP statistics and sends the MBS a trigger message if current
statistics are abnormal. Then, the MBS initiates the detection
stage and makes a final decision based on RSRP statistics
collected from multiple FAPs within the cooperation range.

Fig. 2 illustrates the COD architecture. Before the trigger
stage, each FAP stores a copy of benchmark data beforehand,
which is collected when all FAPs are normal. Benchmark data
contains the RSRP statistics from all neighboring FAPs in the
form of a matrix R, where element Ru,f in R is the RSRP of
user u from FAP f . In the trigger stage, each FAP runs the trig-
ger algorithm to monitor the states of neighboring femtocells
by checking the reported RSRP statistics from its associated
users. To check whether the RSRP statistics are normal or not,
the FAP predicts the expected normal RSRP statistics based on
the benchmark data via collaborative filtering. As for an FAP
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Fig. 2: Architecture overview

i, if the RSRP statistics from a neighboring FAP f deviate
from the predicted normal statistics, then FAP i will send a
trigger message to the MBS to trigger the detection stage to
further decide whether the FAP f experiences outage.

In the detection stage, all the FAPs within the cooperation
range report the statistics collected in trigger stage to the MBS
periodically until the MBS collects enough information for
making a final decision. In each iteration, based on the newly
reported RSRP statistics, the MBS processes the statistics via
data fusion to update decision statistic, and compares it with
pre-computed thresholds (i.e. η0 and η1), until it is qualified
to make a final decision. The thresholds are computed to
guarantee the pre-defined false alarm and misdetection rates. If
the decision statistic is below the lower threshold (i.e. η0), the
MBS makes a final decision that FAP f experiences outage.
If the decision statistic is above the higher threshold (i.e. η1),
the MBS decides that FAP f is normal. Otherwise, the MBS
continues to take another round and accumulates more RSRP
statistics.

IV. COLLABORATIVE FILTERING-BASED TRIGGER
MECHANISM

The trigger stage contains two steps, namely, the normal
RSRP statistics prediction and the trigger decision, as illustrat-
ed in Fig. 2. To predict normal RSRP statistics, we leverage
collaborative filtering to explore the correlations among the
femtocell users. Collaborative filtering is originally used in
recommendation systems to compare a user’s flavor to some
reference users’ flavors based on their rated items, so as to
predict the rating of that user on a certain item. Treating users
as rows and items as columns, the ratings form a matrix. Then,
collaborative filtering aims to reconstruct a matrix with miss-
ing entries by exploiting correlations across different rows. We
can consider the femtocell users as users in a recommendation
system, the FAPs as items, RSRP statistics as ratings and the
benchmark data as the flavor data of reference users. Similar
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to the recommendation systems, we leverage collaborative
filtering to predict the RSRP statistic from a target FAP based
on the benchmark data matrix. Since the benchmark data is
collected in normal cases, the predicted RSRP statistic is the
expected normal RSRP statistic. If the predicted RSRP statistic
and the collected RSRP statistic are significantly different, the
target FAP is very likely in an outaged state. Based on this
intuition, we design a trigger mechanism as follows.

A. Normal RSRP Statistics Prediction

1) Collaborator Selection: To make a trigger decision, the
expected normal RSRP ru,f of a user u from the target FAP
f needs to be estimated. The first step is to select users in
the benchmark data for correlation computation. In femtocell
networks, only nearby users have strong spatial correlations,
while computing correlations with remote users will involve
large errors due to shadowing fading and multi-path fading.
Thus, we select a set of users that can receive the signals from
the FAP associated with u, which is denoted as collaborator
set C(u).

2) Collaborative Prediction: Given the set of collabora-
tors C(u), we need to compute the interpolation weight
wu,v|v ∈ C(u) that enables the optimal prediction rule:

r̂u,f =
∑

v∈C(u)

wu,vrv,f , (3)

where r̂u,f is the prediction of u’s normal RSRP from f , wu,v

the interpolation weight, and rv,f the user v’s RSRP from f
in the benchmark data.

To estimate the interpolation weights, we formulate a suit-
able optimization problem. Since ru,f is the target statistic
that we want to predict, we treat ru,f as a missing entry
and use statistics from all the other FAPs to compute the
interpolation weights. The objective is to minimize the sum
of squared errors for predicting the statistics of u (except
ru,f ). The interpolation weights are learned by modeling the
correlations between u and benchmark users through a least
squares problem as follows:

min
w

∑
i ̸=f

(ru,i −
∑

v∈C(u)

wu,vrv,i)
2. (4)

The reason for excluding f in Eq. (4) is that f is the target FAP
to be predicted, which is considered as abnormal. The optimal
solution to the least squares problem (4) can be achieved by
differentiation as a solution of linear system of equations. The
optimal weights are given by:

w∗ = (RT R)
−1

RT U, (5)

where w∗ is the optimal weights vector defined by w∗
v = wu,v ,

R the benchmark users’ RSRP matrix defined by Rv,i = rv,i,
and U the user u’s RSRP vector defined by Uj = ru,j . Based
on the estimation of w∗, the prediction of the current normal
RSRP is computed according to Eq. (3).

B. Trigger Decision

After computing r̂u,f , the trigger decision is made based on
maximum likelihood rule. In particular, r̂u,f is treated as the
mean of normal hypothesis H0 as defined in Eq. (2), the noise
power No as the mean of normal hypothesis H0, and the actual
current RSRP ru,f as test statistic. If the probability of ru,f
under H0 is larger than the probability of ru,f under H1, the
detection stage is triggered. Otherwise, FAP runs the trigger
procedure over again on the newly arrived RSRP statistics.

V. SEQUENTIAL COOPERATIVE DETECTION VIA
DATA-FUSION

In this section, we first formulate the cooperative detection
problem in the detection stage as a sequential hypothesis
testing problem. Then, we derive the closed-form expression of
average detection delay by approximating the test statistics. Fi-
nally, based on the closed-form expression of average detection
delay, we analyze the impacts of several system parameters on
the performance of the cooperative outage detection.

A. Sequential Hypothesis Testing

We assume that the detection for FAP f is triggered. The
vector of test statistics collected in detection round t is denoted
as θt = [r1t , ..., rit , ..., rnt ]

T , where rit is the user i’s RSRP
from f in detection round t. nt is the number of users within
the cooperation range R centered by the location of f . As
shown in Eq. (2), the RSRP statistics can be approximated as
a Gaussian distribution in both normal and outage cases. Thus,
our outage detection problem is a binary decision problem for
deciding whether hypothesis H0 or H1 is true, given the test
statistics θ, where θ = [θ1

T , ...,θt
T , ...,θT

T ].
To solve the binary decision problem, the MBS keeps

collecting new test statistics from users until the amount of
information and the resulting testing performance are satisfied.
To achieve this goal, we take Wald’s Sequential Probability
Ratio Test (SPRT) [15] as the data processing rule to decide the
stopping time of making a final decision. The main advantage
of SPRT is that it requires the minimal number of test statistics
to achieve the same error probability, which is attained at the
expense of additional computation. In the sequential decision
process, the MBS computes the log likelihood ratio and
compares it with two thresholds η0 and η1. It either determines
on one of the two hypothesis, or decides to make another round
of statistics collection.

The likelihood ratio in detection round t is defined by:

λt , ln
p(θt|H1)

p(θt|H0)
, (6)

where p(θt|Hk) is the joint probability density function
(p.d.f.) of test statistics collected in detection round t under the
hypothesis Hk (k = 0, 1). Note that test statistics are assumed
to be i.i.d. and follow the Gaussian distribution described in
Eq. (2). Thus, Eq. (6) can be written as:

λt = ln
p(r1t , ..., rnt |H1)

p(r1t , ..., rnt |H0)
=

nt∑
it=1

ln
p(rit |H1)

p(rit |H0)
, (7)
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where rit is approximated as rit ∼ N (µk, σk) under the
hypothesis Hk, according to the CLT. Note that σ0

2 = No
2

M

and σ1
2 = Pu+No

2

M , where Pu and No are the average received
signal power at users and the noise power. In a very low SNR
environment, it is reasonable to approximate (Pu+No) as No,
and hence σ1 ≈ σ0. Then, Eq. (7) can be expressed as:

λt =
(µ1 − µ0)

∑nt

it=1 rit +
1
2

∑nt

it=1(µ0
2 − µ1

2)

σ0
2

. (8)

The next step is to determine the decision statistic ΛT in
detection round T . ΛT is defined to be the joint likelihood
ratio of a sequential test statistics θ1, ...,θT :

ΛT , ln
p(θ1, ...,θT |H1)

p(θ1, ...,θT |H0)
, (9)

where p(θ1, ...,θT |Hk) is the joint p.d.f. of test statistics under
Hk). Regarding that the test statistics are Gaussian and i.i.d.,
we have:

ΛT =

T∑
t=1

ln
p(θt|H1)

p(θt|H0)
=

T∑
t=1

λt, (10)

and based on Eqs. (8) and (11), we further derive ΛT as
follows:

ΛT =
(µ1 − µ0)

σ0
2

T∑
t=1

nt∑
it=1

rit +
1

2σ0
2

T∑
t=1

nt∑
it=1

(µ0
2 − µ1

2).

(11)

The decision of SPRT in detection round T is based on the
following rules [15]:

ΛT ≥ η1 ⇒ accept H1

ΛT ≤ η0 ⇒ accept H0

η0 < ΛT < η1 ⇒ take another detection round,
(12)

where η1 and η0 are the detection thresholds, which are
determined by the predefined values of desired false alarm
rate α and misdetection rate β. However, the outage detection
problem is opposite to the detection problem described in [15]
in the sense of misdetection rate and false alarm rate, since
H0 is hypothesis for outage occurrence while H1 for event
occurrence in [15]. Thus, the detection thresholds are given
by:

η1 = ln
1− α

β
and η0 = ln

α

1− β
. (13)

where α and β are the desired false alarm rate and misde-
tection rate, respectively. Note that the actual achievable false
alarm and misdetection rates could be higher than α and β
[20], which is shown in our simulation results.

B. Average Detection Delay Analysis

The aim of SPRT is to achieve the desired false alarm
and misdetection rates with the minimal number of detection
rounds, which stands for detection delay. The expected number
of detection rounds is computed according to [15]:

E[ΛT ] = E[T ]× E[λt]. (14)

First, we derive the expectation of ΛT in normal cases,
namely, under hypothesis H1. According to (12), H1 is
accepted when ΛT reaches the threshold η1, otherwise H2

is accepted (i.e., false alarm). Thus, ΛT reaches the threshold
η0 with the probability of false alarm rate α and reaches the
threshold η1 with probability (1−α). Then, according to Eq.
(13), we derive the expectation of ΛT under H1:

E[ΛT |H1] = (1− α) ln
1− α

β
+ α ln

α

1− β
. (15)

Similarly, we derive the expectation of ΛT under H0:

E[ΛT |H0] = β ln
1− α

β
+ (1− β) ln

α

1− β
. (16)

Next, according to Eq. (8), the expectation of λt under Hk

can be expressed as:

E[λt|Hk] =
(µ1 − µ0)E[

∑nt

it=1 r
k
it
] + 1

2E[
∑nt

it=1(µ0
2 − µ1

2)]

σ0
2

,

(17)

where rkit is RSRP from the FAP we are detecting under
hypothesis Hk.

According to Eqs. (15) (16) and (17), we derive the average
detection rounds in normal cases:

E[T |H1] =
σ0

2(1− α) ln 1−α
β + σ0

2α ln α
1−β

(µ1 − µ0)E[
∑nt

it=1 r
1
it
] + 1

2E[
∑nt

it=1(µ0
2 − µ1

2)]
,

(18)

and the average detection rounds in outage cases:

E[T |H0] =
σ0

2β ln 1−α
β + σ0

2(1− β) ln α
1−β

(µ1 − µ0)E[
∑nt

it=1 r
0
it
] + 1

2E[
∑nt

it=1(µ0
2 − µ1

2)]
.

(19)

To further analyze the impacts of cooperation range, FAP
transmission power, and user density, we need to derive
the expectation of the sum of test statistics E[

∑nt

it=1 r
k
it
],

which, however, has no closed-form expression. Thus, we
approximate the test statistics as follows.

We first approximate E[
∑nt

it=1 r
1
it
]. Note that test statistics

follow the Gaussian distribution as described in Eq. (2). The
expected sum of test statistics under H1 can be written as:

E

[
nt∑

it=1

r1it

]
= E

[
nt∑

it=1

ritN
(
Pit +No, σ0

2
)]

, (20)

where Pit is the received signal strength from the FAP we
are detecting. In practice, the measurement error (i.e., σ0

2) is
much smaller than RSRP. Thus, we can approximate Eq. (20)
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as follows:

E

[
nt∑

it=1

r1it

]
≈E

[
nt∑

it=1

Pit

]
+ E

[
nt∑

it=1

No

]

=PoE

[
nt∑

it=1

(
do
dit

)a

eXit eYit

]
+NoE[nt]

=PoE

[
nt∑

it=1

(
do
dit

)a
]
E
[
eX

]
E
[
eY

]
+NoE[nt], (21)

where Po is FAP’s transmission power in normal cases, ( do

dit
)a

the user i’s channel gain from path loss at time t, eX and
eY the shadowing fading factor and multi-path fading factor,
respectively. According to [21], the sum of interference of
transmitters with a Poisson distribution to a receiver can be
approximated as a log-normal distribution. Correspondingly,
we can approximate the sum of the received FAP signal
strengths at users with Poisson distribution as a log-normal
distribution in a similar way. Thus, we have:

E

[
nt∑

it=1

(
do
dit

)a
]
∼ Log-N (µm, σ2

m), (22)

where µm and σ2
m are given by [21]:

µm =
1

2
ln

(
m4

1

m2
1 +m2

)
and σ2

m = ln

(
m2

1 +m2

m2
1

)
, (23)

where mk (k = 1, 2) is the kth cumulant of
∑nt

it=1(
do

dit
)a

given as:

mk =
2ρπdkao
ka− 2

(
1

ϵka−2
− 1

Rka−2

)
, (24)

where ρ is the user density, ϵ the minimum separation between
a user and an FAP, and R the cooperation range. Only users
within R will report their RSRP statistics to the MBS. In
femtocell networks, we have ka − 2 > 0 and ϵ ≪ R. Thus,
mk can be approximated as:

mk ≈ 2ρπdkao
(ka− 2)ϵka−2

. (25)

By far, we derive all the expectations that are needed to
compute the sum of test statistics, i.e., E[

∑nt

it=1(
do

dit
)a] =

eµm+ 1
2σm , E[eX ] = e

1
2σ, E[eY ] = 1 and E[nt] = ρπR2.

Finally, E[T |H1] can be derived as:

E[T |H1] =
σ0

2(1− α) ln 1−α
β + σ0

2α ln α
1−β

(µ1 − µ0)ρπ

((
No − µ1+µ0

2

)
R2 +

2Poda
oe

1
2
σ2

(a−2)ϵa−2

) .

(26)

Similarly, we derive E[T |H0] as follows. According to Eq.
(2), E[

∑nt

it=1 r
1
it
] can be expressed as:

E[
nt∑

it=1

r0it ] = E[
nt∑

it=1

ritN (No, σ0
2)] = NoρπR

2. (27)

Then, we derive E[T |H0] as:

E[T |H0] =
σ0

2β ln 1−α
β + σ0

2(1− β) ln α
1−β(

No − µ1+µ0

2

)
(µ1 − µ0)ρπR2

. (28)

Since α and β are predefined, we have the following
observation based on Eq. (28):

Proposition 1: The average outage detection delay is in-
versely proportional to the user density and the cooperation
area (i.e. ρπR2), but is independent of the FAP’s transmission
power.

VI. NUMERICAL RESULTS

In this section, we demonstrate the performance of COD,
and the impacts of some system parameters on the detection
accuracy and delay with simulation results.

A. Simulation Setup

We consider a two-tier cellular network comprised of
multiple femtocells overlaid on a macrocell. Femtocells are
distributed randomly within an area of 1000 m × 1000 m.
All FAPs use a uniform transmission power and operate at the
carrier frequency of 2.5 GHz with 5 MHz channel bandwidth
[22]. Femtocell users are distributed randomly within the same
area, and are associated with the FAP with the strongest RSRP.
Users send their RSRP reports every 0.1 s. Each femtocell user
moves according to the random waypoint mobility model [23]
within the range of the network area. Each user moves with
speed interval of [0,10] m/s, pause time interval of [0,1] s,
and walk interval of [2,6] s. The thermal noise power and the
minimal sensible signal strength are set to -107.5 dBm, and
the path loss exponent a is set to 4. The misdetection rate and
false alarm rate parameters α = β = 0.01. Unless explicitly
otherwise stated, the numbers of FAPs and users are 100 and
1000, respectively, the FAP transmission power Po = 5 dBm,
cooperation range R = 600 m, and the standard deviation
of the shadowing fading dB-spread σdB = 8 dB [22], where
σdB = 10σ/ ln(10). The simulation results are the average
results from 5000 randomly generated network topologies.

To demonstrate the merits of the proposed statistic correla-
tion based architecture, we compare COD with the commonly
used maximum likelihood ratio based approach [24] referred
to as MAJ. In MAJ, each user associated with the femtocell
in normal state collects RSRP statistics, decides a binary
hypothesis problem based on the maximum likelihood ratio,
and reports the binary decision directly to the MBS. Then,
the MBS makes the decision by majority vote. For a fair
comparison, we enhance MAJ by collecting test statistics of
the same number of detection rounds with COD. Thus, these
two schemes have the same detection delay.

B. Overall Performance

Fig. 3 and Fig. 4 illustrate the overall performance of COD,
i.e., detection accuracy and detection delay. Detection accuracy
is defined to be the probability of correctly detecting an
outaged femtocell. Note that we do not show false alarm rate
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Fig. 5: Impact of cooperation range on
detection accuracy
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Fig. 6: Impact of user density on detec-
tion accuracy
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Fig. 7: Impact of cooperation range on
detection delay
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Fig. 8: Impact of user density on detec-
tion delay

in the figures since it is less than 0.001 in all cases, which is
much higher than misdetection rate. Detection delay is defined
as the number of detection rounds.

Fig. 3 depicts the detection accuracy for various FAP power
levels, and it is shown that COD outperforms MAJ in detection
accuracy by more than 20% in all cases demonstrated. The
reason is that COD exploits spatial correlations by collabora-
tive filtering and data fusion to obtain more information for
the final decision, while MAJ simply aggregates statistics by
majority vote. We observe that both COD and MAJ detect
outaged femtocells with higher accuracy as the FAP power
increases. This is because when FAP transmission power
increases, the gap between the RSRP statistics in normal cases
and RSRP statistics in outage cases is larger, making it easier
to differentiate these two cases.

Fig. 4 indicates that the difference in the detection delays
of COD without trigger stage and COD approaches zero
when FAP transmission power increases. The reason is that
as the FAP power gets larger, it is easier to differentiate
outage cases from normal cases, the probability of immediately
triggering the detection stage is higher. We also observe that
the detection delay of COD without trigger is independent
of the FAP transmission power, which matches our analytical
results (Proposition 1).

C. Impacts of Parameters on Detection Accuracy

Fig. 5 and Fig. 6 show the impacts of parameters on the
detection accuracy. As depicted in Fig. 5, COD achieves higher
accuracy when cooperation range is larger, which is consistent
with Proposition 1. This is because with lager cooperation

range, there are more statistics contributed to cooperative
detection, and thus the spatial correlations are better exploited.

Fig. 6 indicates that the detection accuracy goes higher when
user density increases, which is consistent with Proposition 1.
The reason is that higher user density enables better spatial
correlation exploitation. It can also be seen in both Fig.
5 and Fig. 6 that the detection accuracy is slightly lower
with larger σdB . This is because larger σdB implies more
severe shadowing fading, which results in statistics with larger
randomness.

D. Impacts of Parameters on Detection Delay

The impacts of parameters on the detection delay depicted
in Fig. 7 and Fig. 8, which match the analytical results in
Proposition 1. Fig. 7 and Fig. 8 show that detection delay
increases when σdB is larger but decreases with the increment
of the cooperation range or the user density, which can be
explained by Eq. (26) and Eq. (28). We can see that with
enough cooperation range (e.g., 600m) and reasonably high
user density (e.g., 4/100m ×100m), the detection delay is
very small (less than 1.2 rounds) even with severe shadowing
fading (σdB = 8).

VII. RELATED WORK

The problem we studied in this paper is related to two
areas in wireless networks, namely, troubleshooting in cellular
networks and wireless LANs, and primary user detection in
cognitive radio networks.
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In cellular networks, troubleshooting has been studied in
previous works [7] [8] [25]. [8] processes historical user statis-
tics via offline Bayesian analysis to diagnose the root causes
for the cell outage. Based on a similar but enhanced offline
analysis model, [25] further studies the outage troubleshooting
problem in the context of femtocell networks. These works
focus on offline analysis of the root causes after outage has
been detected, while we emphasize the online detection of the
outaged cell. The only online detection approach is proposed
in [7], which detects outaged macrocells based on user’s
neighbor cell list reports. In wireless LANs, there have been
a lot of studies on node failure and faults detection problems
[12] [13]. [13] is the first study on fault detection and diagnosis
in the IEEE 802.11 infrastructure wireless networks. In [13],
the client conduit protocol is proposed to allow clients to
cooperatively identify the root cause of disconnection issues.
A fault management system is designed in [12] to cooperate
to automatically detect fault nodes and troubleshoot network
problems, in which the detection procedure is triggered only
when a client is disconnected from AP. However, these outage
or fault detection approaches cannot be applied in the femto-
cell outage detection scenario due to the unique challenges
listed in Section I.

In cognitive radio networks, primary user detection [26]
[27] is also related to our work. These works focus on
detecting the signals of primary users by spectrum sensing.
The fundamental differences between these works and our
work are twofold. First, the issues caused by the two-tier archi-
tecture of femtocells are not involved in these works. Second,
the communication overhead is more strictly constrained in
femtocell outage detection since femtocell should guarantee
quality of service for the users in the first place.

VIII. CONCLUSIONS

This paper proposes a cooperative detection architecture
called COD for cell outage detection in femtocell networks,
which addresses the unique challenges of femtocell networks.
COD contains a trigger stage and a detection stage. By exploit-
ing the spatial correlations of RSRP statistics via collaborative
filtering, the trigger mechanism enables COD to trigger the
detection stage without extra inter-cell communications. In the
detection stage, we model the detection problem as hypothesis
testing, and derive closed-form expressions of detection delay.
Our evaluations show that our cooperative detection largely
reduces communication overhead and achieves higher detec-
tion accuracy than the existing approach under the same delay
condition.
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