
Rainbow: Preventing Mobile-Camera-based Piracy
in the Physical World

Abstract— Since the mobile camera is often small in size
and easy to conceal, existing anti-piracy solutions are inefficient
to defeat the mobile-camera-based piracy, leaving it a serious
threat to the copyright. This paper presents Rainbow, a low-
cost lighting system to prevent mobile-camera-based piracy
attacks on intellectual properties in the physical world, e.g., art
paintings. Through embedding invisible illuminance flickers and
chromatic changes into the light, our system can significantly
degrade the imaging quality of camera while maintaining good
visual experience for human eyes. Extensive objective evaluations
under different scenarios demonstrate that Rainbow is robust to
different confounding factors and can effectively defeat the piracy
attacks on various mobile devices. Subjective tests on volunteers
further evidence that our system not only can significantly pollute
the piracy photos but also is able to provide a good lighting
condition.

I. INTRODUCTION

To protect the copyright of intellectual properties, such
as films and artworks, photo taking is often not allowed
in many scenarios, e.g., cinemas, museums, art galleries or
exhibitions [1]. However, as modern mobile cameras are often
small in size and easy to conceal, they are hard to detect,
rendering the mobile-camera-based piracy a serious threat to
the copyright protection. Existing no-photography policies are
often implemented by security guards [2], which involve much
human participation and cannot defeat the mobile-camera-
based piracy efficiently.

As a remedy, some researchers propose to defeat the
piracy by polluting the photos as much as possible. In this
field, infrared light [3], [4] and watermarking [5], [6] are
the most widely-adopted techniques in the film/photography
community. However, the infrared light is evidenced to be
harmful to art paintings and thus cannot be applied in many
museums and galleries [7]. Also, the watermarking is evidence
to be inefficient in preventing attackers from recording video
clips for later redisplay [8]. Further to that, some pioneer
researchers use advanced display techniques [9] and video
encoding schemes [8] to embed invisible noises in the video.
Although these approaches are proved to be effective, they
require a modification to the video frames and thus can only
work on digital contents, but not the physical intellectual
properties. In addition, several anti-piracy systems aim to
localize the attacker by various tracking techniques, such as
infrared scanning [10], distortion analysis [11], and audio
watermarking tracking [12]. These solutions often rely on
the high-cost professional devices, which hinder their wide
adoption.

In this paper, we aim to prevent mobile-camera-based
piracy attacks on 2D physical intellectual properties—such as
paintings or photographs—in indoor scenarios, e.g., museums,
art galleries or exhibitions. To this end, we propose a low-cost
anti-piracy system, Rainbow, which leverages existing light
infrastructure to degrade the imaging quality of mobile camera
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Fig. 1. Application of Rainbow: preventing the mobile-camera-based
piracy in museums. Our system can seriously pollute the image while
maintaining good visual quality for human viewers.

as much as possible while maintaining good visual experience
for human viewers. The key idea comes from a fact that mod-
ern mobile cameras mainly adopt a Complementary Metal-
Oxide Semiconductor (CMOS) image sensors with rolling
shutter [13]. Due to the hardware limitation, the rolling shutter
mechanism introduces a small delay among the exposures
of pixel rows. This implies that, if the light conditions vary
temporally during the exposure, the variation will turn into
spatial distortions due to the exposure delay in rows and
eventually result in “band”-like distortions termed the banding
effect on the image. In light of this idea, we modulate high-
frequency illuminance flickers and chromatic changes into
the light energy. As the light is reflected from the physical
object and projected into the camera, these variations can
cause a banding effect with obvious visual distortions. These
distortions then serve as a “watermark” to significantly pollute
the image, making it worthless to copy and thus the target’s
copyright can be protected. Meanwhile, as the human eye acts
as a “global” shutter with low-bandpass characteristics, such
variations cannot be perceived by the human viewers and a
good visual experience can be maintained.

To realize this system, several challenges need to be ad-
dressed: First, it is not clear how to maximize the visual
distortion caused by the banding effect. To find the answer,
a theoretical model of banding effect is defined and its
confounding factors are well-investigated. Moreover, to defeat
piracy attacks performed on diverse mobile cameras in various
exposure settings, we need to ensure our system works under
a wide range of exposure times. To this end, a collaborative
exposure coverage algorithm is proposed to select a set of
optimal light frequencies. By collaborating the selected light
frequencies, we can guarantee the piracy photos taken in vari-
ous exposure times within the possible range can be obviously
polluted. Extensive objective evaluations in different scenarios
indicate that our system is robust to various confounding
factors and can effectively defeat piracy attacks performed on
diverse mobile devices. Additionally, the subjective tests on 20
volunteers further evidence that our system is not only able to
create a severe quality degradation on the piracy photo but also



provides an excellent visual experience for human viewers.
The contributions of this work lie in the following aspects:

• To the best of our knowledge, we are the first to explore
the possibility of utilizing the banding effect to prevent
mobile-camera-based piracy on physical targets. Our the-
oretical model and experimental tests have demonstrated
the feasibility of creating significant illuminance fading
and chromatic shift on the piracy photos with banding
effect.

• We build Rainbow, which is an anti-piracy lighting
system based on existing light infrastructure. To defeat
the piracy attacks performed on diverse mobile devices
in various settings, We design a collaborative exposure
coverage algorithm to cover a wide range of exposure
times.

• Extensive evaluations show that our system can provide a
good performance under different scenarios. Additionally,
our subjective tests on 20 volunteers further evidence
that our system is not only able to protect the target’s
copyright, but also provide a good lighting function.

The rest of the paper is organized as follows: Section II
briefly reviews the preliminary knowledge and Section III
presents the system design. The evaluation results are reported
in Section V and practical issues are discussed in Section VI,
followed by a literature review and conclusion in Sections VII
and VIII, respectively.

II. BACKGROUND

A. Understanding the Human Visual System

The generation of human vision involves two functioning
units: the eye and the brain. While the complex cognition
process is performed by the brain, it is the eye which functions
as a biological equivalent of a camera to capture the image.
When the light within our visible spectrum, i.e., around 300 to
700 nm, passes through the pupil and projects into the retina,
different types of photoreceptors in the retina are activated,
generating the perception of colors [14].

While the human eye has an amazing ability to sense
chromatic changes, it suffers severe limitations on its temporal
resolution. Medical studies indicates that our eyes act as a low-
frequency filter and only perceive the changes slower than a
frequency threshold [15]. This phenomenon is related to the
persistence of vision and the frequency threshold is termed
the Critical Flicker Frequency (CFF). Although many factors,
e.g., the illuminance level and stimulus size, can affect the
CFF, a typical value is 60 Hz for the majority of people.
This means that, if the flickering frequency of an intermittent
light is larger than 60 Hz, it appears to be completely steady
to the average human observer. Similarly, a quick chromatic
change at a higher frequency than the CFF is perceived as the
color fusion of all the individual colors. For example, a fast
chromatic iteration over red, green, and blue colors leads to a
perception of white color.

B. Characterizing the Mobile Camera

With the ability to precisely capture the scenes, image
sensor becomes one of the most commonly equipped sensors
on modern mobile devices. Two types of image sensors are
used for the consumer-level cameras: the Charge Coupled De-
vice (CCD) and Complementary Metal Oxide Semiconductor

(CMOS). Their major distinction is the way that the sensor
reads the signal accumulated at a given pixel [13].

The CCD image sensor employs the global shutter mecha-
nism, in which every pixel is exposed simultaneously and the
signal of each pixel is serially transferred to a single Analog-
to-Digital Converter (ADC). As a result, its frame rate is often
limited by the ADC rate. To eliminate this bottleneck, the
CMOS sensor, which is widely adopted on the modern mobile
cameras [16], utilizes an ADC for every column of pixels.
Such a design can significantly reduce the number of pixels
processed by a single ADC and enable a much shorter readout
time. However, all the sensor pixels still need to be converted
one row at a time. This results in a small time delay between
each row’s readout, making each row’s exposure no longer
simultaneous, which gives the name of this mechanism, i.e.,
the Rolling Shutter.

Figure 2 gives an illustration of the rolling shutter mech-
anism. In this simplified example, the CMOS image sensor
contains four rows. Each of them is exposed for the same
amount of time, but due to the limitations of the single-
line readout, a small delay, often in several nanoseconds,
exists between two consecutive rows’ exposures. Although
this mechanism empowers the CMOS sensor with the ability
to sense high-frequency temporal variation, it can also cause
visual distortions on the resulting image.

In particular, if the light energy fluctuates during exposure,
the temporal variation will be reflected as a spatial variation
on the image sensor due to the exposure delay among pixel
rows, which leads to “band”-like spatial distortion termed the
banding effect on the resulting image. A common cause of
the banding effect is the light lamps we used every day.
Despite their differences in lighting technology, all commonly-
used lights, including incandescent lights, compact fluorescent
lights, as well as Light-Emitting Diodes (LEDs), exhibit
different levels of illuminance flickers [17]. For instance, an
incandescent lamp connected to AC power often creates an
illuminance banding effect at 50 or 60 Hz.

III. SYSTEM DESIGN

According to the previous discussion, we know that the
rolling shutter on mobile camera introduces a small time delay
between each pixel row’s exposure, enabling it to sense high-
frequency variation and causing the banding effect on the
image. On the contrary, the human eye acts as a continuous
“global” shutter with a low-frequency filter. It can only per-
ceive changes slower than the CFF frequency, which is 60 Hz
in the majority of humans.

Our system leverage this discrepancy between mobile cam-
era and human eye to pollute the piracy photos without
affecting the human visual experience. In particular, we
propose to embed a high-frequency illuminance flicker and
chromatic change into the light. When the light is reflected
by physical objects and projected into the camera, it can
generate a banding effect on the image which includes obvious
illuminance fading and chromatic shift. Such distortions can
then significantly degrade the quality of the resulting photo and
serve as a “watermark” to protect the copyright of the targeted
object. At the same time, as the light modulation varies faster
than the CFF frequency, the human viewers cannot perceive
any distortion and thus good visual quality can be maintained.

In this section, we first model the generation of banding
effect and explore the design space for embedding the illu-
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Fig. 3. An example of the illuminance banding effect.

minance fading and chromatic shift, then analyze the image
pollution problem with the distortion hologram. To tackle the
challenge of agnostic exposure time in real applications, we
further propose a collaborative exposure coverage algorithm
to cover a wide range of possible exposure times.

A. Embedding the Distortion with Banding Effect
1) Illuminance Fading: Consider a light with temporal

illuminance variation as:

L(t) = A sin2(2πft) (1)

where A is the luminance intensity, 2f is the variation fre-
quency, and L(t) defines the illuminance variation function of
light. In this case, the light energy E captured by each pixel
row can be defined as:

E =
∫ t0+te
t0

A sin2(2πft)dt

= A
4πf [ 2πfte︸ ︷︷ ︸

DC component

− sin 2πfte︸ ︷︷ ︸
Flicker ratio

cos 2πf(2t0 + te)︸ ︷︷ ︸
Flicker component

] (2)

where t0 denotes the exposure starting time, and te is the
exposure time of each row.

Several observations can be made from this equation:

1) The light energy captured by each pixel row comprises
three parts: The DC component defines the base light
energy received during the exposure. It is determined by
the exposure time te and does not change among rows.
Meanwhile, the illuminance fading is jointly produced
by the flicker ratio and the flicker component.

2) Given an exposure time te, as the rolling shutter causes
a small delay between the exposure starting times t0 of
different rows, the flicker component varies among rows
and eventually leads to a “band-like” illuminance fading
on the image.

3) The degree of illuminance fading is further controlled
by the flicker ratio, which depends on the relationship
between the light frequency f and the exposure time te.
For example, if the exposure time is a multiple of the
light period, i.e., te = n/2f , the flicker ratio becomes
zero and the illuminance fading vanishes, while its effect
is maximized when the flicker ratio equals to 1, i.e.,
te = (2n+ 1)/4f .

In addition, we notice that, to address the illuminance
banding effect caused by the light lamps, modern mobile
cameras often enforce the exposure time te to be a multiple
of either 1/50 or 1/60 seconds by time padding [18]. This
can effectively alleviate the illuminance banding caused by
AC power. However, such an anti-banding technique fails if
the light frequency changes. Figure 3 shows the photos taken
under two identical scenes except one scene is lit by an LED
light flickering at 60 Hz, while the other adopts a modified
LED of 73 Hz. We can see the camera’s anti-banding fails
and an obvious illuminance fading occurs on the photo taken
under the 73-Hz LED light.

2) Chromatic Distortion: To embed the chromatic distor-
tion with the banding effect, we use an RGB LED light
which can emit light of three primary colors—red, green, and
blue—simultaneously. Consider the case in which the light
switches among these three primary colors at a frequency f
and the camera’s exposure time is te, their relationship can be
described as:

te =
n

f
+r+g+b, where

{
n = �te/ 1

f �
(r + g + b) = te mod 1

f

(3)

where n is the number of light periods contained in the
camera’s exposure te, while r, g, and b represent the residual
durations of red, green, and blue colors in the remainder of
te/

1
f , respectively.

Recall that the low-frequency characteristics of human eyes
make a chromatic change faster than the CFF frequency
perceived as a color fusion of the individual colors. As a
result, through carefully tunning the flickering frequency and
proportion of three primary colors, we can ensure that human
viewer can not perceive any chromatic variation and the
emitted light meets various illuminance requirements, e.g.,
warm white around 2700-3000 kelvins used in many indoor
scenarios [17].

However, unlike the human eye which acts as a continuous
“global” shutter, the camera is exposed in a discrete way.
Therefore, if the exposure time te is not a multiple of the
light changing period 1/f , some residual colors—r, g, and
b—are left in the remainder of each row’s exposure. Since the
fusion result of these residual colors cannot guarantee to be
the white color, they can introduce an obvious chromatic shift
on each pixel row. Moreover, the rolling shutter mechanism
further aggravates this problem by rendering the resulting color
of each row distinct, which eventually causes a visual “color-
band”-like chromatic distortion on the image.

Apparently, the degree of the chromatic distortion depends
on the ratio of the residual color to the white color:

residual ratio = residual color
white color

= max(r,g,b)−min(r,g,b)
n/f+3∗min(r,g,b) ,

where

{
n = �te/ 1

f �
(r + g + b) = te mod (1/f)

(4)

Note that all the variables in this function are jointly de-
termined by the camera’s exposure time te and the light
frequency f . Similar to the case of illuminance fading, once
the exposure time is a multiple of the light period, the residual
color becomes zero and no chromatic distortion is induced.
This implies that, to maximize the chromatic distortion, we
need to carefully manipulate the light frequency according to
the exposure time.

B. Polluting the Image
To magnify the image quality degradation, we would like

to combine both the illuminance fading and chromatic shift.
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Fig. 4. Hologram to exhibit the interaction between the light frequency and exposure time.
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According to previous analysis, we know that the degree of
the illuminance fading is determined by the flicker ratio, while
the chromatic distortion is controlled by the residual ratio.
Both variables strongly depend on the interaction of camera’s
exposure time te and light frequency f . Therefore, we define
the overall distortion function Dist(·) as follows:

Dist(f, te) = α1 sin 2πfte + α2
max(r,g,b)−min(r,g,b)

n/f+3∗min(r,g,b) ,

where

{
n = �te/ 1

f �
(r + g + b) = te mod 1

f

where α1 and α2 are the weights of the illuminance fading and
the chromatic shift, which are 0.5 by default in our system.

Obviously, this distortion function is not jointly convex.
To study its characteristics, we first partition the parameter
space into a finite grid M × N . Then, we employ a distor-
tion hologram to explore the interaction among the image
distortion d, light frequency f and exposure time te. The
distortion hologram is a distortion exhibition using an image
to display the level of image pollution that be generated by the
frequency-exposure combination in a partitioned grid. Given a
(f, te)M×N partition, a distortion hologram D is defined as:

D =

⎛
⎜⎜⎝

d11 d12 . . . d1N
d21 d22 . . . d2N

...
...

. . .
...

dM1 dM2 . . . dMN

⎞
⎟⎟⎠ (5)

where dij represents the distortion generated at a given
frequency-exposure combination, i.e., dij = Dist(fi, tej ), M
and N denote the number of possible light frequencies and
exposures, respectively.

Figure 4 gives an example of distortion hologram, in which
the exposure time ranges from 1/80 to 1/20 seconds and the
light frequency is from 60 to 140 Hz. We term that an exposure
time is “covered” by a light frequency if the corresponding
distortion value is large than a predefined threshold ε (ε = 0.4
by default). According to this figure, we can find that:

• A single light frequency cannot cover all the possible
exposure times.

• However, a light frequency can cover multiple exposure
times, and an exposure time can also be covered by
several light frequencies with different distortion levels.

In theory, if the exposure time of the attacker’s camera
is known, we can easily find an optimal light frequency
according to the hologram. In practice, however, this does not
work as the exposure time of the attacker’s camera cannot be
known. In the next subsection, we will explain the reason and
discuss the solution for this issue.

C. Variation of Exposure Time
The design of modern mobile camera generally fol-

lows the Additive System for Photographic Exposure model
(APEX) [18], which defines the relationship between the
exposure time and its confounding factors:

F 2

te
=

B · S
k

, (6)

where F is f-number of the camera lens, te represents the
exposure time, B denotes the brightness, S and k are the gain
and scaling factor of image sensor, respectively. In this model,
the exposure value EV can be defined on the logarithmic space
of APEX:

EV = 2 logF − log te = logB + logS − log k. (7)

Given a requirement on the brightness level, the exposure
time can be determined by an on-chip Auto-Exposure (AE)
control algorithm. However, as the lighting conditions in
the target scenes can be quite sophisticated, many advanced
techniques are proposed in the AE to gain more accurate
exposure control and most mobile device manufacturers run
their own AE control algorithms on their cameras [18]. As
a result, the exposure time determined on various devices
can be distinct. Besides, in real applications, the attacker can
perform the piracy attacks from different distances and angles,
in which the exposure time changes with the variation of
illuminance level. Moreover, some camera applications even
allow the users to set the exposure time manually, which
further aggregates this problem.

To further understand this problem, we use the default
camera applications on various mobile devices to determine
the exposure time for a same scene. The results are reported
in Figure 5, from which we can find that the exposure settings
vary with devices. Even on the same device, the exposure
settings determined from various distances and angles can be
significantly different. These results imply that an accurate
estimation of the exposure time on the attacker’s camera can
be very hard, if not impossible.

D. Collaborative Exposure Coverage
While the heterogeneity of the camera’s exposure control

hinders the accurate estimation of the exposure time, another
fact sheds light on the possible solution: due to the constraints
in the image sensor, e.g., size and cost, modern mobile cameras
are often limited in their hardware variety, i.e., lens aperture,
gain and scaling factors [18]. This means that, given a scene
of an illuminance level, it is possible to roughly estimate the
possible range of the exposure times [21]. As a result, instead
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of targeting at an agnostic exposure time, we aim to cover all
the exposure times within the possible range.

To this end, we propose to collaborate multiple light fre-
quencies to cover different exposure times within the possible
range. This approach is applicable as the indoor deployment of
light lamps are generally dense and there are often more than
one light inside a room. However, considering the deployment
and maintenance cost, the number of used lights should be
minimized.

In light of this idea, we now formulate the exposure cover-
age problem as follows: First, we define a step function u(·)
on the distortion hologram D:

u(dij) =

{
1, dij ≥ ε
0, dij < ε

(8)

in which if the distortion value dij = Dist(fi, tej ) is larger
than a threshold ε, the function outputs 1 and we say the
corresponding exposure time tej is covered by light frequency
fi. By applying such a step function on the distortion holo-
gram, we can compute the covered exposure times of each
light frequency. Let Si be the set of all the exposure times
covered by light frequency fi.

Then, we define the cost function of set Si to be:

C(Si) =
∑

tej∈Si

(
1−Dist(fi, tej )

)
(9)

where tej is the exposure time covered by light frequency fi.
Given the universe set U of all the exposure times within the

possible range, and a collection Ψ = {S1, S2, . . . , Sn}, Si ⊆
U . For each light frequency fi and its corresponding set Si,
we associate a variable xSi

that indicates whether Si is chose.
In this way, the problem of polluting image under a wide

range of exposure times with limited lights becomes finding
a sub-collection S′ ⊆ Ψ that covers all exposure times in U
with minimum cost:

min Val(x) =
∑

Si∈Ψ

C(Si)xSi

s.t.
∑

Si:te∈Si

XSi
≥ 1 te ∈ U,

xSi ∈ {0, 1} Si ∈ Ψ

(10)

in which we can have solutions as a vector x ∈ {0, 1}n.
Theoretically, this is de facto an NP-hard SET COVER prob-

lem [19]. To solve this problem, we propose a light frequency
selection algorithm based on the primal-dual schema [20]
as shown in Algorithm 1. This algorithm iteratively changes
a primal and dual solution until the relaxed primal-dual
complementary slackness conditions are satisfied. Define the
frequency of an exposure time to be the number of sets it is
contained in. Let k denote the frequency of the most frequent
exposure time. It can be theoretically proved that this prime-
dual-based algorithm can achieve a k−approximation for our
problem [20].

Algorithm 1 Exposure Coverage Algorithm.

Input:
Exposure universe U with n possible values,
Collection Ψ = {S1, S2, . . . , Sn}, Si ⊆ U,
Distortion hologram D = (dij) ∈ R

M×N .
Output:

Frequency selection vector x ∈ {0, 1}n
1: Apply step function u(·) to the distortion hologram D.
2: Compute exposure coverage set for each light frequency.
3: Define the primal problem and its corresponding dual.
4: x ← 0, y ← 0, Declare all the exposure times uncovered.
5: while some exposure times are uncovered do
6: Pick an uncovered exposure time, tej , raise ytej until some

set goes tight.
7: Pick all tight sets Si in the cover, i.e., set xSi = 1.
8: Declare all the exposure time in these sets as covered.
9: end while

10: return x

In real application, we can first measure the illuminance
level of the target scene with a light meter and roughly estimate
the possible range of the exposure time1. To ensure substantial
image pollution under all the possible exposure times, multiple
light frequencies can be selected appropriately by the exposure
coverage algorithm. For example, according to our experiment
in Section V, two frequencies, e.g., 73 Hz and 83 Hz, are
sufficient to cover a wide range of exposure times in a room
with an illuminance level of 400 lux.

IV. SYSTEM IMPLEMENTATION

To realize our design, we build an anti-piracy lighting
system,Rainbow, as shown in Figure 6. It comprises four
components: 1) the Exposure Range Estimation calculates a
coarse range of possible exposure times with help of a light
meter. 2) The Light Frequency Selection module finds a set
of optimal light frequencies by solving the exposure coverage
problem to ensure good performances under all the possible
exposure times. The selected frequencies are then used to
configure the 3)Collaborative Light Driver, which synchro-
nizes and collaborates multiple lights to embed noise with
banding effect, while the 4) Color & Illuminance Modulation
unit defines the illuminance and color modulation patterns.

Figure 7 shows a prototype of Rainbow, in which several 10-
Watts RGB LED bulbs connected to a DC power are controlled
by a light driver box, on which we implemented our system in
C. To ensure the light beams can conveniently concentrate on
a specific target, the LEDs are designed in forms of spotlights.

V. EVALUATION

To comprehensively evaluate the performance of our system,
we set up an experiment environment as shown in Figure 8. In
a room of 4.3m×8.2m, a Rainbow system with multiple lights
is placed 0.5 meters away from the target and the light beams
are carefully tuned to ensure a good coverage of the scene.
Several mobile devices, including 4 Apple devices (iPhone
5S, iPhone 6, iPhone 6S, and iPhone 6S Plus) and 3 Android
phones (Samsung Galaxy S5, Xiaomi Redmi 4, and Huawei
Honor 4), are employed throughout the evaluation. Also, a
tripod is used to avoid unnecessary image quality degradation
brought about by the hand shake.

In each experiment, we first take a photo of the target scene
under a unmodified light. The resulting image is used as the

1As a common practice in photography, the estimation of exposure range is
ignored here due to the page limits. More details can be found in [18], [21].
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reference image. After that, several piracy images are taken
at the same scene, except the Rainbow system is enabled.
By comparing the piracy images to the reference image,
we can objectively measure the image quality degradation
caused by our system. Apart from the objective evaluations,
20 volunteers, including 6 females and 14 males with good
eye sights and chromatic viewing capabilities, are recruited
for a subjective test. By querying volunteers’ opinions about
their visual experience and the quality difference between the
reference and piracy images, we can subjectively quantify
users’ experience of our system.

Throughout the experiments, 5 quality metrics are adopted.
1) The Peak Signal-to-Noise Ratio (PSNR) evaluates the ratio
of maximum signal power to the noise power at a pixel level. A
PSNR value lower than 18 dB often implies a significant qual-
ity degradation [22]. 2) The Color Difference (CD) computes
the chromatic differences between the reference and piracy im-
ages according to the CIEDE2000 Delta-E formula [23]. A CD
value larger than 6 indicates an obvious chromatic distortion
occurs in the piracy image [8]. 3) The Quaternion Structural
Similarity Index (QSSIM) leverages the quaternion image
processing to quantify the structural similarity of two images
in color space. Its value is normalized and decreases linearly
with viewers’ subjective experience [24]. 4) The Feature-
Similarity Index color (FISMc) measures the local structure
and contrast information to provide an excellent quantification
of visual experience [25]. An FISM lower than 0.85 means the
viewers tend to give opinion scores less than 4 out of 10 to
the polluted image, suggesting a significant visual distortion.
5) The Mean Opinion Score (MOS) reflects the viewers’
subjective opinion upon their visual experience. Similar to
previous work [8], we design a grading standard from 1 to 5, in
which a MOS of 1 indicates the worst viewing perception with
significant distortion/artifact, while a value of 5 represents an
excellent visual experience.

A. Effect of Parameters
In this subsection, we evaluate some parameters which

deeply affect the performance of our system, including the
light duty cycle and the multiple light frequencies adopted.

1) Duty Cycle: The duty cycle determine the duration of
lights-off state during the light flickering. To understand the

effect of this parameter, we configure our system with different
duty cycle ratios. Figure 9 shows the corresponding system
performance in various duty cycle settings. We can observe
the system performance increases with the decrease of duty
cycle ratio. This is because a low duty cycle implies less light
energy emitted within a light period, which results in a more
obvious illuminance fading on the image. Nevertheless, a low
duty cycle also reduces the overall luminance level and may
cause an energy-efficiency problem. As a trade-off between
system performance and energy efficiency, we set the duty
cycle of Rainbow to 0.75.

2) Multiple Light Frequencies: To cover all the possible
exposure times, multiple lights frequencies are selected ac-
cording to the exposure coverage algorithm. This experiment
examines the effectiveness of these selected frequencies.

Given the illuminance level in our evaluation setup (400
lux in this experiment), the possible range of exposure time
is estimated to be from 1/100 to 1/50 seconds. The candidate
light frequencies are chosen from 65 Hz to 155 Hz (with 1-
Hz interval) and we empirically set the distortion threshold
ε to 0.4. In this setting, the exposure coverage algorithm
suggests a dual-frequency combination—73 Hz and 83 Hz—
are sufficient to cover all the possible exposure times. For the
comparison, we employ three other baselines. The 1-frequency
setup only uses a single light frequencies of 73 Hz, while the
3-frequencies scheme adopts a combination of {67 Hz, 73 Hz,
83 Hz} and the 4-frequencies setup employs a configuration of
{67Hz, 73Hz, 83Hz, 89Hz}. By measuring the image pollution
under all the possible exposure times, we compare the quality
degradation brought by different frequency combinations in
Figure 10.

First, we can see that a single frequency is insufficient
to cover all the exposure times. We can see the system
performance experiences an obvious drop when the camera’s
exposure time approximates 1/73 seconds. This is because
both the flicker ratio and residual ratio are determined by
te mod 1/f). Once the exposure time approximates a multiple
of the light period, the banding effect declines dramatically,
resulting in a significant performance degradation. In addition,
we further find that the dual-frequency setup suggested by our
system obviously outperforms others. Its average PSNR is 9.48
and color difference approximates 34.49, obviously better than
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Fig. 11. System Performance with different illuminance levels. The
results indicate our system perform well under various illuminance
level requirements.
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Fig. 12. System performance at different distances. Current effective
distance is 2 meters, which can be further extended with higher-
power light.

20

25

30

35

40

5

10

15

20

25

10 30 60 90

C
ol

or
 D

iff
er

en
ce

PS
N

R

Angle (degree)

PSNR Color Difference

0
0.2
0.4
0.6
0.8
1

0
0.2
0.4
0.6
0.8

1

10 30 60 90

FI
SM

c

Q
SS

IM

Angle (degree)

QSSIM FISMc

Fig. 13. System performance under various shooting angles. Note that
the system performance are good and relatively stable, suggesting that
our system can defeat piracy from different shooting angles.
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Fig. 14. System performances on different devices. Despite a slight
performance variation due to the heterogeneity of cameras, the results
show that the photos taken on all these devices are seriously polluted.

other configurations. Even from the perspective of QSSIM and
FISMc, its performance is relatively more stable in different
exposure times. This may be explained by the fact that more
frequencies implies higher interfere among lights, which may
leads to a variation in the overall performance.

B. Objective System Performance

Next, we evaluate our system under different confounding
factors, including the luminance level, the photo-taking dis-
tance and angle, the device type, and the target object.

1) Illuminance Level: Different scenarios impose distinct
requirements on illuminance level [17]. For example, many
museums limit the illumination to 150 lux for most paintings,
but the illuminance level of an exhibition room can be more
than 600 lux according to our measurement.

Figure 11 shows the performance of our system under
various illuminance levels. We can see that the degree of image
pollution slightly increases with the growth of illuminance.
This is because only a small proportion of light energy is
captured by the camera in low illuminance setting, making the
banding effect relatively poor. With the growth in illuminance,
more light energy is captured and the banding effect can be
enhanced.

However, even for the worst cases with illuminance less
than 300 lux, the performance is sufficient for our purpose.
The corresponding PSNR is less than 13 dB and the color
difference is larger than 28, indicating a significant noise on
the piracy photos at pixel level. Besides, the FISMc score is
less than 0.8, which implies that the users’ average opinion
score should be less than 2.5, given grading standard from
0 to 9. Nevertheless, the QSSIM scores are relatively poor,
suggesting that only a mild structural distortion occurs. This
limitation derives from the fact that our system mainly induces
illuminance fading and chromatic distortion on the image, but
does not radically change its structural information. However,
as we are only targeting the copyright protection, rather than
the content protection, this is still acceptable.

2) Shooting Distance & Angle: In real applications, the
attacker can take photos from various distances and angles.
To examine the effective distance and angle of Rainbow, we

place the attacker’s camera in different distances and angles
to the target and evaluate the corresponding performance.

Figure 12 shows that the system performance degrades with
the growth of shooting distance, e.g., as the shooting distance
increases from 0.5 meters to 2.5 meters, the PSNR increases
from 11.41 dB to 21.49 dB, while the color difference drops
from 30.53 to 13.97. A similar trend can also be observed in
the QSSIM and the FISMc metrics. This is because the light
energy attenuates exponentially with its propagation distance.
Therefore, as the shooting distance increases, less light energy
is captured by the camera and the banding effect is reduced.
According to the result, the working distance of our current
implementation is around 2 meters. This distance can be
further extended by using the higher-powered lamps.

In the experiment of the shooting angle, the attacker’s cam-
era is placed 0.5 meters away with different shooting angles to
the target. Since the setup is symmetric, only shooting angles
from 10◦ to 90◦ are reported in Figure 13. We can see the
system performance of different shooting angles is good and
relatively stable. This demonstrates that our system is robust
to the piracy attacks from various shooting angles.

3) Mobile Device: To further validate that our system
can work on a variety of devices, we employ 7 mobile
devices, including 4 iOS devices and 3 Android phones. The
corresponding results are reported in Figure 14.

We can see a slight performance variation among the
devices. The reason is that, given the same target scene, the
exposure times determined on various devices can be distinct
due to their difference in the image sensor hardware. For
example, the device with a sensitive CMOS image sensor, e.g.,
iPhone 6 Plus, gives a relatively short exposure time, while the
camera with a smaller aperture (such as the Huawei Honor 4x)
needs longer exposure time.

However, our system works well on all of these devices.
In general, the PSNR in the worst case is 13.99 dB and
the average color difference is 25.04, which demonstrate an
obvious distortion occurs on the piracy images at the pixel
level. Meanwhile, although the QSSIM values around 0.66
suggest only some moderate structural distortions are induced,
the FISMc lower than 0.79 implies that, given a grading scale
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from 0 to 9, the viewers only give a mean opinion score of
2.3 to the piracy photos, suggesting a significant visual quality
degradation.

4) Various Targets: To examine the applicability of our
system to different 2D physical objects, we employ two kinds
of targets: 1) the standard images are selected from a standard
test image database commonly-used in the computer vision
community, i.e., the USC-SIPI database [26]. Three images
are printed in color and adopted in this test: the baboon, the
lenna, and the peppers. Also, to examine the performance on
real artworks, 2) several copies of real paintings, including
Leonardo d Vinci’s Mona Lisa, Rembrandt van Rijn’s Night
Watch, Starry Night from Vincent van Gogh and Scream by
Edvard Munch, are adopted in this experiment.

The corresponding performance on each object is reported
in Figure 15. We can observe Rainbow works well on all
the targets. The average PSNR value is 9.33 dB while the
color difference is larger than 29.73, revealing a significant
discrepancy from the piracy images to the reference images at
the pixel level. Apart from this, the low QSSIM and FISMc
values further demonstrate that our system can induce serious
visual quality degradation.

C. Subject Evaluation
Since human visual perception is subjective, the objective

evaluation can not perfectly quantify the visual experience
of viewers. As a complement, we recruited 20 volunteers,
including 6 females and 14 males aging from 22 to 30. All
of them have normal visual abilities and do not suffer color
blindness. In this subjective test, the volunteers are required to
provide an opinion score for their visual perceptions. Similar to
[27], we use a grading scale from 1 to 5, which corresponds to
five experience categories, i.e., ”bad”, ”poor”, ”fair”, ”good”,
and ”excellent”.

1) User’s Experience to Lighting Function: To examine
whether the user can perceive any illuminance or chromatic
flicker in our system, we present each viewer with the same
scene lit by two lighting systems: one is lit by a normal LED
and the other is by our system. Each lighting system is turned
on alternately for 10 minutes and then the viewer is required
to provide an opinion score on the flicker perception and the
overall experience of our system compared to a normal LED.
Table I summarizes the results of the users’ opinion scores.

TABLE I
USER’S EXPERIENCE TO OUR SYSTEM.

Performance Mean Std
Flicker Perception 4.91 0.30
Overall Experience 4.55 0.69

According to the viewers’ feedbacks, our system performs
quite well regarding the flicker perception. The average score

(a) S1: ref. (b) S1: piracy (c) S2: ref. (d) S2: piracy

(e) S3: ref. (f) S3: piracy (g) S4: ref. (h) S4: piracy

Fig. 17. Some examples of the test sets.

is 4.91, suggesting the flickering barely occurs. Also, a mean
value of 4.55 on the overall experience indicates the users have
good viewing experience under our system.

2) Piracy Photo Quality Assessment: We then evaluate
visual quality degradation caused by our system. In this
experiment, each volunteer is presented with several sets of
images, each of which includes a reference image taken under
a normal LED light and a piracy image polluted by our system.
These two images are placed side by side on the same screen
and the viewer is required to rate their visual difference.
Figure 17 gives some examples of these test sets. Like the
previous test, we use grading scale from 1 to 5: a value of 1
denotes ”bad, significant artifact/distortion” while a score of 5
indicates ”excellent, no artifact/distortion”. The viewers’ raw
mean opinion scores are solicited and reported in Figure 16.

According to the result, the viewers tend to give a low score
for the piracy images on chromatic correctness: the mean value
is 1.34, demonstrating that the color information of the piracy
photo is seriously distorted. Apart from this, the opinion scores
for the structural information are around 2.5. This implies that
the degree of structural distortion is between ”noticeable” and
”obvious.” Moreover, the viewers’ low opinion scores on the
overall quality of the piracy photos also evidence substantial
visual quality degradation on the piracy photos.

VI. DISCUSSION

As a first step towards preventing mobile-camera-based
piracy on the physical intellectual property, our system still
has several limitations.

First, as our system relies on the banding effect caused by
the rolling shutter to pollute the image, it does not work on
the CCD cameras with global shutters. However, according to
previous market reports [16], [28], the CMOS image sensor
occupied over 83.8% of the mobile camera market in 2013
and its market is expected to grow at a CAGR of 11.8%
between 2015 and 2020. This means our system already covers



the majority of consumer-level cameras. Also, compared to
the high-end professional camera, the mobile-camera-based
piracy is often harder to notice owing to their small size and
ease of concealment, which renders them a main threat to the
copyright protection.

In addition, some medical studies point out that low-
frequency light flicker could cause some discomfort [29]. As
our pupils expand and shrink with the flickers, long-time
exposure to a flickering light causes the frequent pupillary
constrictions and lead to the eye muscle relaxation, which
is the main reason for eye strain and myopia. However, the
minimal modulation frequency of our system is 73 Hz, which
varies faster than the critical flicker frequency and thus can
not be perceived by the human eye. Similarly, an incandescent
lamp which flicks at 50 or 60 Hz, is still widely used in many
locations [7].

For now, our system only targets on the 2D physical
intellectual properties, such as art paintings and photographic.
We leave its extension to 3D targets, e.g., sculptures or human
performance, for future exploration.

VII. RELATED WORK

Since the mobile camera is often small in size and easy to
carry, photo/video-taking from the mobile device is one of the
most perturbing issues. Aggregated with other context infor-
mation, e.g., temporal and spatial information, a malicious user
can easily reveal much of the user’s private information. Apart
from privacy violation, the copyright protection of intellectual
property is another important reason why the camera is not
allowed in many scenarios, e.g., cinemas, museums, galleries
or exhibitions [2], [8]. Existing no-photography policies are
often imposed by security guards [10] which requires much
human participation and is often inefficient.

As a remedy, various solutions have been proposed, one of
which is to degrade the quality of piracy photo/video: intrusive
methods, e.g., infrared light [3], [4], are used to pollute the
pirate photo/video in cinemas, while watermarking [5], [6]
is also widely adopted in the film industry. Unfortunately,
these approaches can be ineffective in some scenarios, e.g.,
infrared has been evidenced to be harmful to the historical
paintings and cannot be deployed in many museums and
galleries [7], while watermarking is not efficient enough
to prevent audiences from taking video for piracy purpose.
To fill this gap, Zhang et al. propose a novel video re-
encoding scheme to maximize the distortion between video
and camera while retaining a good visual quality for the human
eye [8]. However, this approach requires a re-encoding of
original digital content and can only work on digital content.
Meanwhile, several anti-piracy systems also aim to locate the
attacker in the theater by various techniques, such as infrared
scanning [10], distortion analysis of the captured video [11],
spread-spectrum audio watermarking [12]. These approaches
either rely on a dedicated device or require modification of
the content, which hinders their wide adoptions. Compared
with these works, our system provide a low-cost and practical
anti-piracy solution based on existing light infrastructures and
extends the protection ability into the physical world.

VIII. CONCLUSION

In this work, we propose an anti-piracy lighting system
to prevent the mobile-camera-based piracy on 2D physical

intellectual properties. By modulating high-frequency illu-
minance flickers and chromatic change into existing light
infrastructures, our system can create a serious visual dis-
tortion on the piracy images without affecting the human
visual experience. Extensive experiments demonstrate that our
system can defeat piracy attacks while providing good lighting
function in different scenarios.
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