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Abstract— Owing to the proliferation of mobile devices and
their corresponding app ecosystems, more and more people are
accessing the internet via various mobile apps, which generates
tremendous volume of mobile data. Despite the growing impor-
tance of these mobile apps, we have a rather sparse understand-
ing of how they are accessed and what issues affect their usage
patterns. To address this problem, we perform a comprehensive
measurement on large-scale anonymized network data collected
from a tier-1 cellular carrier in China. In this measurement, we
characterize the usage pattern of mobile apps and exhibit how
the mobility, geospatial properties and behaviours of subscribers
affect their mobile app usage at a fine-grained level.

I. INTRODUCTION

Nowadays, accessing the internet via mobile device has

become an indispensable part of our daily lives. A recent

study [1] reports that global mobile data traffic grew 81 percent

in 2013 and reached 1.5 exabytes per month by the end of

2013. Meanwhile, with the convenience brought about by

the blooming development of mobile apps and pre-installed

marketplace portals, e.g., AppStore on iOS and Google play

on android, more and more people are accessing the internet

via mobile apps instead of traditional web browsers [2]. In

spite of the increasing importance of mobile apps, we only

have a sparse understanding of how these apps are used and

what critical factors affect their usage patterns, especially at

a fine-grained level. To fill this knowledge gap, we perform

an in-depth analysis on mobile app usage patterns based on a

large-scale data set in this work.

Previous works in this area can be roughly categorized into

two groups by their measurement methodology: the first is

instrumented measurement, which requires pre-installed apps

on volunteer’s mobile device to collect detailed log traces. The

authors in [3], [4] provide a detailed analysis on app usage

patterns and energy consumption based on a small number of

logs collected from instrumented phones. Other similar studies

are performed in [5], [6]. As the cost of measurement is quite

high, these works are generally limited by the scale of the data

sets. On the other hand, some studies have performed data-

driven measurements based on large-scale data: [7] analyses

the geospatial correlation of app interest by using a large-

scale data log in a 3G network. Paul et al. studied the traffic

dynamics from the perspectives of both cellular providers and

subscribers in a tier-1 3G network [8]. The authors in [2]

provide a study on smartphone app usage patterns from a

nation-wide view. However, these works only provide a broad

view of the traffic from the network provider’s perspective

instead of taking an in-depth look at critical issues which affect

app usage patterns.

In this work, we collect large-scale anonymized IP flow

traces from a tier-1 cellular provider in China, which contains

millions of subscribers and covers thousands of cells in one

of the biggest metropolitan areas. Based on this data set, we

exhaustively investigate how subscriber mobility, geospatial

patterns and preference affect the usage pattern of mobile apps.

Our key contributions are summarized as follows:

• Our data set contains information about millions of

subscribers, including usage traces of hundreds of apps

and covers a large metropolitan area. This rich data set

enables us to make statically meaningful observations

about mobile app usage.

• We confirm that there exists a huge diversity in sub-

scribers’ mobility. Although most subscribers move

within a small area per day, e.g., within 5 cells and a

radius of 5 kilometers, there are a substantial number of

subscribers who roam across 20 cells or more than 20-

kilometer area in a day.

• We observe that the average traffic increases with the sub-

scriber’s mobility. This implies the subscribers of higher

mobility tend to generate more traffic volume, which

motivates our further analysis on the impact of mobility

on app usage and behavior of different subscriber groups.

• We also find the impact of mobility varies for each app.

For example, the web browsing traffic increases with

subscribers mobility , and gaming, social networking apps

are more frequently used when subscribers are roaming

within a relatively small region. This result suggests OS

vendors and service providers of these apps should con-

sider techniques which compensate for network quality

variations caused by mobility.

• We validate that there exists a strong correlation between

subscriber mobility and the traffic of some apps, e.g.,

the correlation between the traffic of maps apps and

the number of cells visited is quite high. This further

implies we can estimate subscribers’ app traffic with their

mobility level.

• By identifying hundreds of locations of different function

types, we notice that, although location type does not

change the possibility of accessing an app, it obviously

affects the extent to which mobile apps can be used. For

example, map generates more traffic in transportation

areas, and music is more highly preferred in work areas.

This suggests a potential for service providers to opti-

mize their services by placing content servers near the

majority of their users. Also, this observation is helpful



for network providers as different compositions of app

traffic pose various network QoS requirements.

• Our study on behavior of heavy traffic subscribers (Top

20% of subscribers in terms of daily traffic) shows several

interesting observations: First, heavy traffic subscribers

generally have a higher mobility level than normal sub-

scribers (the remaining 80% of subscribers). However,

the app usage patterns of heavy traffic subscribers are

more sensitive to mobility: their app traffic fluctuates

significantly with mobility growth, while the app traffic

of other subscribers remains stable. Another observation

is that location also affects heavy traffic subscribers more

significantly than others. As heavy traffic subscribers

contribute to a large fraction of the total traffic, knowing

such app usage pattern can be helpful for more efficient

network planning and resource allocation.

• We also conduct a comprehensive analysis on app us-

age patterns of high mobility subscribers (the top 20%

subscribers in terms of mobility) and notice that the

app interest and sensitivity to location for high mobility

subscribers is quite different to other subscribers. Such

knowledge could be leveraged by network operators,

service providers and app designers to optimize their

services case by case.

The rest of this paper is organized as follows: section II

describes our data set, section IV investigates the impact of

subscriber mobility on app usage patterns, and section V

explores the geospatial pattern of app usage. Related works

are discussed in section VIII, and then we conclude our work.

II. DATA SET

In this work, we use an anonymized data set from a tier-1

cellular network provider in China. This data set contains flow

information of more than 8 million subscribers and covers a

large metropolitan area of China from September 6th, 2012 to

September 18th, 2012. It is collected from all links between

Serving GPRS Support Node (SGSN) and Gateway GPRS

Support Node (GGSN) in the core network of a mixed 2G/3G

cellular network and contains flow-level information of all the

IP flows carried in the PDP context tunnels, that is, flows that

are sent to and from mobile devices. The information includes:

anonymized subscriber identifiers, the traffic volume of each

flow, application information and location information. All

subscriber-related identifiers are anonymized to protect privacy

without affecting our analysis.

Application information consists of application name (e.g.,

Google Maps), protocol, IP address and port, delay and

transmission speed. Among these fields, the application name

is a result of Deep Packet Inspection (DPI), which is conducted

by network providers at IP level to improve network security

and provide application-specific services [9]. In this work, we

use an internal DPI solution provided by the cellular network

operator, whose accuracy is more than 90% and sufficient for

our study.

The location information for each flow contains Location

Area Code (LAC) and Sector ID (SI). This location informa-

tion is obtained by joining PDP sessions with a fine-grained

log of signalling messages, which includes detailed logs of

handover events, thus the location should be accurate for each

flow.

In total, our data set contains more than 8 million users and

covers 38360 sectors of a very large metropolitan area. The

data record of each day is about 800 GB.

Although there are hundreds of apps in our data set, there

exists some apps which are rarely used. After ranking all the

apps by the number of average daily users, we notice that

some apps are only used by a few users (less than 100) and

contribute a very small proportion of the total traffic (less than

10 percent in total). As the usage pattern of these apps could

easily be affected by a small group of users and prone to

introduce bias, therefore we leave these “tiny” apps out of our

analysis and only focus on the top 160 popular apps, which

are used by the majority of users and generate a dominant

proportion of total data traffic.

Furthermore, we manually categorize these 160 apps into 13

groups according to their function or genre: (1) web brows-

ing(WEB) stands for traditional web browsers, e.g., Chrome,

Safari; (2) P2P, e.g., BitTorrent; (3) instant message (IM)

includes apps like WeChat or MSN; (4) reading (RE) includes

news reading apps like CNN news app, or RSS readers; (5)

social network (SN) covers Sina Webo (a popular twitter-like

app in China) and Renren(facebook-like app) and other similar

apps; (6) video (VD) consists of popular VOD apps in China,

like Youku and Sina Video; (7) music (MU) includes popular

online music apps in China, e.g., TecentMusic; (8) app market

(AM), such as apple app store and android play; (9) game

(GM) includes popular online games in China; (10) email

(EM) refer to the popular email clients on mobile device, e.g.,

iOS email app; (11) stock trading (ST) contains stock trading

apps, such as apple stocks; (12) online shopping (SH) covers

popular online shopping apps in China, like Taobao or Amazon

apps; (13) maps, e.g., Google maps or Baidu maps. For each

category, we aggregate apps belonging to this category and

conduct a fine-grained analysis on its usage pattern in later

sections.
TABLE I

APP CATEGORIES

Category # apps Category # apps

web browsing 6 p2p 9

instant message 6 reading 16

social networks 5 video 9

music 16 app market 3

game 70 email 4

stock trading 8 online shopping 6

map 2

We understand that these apps will be invisible in our anal-

ysis once the device is connected to WiFi or other networks,

and such situations occur frequently in daily life. However, as

mobility is the key advance of mobile devices and the cellular

traffic generated when mobile apps are moving has increased

exponentially in recent years, we choose to focus our analysis

on the access patterns of mobile apps under the scenario of

cellular networks.



(a) User distribution of apps. (b) Traffic distribution of apps. (c) User number of app categories. (d) Traffic contribution of app cate-
gories.

Fig. 1. User number and Traffic volume of apps.

(a) number of visited cells. (b) radius of gyration.

Fig. 2. Subscriber’s mobility.

(a) average traffic vs. visited cell (b) average traffic vs. radius of gyration

Fig. 3. Traffic distribution over mobility.

III. OVERVIEW OF APP USAGE

We begin our analysis by presenting the general overview of

all apps, and then manually group those apps into 13 categories

according to function or genre and investigate the user and

traffic contributions of each category.

We first sort apps according to the user number and traffic

respectively and show the user number and traffic distribution

of each app per day in Figure 1(a) and Figure 1(b). Note that

the y-axis is in a log scale. The long tails of app user numbers

and traffic volume distribution imply that there exists a high

diversity in app usage: the top app in our data set is a web

browsing app based on HTTP, which is accessed by nearly 1.7

million users and contributes more than 1.8 TB of traffic per

day, whereas the least popular app is only accessed by 1 user

and accounts for a little traffic.

Then, we manually group these apps into 13 app categories

by their functions or genres. Table I shows the number of

apps in each category. For each category, we aggregate the

user number and traffic volume of apps which belong to this

category and report the result in the Figures 1(c) and 1(d). We

observe that web browsing and instant messaging are the most

popular apps in terms of user number and cover almost all the

subscribers. Meanwhile, there are also a substantial number of

users who access game, p2p and social networks. However, in

terms of traffic volume, web browsing dominates: it generates

approximately 1.8 TB per day and contributes more than 50%

of the total traffic volume of the whole network.

IV. MOBILITY PATTERN

In this section, we examine mobility patterns of subscribers

and investigate how subscribers’ mobility patterns affect mo-

bile app usage.

A. Subscriber Mobility

The first question is what subscribers’ mobility looks like.

To find the answer to this question, we choose two different

metrics to measure subscriber mobility:

(a). Number of visited cells, defined as the number of

cells visited along subscriber’s daily trajectory. Figure 2(a)

shows the distribution of the number of visited cells: 80% of

subscribers are only observed within 5 cells per day and 95%

of subscribers roam less than 10 cells per day. However, about

3% of subscribers move across more than 20 cells, recall that

we have 8 million subscribers in our data set, thus 3% still

implies there are a considerable number of subscribers who

have very high mobility.

Owing to the fact that the coverage of cell towers varies,

ranging from several kilometers to tens of kilometers [10],

the number of visited cells can not perfectly represent the

geospatial coverage of subscriber activities. Therefore, we

further study subscriber mobility via other metrics: (b). Radius

of gyration (RoG), which is commonly used in the study of

human mobility [11] and can be interpreted as the geographical

area travelled by a subscriber:

rg =

√√√√ 1

n

n∑
i=1

(li − lmass)2, (1)

where li is the latitude and longitude of cell i, lmass =
1

n

n∑
i=1

li

is the center of mass of subscriber’s trajectory and (li− lmass)
is the Euclidean distance between li and lmass. The radius of

gyration is a de facto indicator of subscribers’ activity areas:

the higher it is, the larger the area the subscriber travels.

We compute the radius of gyration of each subscriber every

day and report it in Figure 2(b). A similar high diversity

of mobility can be observed in this figure: over 90% of

subscribers move within a radius of 5 kilometres, while there



Fig. 4. Impact of mobility on app access probability. Fig. 5. Impact of mobility on app traffic.

(a) App access probability in cells of different types. (b) App traffic contribution in cells of different types.

Fig. 6. Impact of location on app usage

is still an approximate 2% of subscribers who travel across an

area larger than 20 kilometers per day.

High mobility leads to variations in network connectivity

and quality, and thus eventually affects app usage. To under-

stand how mobility affects app usage patterns, we study the

effect of subscriber’s mobility in the next subsection.

B. Impact of Mobility on App Usage

We first examine traffic generated by subscribers of different

mobility. Figure 3 shows the distribution of the average daily

traffic per subscriber in their mobility. It can be observed

there is an increasing trend of average traffic volume when

a subscriber’s mobility grows in terms of both number of

visited cells and radius of gyration, which implies higher

mobility subscribers tend to generate more traffic. Similar

observations are also found in [7], [8]. However, since many

confounding factors still exists, previous works only describe

the aggregated behavior, and have not investigated the root of

this phenomenon in detail. In our study, we investigate two

of the most important confounding factors: app category and

subscriber group.

We start with the impact of mobility on different app

categories: a natural question for this factor is, how does mo-

bility affect usage patterns of apps of different app categories

respectively?

To answer this question, we first define the access proba-

bility of the ith app under mobility m as:

prob(aim) =
uim∑

i∈S

uim

, (2)

where uim is the number of subscribers who access the i-th

application under mobility m, and S is the set of all apps.

Then, we aggregate apps into categories in Figure 4. To

highlight variations, some apps whose trends remain stable

are omitted in this figure, e.g., shopping and reading

One obvious trend is that, the access probability of web

browsing, instant messager grows significantly at the begin-

ning and then remain at a high volume as mobility increases.

Also, the access probability of gaming and social networks

show a notable growth when the number of visited cells

increase. This could be a result of the fact that people tend to

stay connected with others when they are out of their comfort

zones [7]. However, when using the radius of gyration as a

mobility indicator, the access probability of each app category

is relatively stable, except for a short increase at the beginning.

This implies that only subscribers who move within a small

region but with a large visited cell number, e.g., commute

in downtown) prefer gaming, social networks than other app

categories.

Apart from this, we also examine the traffic contributions

of each app category. We first aggregate traffic generated by

each app category, then average it on each mobility and report

the result in Figure 5.

We notice an interesting phenomenon: the average traf-

fic of web browsing and music increase significantly with

subscribers’ mobility. This trend is suspicious, because high

mobility would degrade network connectivity and quality [12],

such data-sensitive apps should disappear as mobility in-

creases. To find the reason behind this, we trace the subscribers

who consume heavy traffic of these apps in high mobility, and

surprisingly find that these subscribers always tend to generate



Fig. 7. App interest of heavy traffic subscribers. Fig. 8. Mobility of heavy traffic subscribers.

(a) Normal subscribers. (b) Heavy traffic subscribers.

Fig. 9. Impact of mobility on app traffic for normal/heavy traffic subscribers.

TABLE II
CORRELATION BETWEEN APP TRAFFIC AND MOBILITY

Category r with #cells r with RoG

web browsing 0.96 0.15

p2p 0.17 0.04

instant message 0.99 0.11

reading 0.15 -0.32

social networks 0.58 -0.09

video -0.20 -0.46

music -0.37 0.37

app market 0.18 -0.22

game 0.13 0.14

email 0.29 0.21

stock trading -0.42 -0.32

online shopping -0.53 -0.34

map 0.72 0.69

a large volume of traffic and are generally more mobile than

other subscribers. This motivates our further analysis of app

usage behavior of heavy traffic subscribers and details are

discussed in section VI.

After finding that the impact of mobility on each app

varies, we explore whether any connection exists between

subscriber mobility and app usage: after aggregating app

traffic into categories, the Pearson product-moment correlation

coefficient [13] is computed as follows:

r =

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

√
n∑

i=1

(Xi − X̄2)

√
n∑

i=1

(Yi − Ȳ )2
(3)

which could be interpreted as a measure of the linear correla-

tion between app traffic volume and mobility. Table II presents

the correlation between the average traffic of each app category

and mobility. We can see a strong positive correlation between

the number of visited cells and the average traffic of some

app categories, e.g., web browsing, instant message and map,

while a relatively strong negative correlation exists in stock

trading and online shopping. A similar correlation can also be

observed between the radius of gyration (RoG) and average

traffic of map. These high correlations suggest that subscriber’s

mobility would be helpful when predicting app traffic volume.

V. SPATIAL PATTERN

In this section, we explore the effects of the geographic

location on app usage. Understanding such spatial patterns

provides the possibility of conducting location-based service

optimization, e.g., content providers could benefit in optimiz-

ing the placement of their content delivery servers for better

service quality.

Several previous studies have conducted such measurements

at a relatively coarse level, either nation-wide [2] or based on

a small number of regions, e.g., downtown and suburban [8],

[14]. To take a fine-grained study at the geospatial pattern of

app usage, we first estimate the coverage of cells according to

the distance between nearby cells, then heuristically classify

cells into four types according to their function: (a) Trans-

portation, such as train stations or airports; (b) Educational

institution includes schools, colleges and research institutions;

(c) Work consists of business districts, campuses of large

technology corporations and government office areas; (d)

Entertainment covers large shopping malls and places of

interest in the downtown. Due to page limitations, the detail

of classification is not included here. In total, there are 38360

cells in our data set, we have identified the types of 1241 cells

in the downtown area and all classification results are validated

manually one by one. Table III shows the number of cells of

each type.

We understand that there are some compound cells whose

types overlap, e.g., in some downtown areas, large shopping

malls coexist with office buildings, thus it can be Work and

Entertainment at the same time. Moreover, the proportion of

each type for such compound cell is ambiguous, which makes

its impact on app usage more difficult to investigate. Therefore,

we only examine cells which have a significantly dominant

type. Another difficulty arises from the fact that the cell type



(a) Access probability (b) Average traffic.

Fig. 10. Impact of mobility on app usage of normal subscribers.

(a) Access probability (b) Average traffic.

Fig. 11. Impact of mobility on app usage of heavy traffic subscribers.

is semantic, i.e., the same location may have various meanings

for different people at different times. Since we are primarily

interested in the impact of location type for the majority of

subscribers, this is not included in this measurement. Also,

since most of people are using WiFi or LAN at home, we do

not include areas of residence in our analysis.

We first compare the access probability of each app category

in cells of different types in Figure 6(a). From this figure,

the access probability merely changes in different locations:

instant messaging and web browsing are always the most

popular apps in cells of different types, and the proportion

of other apps also only make a minor difference. However,

this result is out of our expectation that location should play

an import role in app usage [2], [7].

TABLE III
CELL TYPES

Type # cells

transportation 158

education 300

work 299

entertainment 484

To further investigate this problem, we compare the average

traffic generated by each subscriber in cells of different types

in Figure 6(b) and find the traffic patterns of some apps vary

with locations. For instance, music only dominates in work

areas, P2P is more frequently used in education and work

areas than other areas, while map contributes the highest traffic

in transportation areas. This demonstrates, instead of bringing

significant variation in access probability, location affects the

extent to which a mobile app is used. This suggests that,

knowing the coverage area types of cells, it is possible to

estimate the network quality requirements as their app traffic

composition varies with cell types and each app category poses

different network quality requirement, e.g., a cell covering

work areas implies a requirement of high bandwidth such as

music and P2P are frequently used within this area.

VI. APP USAGE BEHAVIOR OF SUBSCRIBER GROUPS

In this section, we explore app usage behavior of two

subscriber groups: (a) heavy traffic subscribers, defined as

the top 20% of subscribers in terms of traffic volume. (b) high

mobility subscribers, who are the top 20% of subscribers of

the highest mobility. As both of these subscriber groups pose

challenging requirements for network quality, one for network

load and another for network connectivity, understanding of

the app usage behavior of these subscribers groups could help

cellular operators and app designers to provide better user

experience.

A. Behavior of Heavy Traffic Subscribers

Heavy traffic subscribers are defined as the top 20% of sub-

scribers according to their daily average traffic. As our data set

contains approximately 8 million subscribers, there are about

1.6 million heavy traffic subscribers in this measurement.

First, we investigate the app interest of heavy traffic sub-

scribers. Figure 7 shows the number of unique users and

normalized traffic of heavy traffic subscribers on each app

category. We notice that web browsing, p2p and instant

messager are still the most popular apps among heavy traffic

subscribers, e.g., together they account for more than 80% of

the total traffic.



(a) App access probability of normal subscribers. (b) App access probability of heavy traffic subscribers.

(c) Average traffic of normal subscribers. (d) Average traffic of heavy traffic subscribers.

Fig. 12. Impact of location on app usage of normal/heavy traffic subscribers.

Then, we also compare the mobility of heavy traffic sub-

scribers with normal subscribers. Here, normal subscribers are

defined as the remaining 80% of total subscribers excluding

heavy traffic subscribers. Figure 8 demonstrates the mobility

of these two groups of subscribers. According to this figure,

the mobility of heavy traffic subscribers outstrips the mobility

of normal subscribers. For example, 11% of heavy traffic

subscribers move across more than 14 cells in a day, while

less than 5% of normal subscribers have much higher mobility.

A similar pattern can be observed in terms of radius of

gyration. This finding corresponds to our previous observation

in section IV, which indicates subscribers of higher mobility

tend to generate more traffic.

Our previous study in section IV-B indicates that the impact

of mobility on each app category varies, thus a follow-up

question is whether mobility has a similar effect on app

usage of heavy traffic subscribers. To answer this question,

we compare the impact of mobility on the average traffic

of normal subscribers and heavy traffic subscribers in Fig-

ure 9. Interestingly, the average traffic of normal subscribers

increases dramatically with the number of visited cells, but in

terms of radius of gyration, the average traffic first raises and

then drops significantly. This implies that normal subscribers

only tend to generate more traffic when they are travelling

within a relatively small geospatial region, e.g., commuting

via public transport in downtown. Meanwhile, the patterns of

heavy traffic subscribers are quite different: the average traffic

slightly changes as the number of visited cells grows, but there

exists a surprising increasing trend when the radius of gyration

is larger than a certain threshold (13 kilometres in our dataset).

Such difference suggests that heavy traffic subscribers always

tend to generate more traffic, even when they are travelling

over a long distance.

Fig. 13. App interest of high mobility subscribers

Figure 10(a) and Figure 11(a) show the mobility effect on

the app access probability of normal subscribers and heavy

traffic subscribers. We notice that, the access probability of

web browsing and instant messager of heavy traffic subscribers

remain almost 1, and social network and game are also

relatively high.

According to Figure 10(b) and Figure 11(b), we find the

traffic composition of normal traffic subscribers are relatively

stable, only an increasing trend of web browsing in term of

number of visited cells is observed. However, when referring

to heavy traffic subscribers, the traffic of video and music

traffic fluctuate dramatically as the radius of gyration grows,

which may be due to the fact that these apps place a high

requirement on network quality and thus more sensitive as

mobility increases.

Next, we examine the impact of location on the app usage

of heavy traffic subscribers. Figure 12(a) and 12(b) presents

the app access probability of each app category in different

locations. It is obvious that location merely affects app access

probability for both normal and heavy traffic subscribers.



(a) app access probability of normal subscribers. (b) app access probability of high mobility subscribers.

(c) Avg traffic of normal subscribers. (d) Avg traffic of high mobility subscribers.

Fig. 14. Impact of location on app usage of normal/high mobility subscribers.

However, the average traffic of each app category in different

location in Figure 12(c) and 12(d) demonstrates the type of

location significantly affects the app traffic of heavy traffic sub-

scribers, while barely having an effect on normal subscribers.

For example, for heavy traffic subscribers, music and P2P only

significantly dominates in work and education areas.

B. Behavior of High Mobile Subscribers

Finally, we examine the app usage behavior of high mobility

subscribers. After ranking all subscribers according to their

daily mobility, we define the top 20% subscribers of the high-

est mobility as high mobility subscribers and the remaining

80% of subscribers as normal subscribers.

As mobility affects network connectivity and quality, know-

ing what kind of apps are more frequently used by high

mobility subscribers could help OS vendors and app designers

to prepare for network variations caused by high mobility.

Therefore, we show the app interest of high mobility sub-

scribers in Figure 13. We notice that, except for a slight growth

in social network, the interest of high mobile subscribers

barely differs from other users. The fact that people tend to

stay connected to others when they are out of their comfort

zone, e.g., home, sheds light on this trend [7]. In terms

of traffic volume, web browsing dominates. This might be

explained by the fact that web browsing does not require a

long connection or intensive data transmission, thus it is more

adaptable to the high mobility scenario.

Besides, we also wonder how location affects app usage for

high mobility subscribers. We find that, similarly, location does

not affect app access probability much, but has a significant

effect on app usage extent, i.e., app traffic. According to

Figure 14, location has a very different effect on normal

and high mobility subscribers. For example, in education

areas, video contributes a large proportion of traffic for high

mobile subscribers, but a relatively small proportion for normal

subscribers.

VII. IMPLICATIONS

In previous sections, we analysis mobile app usage from

mobility, spatial and subscriber groups perspectives. We be-

lieve our observations could have many implications. In this

section, we briefly discuss some implications from cellular

network operator, content provider and OS/App vendor per-

spectives.

A. Cellular Network Operator

As Mobility is one of the most import characteristics

of cellular networks, we carefully investigate how mobility

affects subscribers’ traffic and app usage. These findings could

help cellular operators to optimize their network performance.

For example, we notice that the mobility level of heavy traffic

subscribers is significantly higher than normal subscribers. As

heavy traffic subscribers contribute most of the mobile traffic,

cellular network operators could benefit from designing more

efficient handover policy [15] for these subscribers.

Also, we notice there are some obvious spatial patterns for

app usage. For example, music and P2P are well used in work

areas. As such data-intense apps could pose higher network

quality requirements, e.g., higher bandwidth, cellular network

operation could improve their service by optimizing resource

allocation in such locations at the fine-grained level.

B. content provider

Content providers can take advantage of spatial patterns of

app usage to optimize their service: In our analysis on spatial



patterns of app usage, analysis results indicates that a strong

spatial pattern exists for some apps, e.g., music dominates

the traffic in work areas, and video is more frequently used

in entertainment areas. These observations suggest a content

provider could consider placing their content distribution net-

work near these locations.

C. OS/App vendor

In our analysis on mobility patterns, we make an interesting

observation that some apps are more frequently used and

contribute more traffic when subscribers roam across more

cells. For example, the access probability of game and social

network shows significant growth as the number of visited

cells increases. Since frequently roaming between multiple

cells could cause dramatical network quality variations [12],

the vendors of these apps should consider adopting tech-

nologies,such as caching and pre-fetching, to handle network

quality variations.

VIII. RELATED WORK

There exists a plethora of works studying cellular traffic

and app usage from different perspectives. The authors in [3],

[4] provide detailed analysis on app usage patterns and energy

consumption based on detailed logs collected by pre-installed

app on smartphone, but are limited by the scale of the data sets.

[7] is a pioneering work which uses large-scale network trace

logs to study the app interest and its geospatial characteristics.

This work makes a very coarse partitioning of the cells into

home, work and hotspot. Shafiq and et al. [14] focus on the

geospatial pattern of app usage, in which they only consider

locations as downtown, university and suburb. Compared with

these works, our work takes a step further to investigate the

location impact at a fine-grained level, we carefully investigate

the impact of locations of different functions. Besides, [2],

[8], [16]–[18] provide a broad view of traffic dynamics by

analysing large-scale network data traces collected from 3G

network. Instead of focusing on detailed app usage pattern,

they put more emphasis on traffic dynamics from perspective

of the cellular network provider. For us, we focus more on

detailed traffic dynamics of different apps.

Another group of works focus on the optimization of

cellular networks and mobile devices. [19] leverages machine

learning algorithms to optimize power consumption, [20]

proposes a method to maximize the utilization of bandwidth

to reduce the battery drain caused by background commu-

nication, while [21] invents a mechanism to save power

consumption of Base stations in 3G networks. Zang et al.

proposed an efficient paging scheme to locate mobile devices

quickly via mining large-scale call detail records in [22], Xu

et al. developed a novel algorithm to accurately assigns IP

performance measurements in [23], and the authors in [6], [24]

inverted tools to analyse mobile app usage. We believe our

work can provide some implications for further optimization,

and complements these works.

IX. CONCLUSION

In this work, we investigated app usage patterns of mobile

apps, mainly focusing on understanding how subscribers’

mobility, geospatial properties and interest affect the usage

patterns of mobile apps.

According to our measurements, we notice that, not only

the subscriber’s mobility pattern significantly diversifies, but

also the impact of mobility on each mobile apps obviously

varies. Our analysis on geospatial properties of mobile apps

also suggests that location plays an important part to the extent

to which a mobile app can be used. Besides, we identify two

different groups of subscribers, i.e., heavy traffic subscribers

and high mobility subscribers, and investigate their preference

and usage behavior of mobile apps respectively. We believe

our study is at more fine-grained level and complements the

knowledge gap in previous studies.
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