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Abstract— User identification is an essential problem for
security protection and data privacy preservation of wearable
devices. With proper user identification, wearable devices can
adopt personalized settings for different users, automatically
label the corresponding data to protect user privacy, and help
prevent illegal user spoofing attacks. Current user identification
solutions proposed for wearable devices either rely on dedicated
devices with high cost or require user intervention which is not
convenient. In this work, we leverage the bio-vibrometry to enable
a novel user identification solution for wearable devices in small-
scale scenarios, e.g., household scenario. Unlike existing user
identification solutions, our system only uses the low-cost sensors
that are already available for most wearable devices. The key idea
is that, when human body is exposed to a vibration excitation,
the vibration response reflects the physical characteristics of user,
i.e., the mass, stiffness and damping. Meanwhile, due to users’ bi-
ological diversity, such physical characteristics of different users
are quite distinctive. Therefore, we can leverage the discrepancy
in users’ vibration responses as an identifier. Based on this idea,
we propose VibID, which only uses a low-cost vibration motor
and accelerometer to generate an unobtrusive vibration to users’
arms and capture the corresponding responses. By examining
the vibration patterns at different frequencies, VibID builds an
ensemble machine learning model to recognize who is using the
device. Extensive experiments are conducted on human subjects
to demonstrate that our system is reliable in small-scale scenarios
and robust to various confounding factors, e.g., arm position,
muscle state, user mobility and wearing location. We also show
that, in an uncontrolled scenario of 8 users, our system can still
ensure a identification accuracy above 91%.

I. INTRODUCTION

Nowadays we are witnessing the fast development of wear-
able devices. With the ability of providing unobtrusive and
continuous services, wearable devices have not only brought
about great convenience, they have penetrated into every part
of our daily life. We may use a wearable device to track daily
activity levels (e.g., Fitbit Charge [1]), interact with other smart
devices (e.g., Apple watch [2]) or monitor the state of our
health (e.g., Google’s smart contact lens for diabetes [3]).

In some scenarios, it is quite common that we share
wearable devices with others. For example, in a household
scenario, a group of family members may share a smart
sphygmomanometer, or in a medical center, a wearable heart
rate monitor is assigned on demand to several patients with
chronic cardiac disease. In these scenarios, recognizing who is
using this device becomes an essential problem for protecting
data privacy and security. For activity-tracking devices, user
identification can help the device to load corresponding profile
for each user, and automatically label the user’s data; For
interaction-augmenting devices, e.g., Apple watch or Google

glass, knowing who is using this device enables better con-
tent access control and privilege authentication; For health-
monitoring devices, user identification can help the improve-
ment of data security and privacy protection.

However, wearable devices have many limitations as far
as size, cost, energy and computation power, which makes
traditional user identification methods cannot fit well in their
target scenarios: a conventional PIN code cannot be used
prevalently as the size constraint of most wearable devices
leads to a lack of user-friendly input methods. Although the
camera and fingerprint reader offer a good user experience,
their high cost and computation requirements hinder their
wider-adoption on wearable devices. Recent research in this
area has mainly focused on either biometrics or user behavior
modeling. Researchers have validated the possibility of using
the human body capacitive [4], bio-impedance [5] and walking
gait [6] to extract unique patterns to identify users. However,
these works either require a dedicated sensor, e.g., a bio-
impedance sensor, or need user intervention, for example,
gait only works when the user is walking. On the other
hand, some works try to distinguish users by modeling their
usage behavior, e.g., data stream on mobile phone [7], touch
behavior and holding posture of device [8, 9]. However,
accurate behavior modeling places a challenging requirement
on computation power and energy, which are scarce resources
for wearable devices.

In our vision, a user identification method should meet
the following requirements to be truly pervasive: (1) instead
of requiring an additional and expensive devices, we should
leverage existing low-cost devices/sensors available on most
wearable devices. (2) The whole procedure of user identifi-
cation should be unobtrusive and does not require any user
intervention; (3) The system should be robust to user spoofing
attacks. (4) Good performance in various scenarios.

To satisfy these requirements, we propose VibID — a low-
cost and reliable user identification system for wearable de-
vices using bio-vibrometry. The key idea of VibID is that,
when a mechanical vibration is applied on user’s body, e.g.,
forearm, the excitation will cause the body tissues to vibrate,
which is termed as “response”. According to the theory of
vibration, the pattern of such vibration response not only de-
pends on the excitation but also on the physical characteristics
of users, i.e., the mass, stiffness and damping. Besides, due the
biological diversity of users, such characteristics of different
users diversify, which results in the significant discrepancies
among users’ vibration responses. This implies that, we can
apply same excitation to different users and leverage the



discrepancies in their vibration responses to recognize users.

Inspired by this idea, we design VibID to be a wristband-
like device consisting of a haptic vibration motor and an
accelerometer, both of which are low-cost devices available on
most wearable devices. By applying a specially-designed ex-
citation on users’ forearms, we can capture the corresponding
vibration responses and extract various temporal and spectral
features from these responses. Then, such features can be
used to build a user identification classifier via an ensemble
machine learning algorithm. Our system is not intended to be
a strict security measurement. Instead, we target our system
as a convenience to help wearable devices recognize users
in small-scale scenarios where the set of different possible
users is small and the consequences of a mis-classification
are benign. For example, recognizing which family member
is using this device in a household scenario.

To realize such system, we need to address several chal-
lenges. First, it is not clear how to use the vibration response
of the human body to distinguish users. To this end, we
formulate the vibration model and make several insights on
the relationship between vibration responses and physical
characteristics of human body. Moreover, even though there
exists a biological diversity in users, such difference can be
quite small among some users, which makes the discrepancies
among users hard to be observed. To combat this challenge, we
carefully design our excitation pattern and leverage the effect
of resonance to magnify the difference. Third, as human body
is a complex system, there are various confounding factors that
can affect our system. We comprehensively explore the impact
of these factors by extensive experiments on volunteers.

Our contributions in this work lay in the following aspects:

e As far as we know, we are the first to explore the
possibility of using bio-vibrometry to enable use iden-
tification for wearable devices. We have demonstrated
that the discrepancies which exist in users’ responses
are sufficient for user identification in small scale, e.g.,
household scenario.

o We design VibID, which leverage vibration responses to
enable user identification for wearable devices. Its imple-
mentation only requires a low-cost vibration motor and
accelerometer, both of which are low-cost and common
components for most wearable devices.

o We comprehensively evaluate the performance of our
system under different scenarios. The result indicates the
VibID is robust in different scenarios with the presence
of various confounding factors. Also, our experiment in
uncontrolled scenario with 8 users shows that VibID can
ensure a good identification accuracy above 91%.

The rest of the paper is organized as follows. We briefly
introduce the theory of vibration and investigate the feasibility
of using vibration to distinguish users in section II. The System
design and detailed implementation are discussed in section III
and IV, respectively. In section V, we present the evaluation
result of our system. The discussion and related work are
provided in section V and VII, followed by the conclusion
in section VIIL.
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Fig. 1. Single DoF system.

II. FEASIBILITY OF B10-VIBROMETRY

In this section, we start with a brief review of vibration
theory, which lays the foundation of our system. Then, we
discuss how to use vibration to identify users on wearable
device and validate its feasibility through experiments.

A. Basic Vibration Theory

Vibration is one of the most common mechanical phe-
nomenons in our physical world, in which oscillations occurs
about an equilibrium point [10]. To study the vibration of a
mechanical system, we need to first introduce the dynamic
properties of mechanical systems: the mass, stiffness and
damping, which are responsible respectively for inertia, elastic
and dissipative forces. As the vibration of a mechanical system
is the result of all of these features interacting with each
other, perfect modeling of vibration can be a very complex
problem, if not impossible. However, in most cases, we can
break the all system into several sample elements and start
with a single degree-of-freedom (SDoF) model, which can be
explicitly modeled and easily analyzed. After that, if these
SDoF models are properly combined, a more complex and
accurate model, i.e., multiple degree-of-freedom (MDof), can
be learned.

Figure 1 presents the dynamic properties of a SDoF system.
In this system, the inertia is represented by an infinitely rigid
constant mass m, elasticity is defined as an ideal massless
spring of constant stiffness k, and the damping is represented
by a viscous damper with damping coefficient c.

When applied with an external excitation force f(¢), the
displacement x(¢) of the system satisfies the following equa-
tion:

mi(t) + ci(t) + ka(t) = f(2), (1)

where f(t) and xz(t) are the time-dependent excitation force
applied to this system and corresponding displacement re-
sponse, while the #(t) and #(¢) is the first and second
derivative of x(t), i.e., the speed and acceleration.

Free Vibration corresponds to the scenario where f(¢) = 0.
In this case, equation (1) has a general solution as: x(t) =
Xe®, where s is the Laplace variable to be determined.
Substituting this general solution into equation (1) leads to:

(ms® +cs+k)Xe™ =0, 2)



yielding two roots s; and sa:
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Notice that depending on the value of 1/ (5% )" — £ the roots
can further fall into three cases:

2
o (3%)” > £: over-damped system, where both roots are

real;
2
o (3%)” < £: under-damped system, where two roots are
complQex conjugate;
o (52)° = L£: critically-damped system with two equal
roots;

Therefore, the solution of equation (1) when f(¢) = 0 is:
2(t) = Cre®t + Cye®, 4)

where C} o are constant determined by the initial condition.
By defining a critical damping coefficient ¢, and damping
ratio & as follows:

¢ = 2Vkm = 2mw,, (5
£=2, (©)

Ce
we can further derive detailed solution for under-damped
system as following:

Tyq(t) = e Swnt {x(O) cos (wnt 1-— 52)

#(0) + Ewnz(0) (wnt 1= 52)}, @)
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where w,, = \/% is the undamped natural frequency, x(0)
and #(0) are the displacement and velocity at initial state,
respectively.

In Forced Vibration, the external force is assumed to be:
f(t) = Fe™', where F and w are the amplitude and frequency
of the harmonic excitation. In this case, the particular solution
of equation (1) is given by:

F pi(wi+0)
(k —w?m)? + (wc)?
F 1

T k-2 T (26h)

where 8 = - is the ratio of excitation frequency and

undamped natural frequency of system, and 6 is the phase
delay and defined by: tanf = —"7—.

The completed response of a mechanical system under
external force f(¢) is given by the sum of free vibration and
forced vibration. As most vibrations in our daily life are under-
damped systems, we can write the response as the summation

of equation (7) and equation (8):

xF(t) = \/

ei(wt+9) (8)

)

resp(t) = xua(t) + zp(t) )

(b) Components in prototype.

(a) Installation of prototype.

Fig. 3. Data collection prototype.

B. User Identification through Bio-Vibrometry

According to above theoretic analysis of system’s response
in forced vibration, we can make several observations:

o The vibration frequency of response is same as the
excitation force.

o Given the same excitation, the amplitude of partial re-
sponse contributed by the forced vibration, zx(¢), only
depends on system’s mass m, stiffness k£ and damping c.

o The response caused by under-damped vibration is more
complicated as it depends on not only system’s charac-
teristics, but also the initial state.

o Theoretically speaking, the effect of under-damped vibra-
tion always exists. In reality, however, it is only noticeable
for short period at the beginning, as its power decays
quickly. The short initial period with free vibration is
termed as “transient state”, while the remaining period
where forced vibration dominates is called “steady state”.

We also notice there exists a diversity in users’ heights,
weights and body mass index (BMI), which are directly related
to the mass, stiffness and damping of human body. Even users
with similar weight, height and BMI, their underlying body
composition, e.g., the ratio of muscle and fat, or even the
bone size, can be quite different [11].

Inspired by these observations, we form the key idea of
our system: we can apply a specially-designed excitation
to user’s body, e.g., forearm. As the body compositions of
different users diversify, their mass, stiffness and damping
are different, which leads to different responses to same
excitation. Therefore, we can use this discrepancy as biometric
to distinguish users.

C. Feasibility

To validate the feasibility, we designed a data collection
prototype as shown in Figure 3. This prototype consists of
a haptic vibration motor [12] and an InvenSense MPU-6050
sensor with a three-axis accelerometer [13]. The vibration
motor is driven by an Arduino development board to generate
a stepped sine-sweep excitation, in which the frequency and
amplitude of generated vibration increases with time. As the
natural frequencies of human arm-hand system range from 5
Hz to 1 KHz [14], we choose an excitation stepping from
23 Hz to 133 Hz, which allows us to observe vibration
response spanning multiple natural frequencies (More details
of excitation design are discussed in section III-A). We ask
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Fig. 2. Responses of two users.

8 volunteers to wear this prototype on their wrist, while
applying the stepped sine-sweep excitation to users, we capture
their vibration responses via an accelerometer with sampling
frequency of 320 Hz.

Figure 2(a) and 2(b) show an example of responses from
two different users. Note there are three separated responses
in each axis. From these figures, we can make some im-
mediate observations: first, the three responses of same user
is consistent. Second, there exists a significant discrepancy
between responses of two users. To further demonstrate the
difference, we plot the power spectrum of responses of these
two users in Figure 2(c) and 2(d), we observe that, for X axis
of accelerometer, most power of user 1 concentrate on high
frequencies (90 100 Hz), while power peak of user 2 appears
around 70 Hz. Similar observations can be found in Y and Z
axis.

These results indicate that we can leverage the unique pat-
tern of users’ response as an identifier and validates our idea.
In next section, we discuss how to build a user identification
system based on this idea.

III. SYSTEM DESIGN

In this work, we do not aim to exactly estimate the
characteristics of human body from their vibration responses.
Such analysis requires strictly-controlled experiment setting
and high computation power. Instead, we are interested in
utilizing the discrepancy in users’ vibration responses caused
by their’ biological diversity as user identifier. Figure 4 show
the architecture of our system.

Generally, this system can break into two major parts:

o Vibration response collection: This part is responsible
for generating specially-designed excitation and capture
corresponding vibration responses. It is designed to be a
wristband-like device as shown in Figure 3, which con-
sists of a haptic vibration motor and an InvenSense MPU-
6050 accelerometer with a maximal sampling frequency
of 320 Hz. The major challenge of this part lies in the fact
that the difference between some users can be quite small
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Fig. 4. System overview.

and such minor difference can be hard to be observed in
users’ vibration responses. To alleviate this problem, we
need to carefully design the excitation to magnify the
discrepancy between users. Section III-A discusses how
we drive the vibration motor to generate such excitation
pattern in detail.

o User identification: After capturing users’ vibration re-
sponses, we first apply a bandpass filter to eliminate the
interference of environment and user mobility (details
in section III-B). Then, we can divide each response
data into segments of different vibration frequencies, and
temporal features are extracted from each segment. These
features are used to train a user identification model via
random forest and used for further real-time identification
(Section III-C).

A. Design of Excitation

According to the discussion in section II, we have already
known that the diversity of users’ biological composition
results in differences in their vibration responses. To leverage
this discrepancy to distinguish users, an intuitive solution is
to randomly pick an excitation and examine users’ vibration
responses. However, this solution is not practical, the major



concern comes from the fact that such discrepancy may be not
significant enough to be observed. For example, the damping
ratio & of human arm fluctuates around 0.5 with a small
deviation [14]. In most cases, such small variation in & can
be hard to be observed from users’ vibration responses. To
alleviate this problem, we need to magnify the differences in
users’ vibration response.

To find the solution, we need take a close look at the
response caused by forced vibration, i.e., equation (8). From
this equation, we can make some further observations: (1).
when 6 ~ 1 and £ = 0, ie., the excitation frequency is
close to the natural frequency and the damping ratio is small,
the denominator approximates zero. Thus the amplitude of
response goes to “infinity”. This situation is termed as the
resonance. (2). In the case of resonance, as [ approximate
1, the denominator is fully dominated by &. Therefore, the
amplitude of response is totally determined by the value of &
and the effect of £ can be clearly observed. Figure 6 illustrates
this observation by comparing the responses of systems with
different damping ratios near resonance. We can observe that
when ¢ is small, which is true in our case, the difference
is significant. Therefore, if we can excite users’ arm at their
natural frequency, the discrepancy in users’ vibration response
can be more obvious and thus improve the quality of user
identification.

However, according to previous studies [14, 15], the natural
frequencies of human arm range from several Hertz to hun-
dreds of Hertz. As a result, instead of using excitation of single
frequency, we choose to use a “frequency-sweeping” excitation
whose vibration frequency slowly steps from low frequencies
to high frequencies. Obviously, the more frequencies the
excitation spans, the more details can observed from responses,
but also longer excitation time requires.

To generate such excitation, we use an Eccentric Rotating
Mass (ERM) vibration motor, which is commonly used in
mobile phones and wearable devices for notification and haptic
feedback. Figure 5 shows a sample ERM vibration motor,
where a non-symmetric mass is attached to the shaft of a
DC motor. When the motor rotates, the centripetal force of
the eccentric mass is asymmetric, resulting in a vibration. The
centripetal force F' generated by eccentric mass is given by:

F = mrw? sin(wt) (10)

where m is the eccentric mass attached to the shaft, r is the
distance from the motor shaft to the center of the eccentric
mass, and w is the rotating angular velocity. We observe that
the frequency and amplitude of generated excitation force are
both determined by the angular velocity w, which is directly
proportional to the input DC power voltage. As a result, we
can control the generated excitation by manipulating the input
voltage to ERM vibration motor.

In our system, we control the vibration motor with Pulse
Width Modulation (PWM), which is a way of digitally en-
coding analog signal levels [16]. The key idea of PWM is to
simulate an analogy DC voltage input by modulating the duty

cycle of a high-resolution square pulse. For example, to output
a voltage of 3V with a 5V DC power, we can set the duty cycle
of PWM to be 60%. Note that, due to the principle of ERM
vibration motor, we cannot control its frequency and amplitude
separately. Thus, if we increase the vibration frequency, its
amplitude also grows. Figure 7 shows an example of generated
excitation by using PWM on ERM vibration motor.

Also, as mentioned in section II, the free vibration dom-
inates a short period of time at the beginning of vibration
response. As the free vibration depends on not only users’
characteristics, but also the initial state, it is hard to analyze
its patterns. Therefore, during the procedure of frequency
sweeping, the vibration motor will vibrate at each frequency
for ¢ seconds. The value of ¢ need to be large enough to ensure
that the effect of free vibration is diminished and the system
enters the steady state.

B. Pre-filtering

In the real application scenario of VibID, it is inevitable
for our system to perform user identification with various
interferences. The most significant one derives from users’
mobility, e.g., user movement or hand gesture. Figure 8 shows
the power spectrum of accelerometer reading when a user is
walking while texting messages on his phone. It is obvious that
the power of user mobility concentrates at frequencies lower
than 5 Hz. Many other studies also confirm this fact [17, 18].
As our excitation starts from 23 Hz, we can easily eliminate
the interference by using a Butterworth bandpass filter [19],
with a cutting-off frequency from 15 Hz to 135 Hz.

C. User Identification

Since the information of users’ characteristics are encoded
in the amplitude of their vibration response, especially near
the natural frequencies, we need to examine the vibration
responses at different frequencies. To this end, we first divide
response data into multiple segments, each of which only
contains a vibration of a constant frequency. This is easily done
as response frequency is same as the excitation frequency, and
the duration of each excitation frequency is controlled by our
system. For each segment, temporal features shown in Table I
are extracted for all three axes.

TABLE I
FEATURES
Feature | Meaning
freq vibration frequency of segment
min minimum of segment
max maximum of segment
25p the 25th percentiles of segment
50p the 50th percentiles of segment
75p the 75th percentiles of segment
std the standard deviation of segment

With these features, we build a user identification model
based on Random Forest, which is a is an ensemble machine
learning model based on Decision Tree [20].

To address the overfitting problem of Decision Tree, The
random forest model introduces the bootstrap aggregating
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technique in the training of model. The key idea of random
forest is that, given a training set X = =x1,...,2, with
corresponding labels Y Yls ey Yn, the model randomly
selects m samples from training set with replacement. Also,
a similar sampling scheme is applied on feature selection. By
repeating this sampling process /N times, it will generate N
training sets. Then, a decision tree is trained from each training
set. After that, the predication for a test data can be made by
taking the majority vote from all the N individual decision
trees. Although a single decision tree can be highly sensitive
to the noise in the training set, the average of trees is not.
As a result, such bootstrapping procedure can decreases the
variance of the model without increases the bias, which lead
to a better model performance.

In the application scenario of VibID, when a user wears
our wristband for the first time, a short initial phase is
needed, in which 10 excitations are applied on user’s arm
and corresponding responses are collected for the training of
classifier. After that, each time the user wears on the wrist
band, an excitation is automatically applied and corresponding
response is used to identify user.

IV. IMPLEMENTATION

We implement VibID as a wristband-like device as shown
in Figure 3.

In this prototype, we use an Arduino UNO development
board to control an InvenSence MPU6050 accelerometer and
a haptic vibration motor with maximal 3.3V input voltage.
We have developed an application to control the input power
voltage of vibration motor via PWM. The generated vibration
frequency spans from 23 Hz to 133 Hz. The vibration duration
at each frequency is set to be 1.4 seconds, which is longer than
we really need for the purpose of experiment. Table IT shows
the measured vibration generated by our prototype.

TABLE 11
SPECIFICATION OF VIBRATION MOTOR

Voltage (V) | Vibration Frequency (Hz) | Vibration Amplitude (G)
0.59 23.5 0.29
0.98 44.1 0.36
1.37 61.5 0.57
1.76 30.4 0.68
2.16 102.2 1.03
2.54 123.1 1.42
2.95 1334 1.94

10 20 30 40 50

1 2 3 4 5 6 Frequency (Hz)
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Fig. 7. Stepped sine-sweep excitation. Fig. 8. FFT of user mobility.

Since the highest frequency of excitation we supported is
about 133 Hz, we sample the accelerometer at 320 Hz, which
is sufficient to observe all the responses at given excitation
frequencies.

For the user identification, the data per-processing and
bandpass filtering are implemented with Python 2.7, while
the random forest classifier is built based on scikit-learn
package [21].

V. PERFORMANCE EVALUATION

To evaluate our system, we conduct user identification test
with 8 volunteers (5 males and 3 females). Each volunteer is
asked to wear the VibID wristband prototype on their forearms
and the corresponding response data are collected and offload
to a laptop for further experiments under different settings.

First, we investigate the impact of the confounding factors
to our system, which includes: (a) excitation configurations,
such as: the frequency bandwidth of excitation and vibration
duration of each frequency, (b) user states, including user’s
arm posture, muscle state or mobility, and (c) usage issues,
e.g., the wearing location of wristband. To investigate the
impact of a confounding factor, we carefully control the
experiment setting by changing the value of this confounding
factor while retain the others unchanged, and collect 15 records
from each volunteer at each experiment setting (8 x 15 = 120
records at each setting). Then, we use these data to investigate
how this confounding factors affect the performance of our
system.

After that, we perform an overall evaluation in an un-
controlled scenario. In this experiment, instead of carefully
controlling the confounding factors, we ask each volunteer to
use VibID as she/he wants and collect 120 response data under
various uncontrolled scenarios. Then, all of these collected
data (8 x 120 960 records) are used to evaluate the
performance of our system via 10-fold cross validation.

Throughout the whole evaluation, we use two metrics to
evaluate the performance:

o Precision, which is a measure of exactness for classifiers,
i.e., the percentage of tuples labeled as positive are
actually such. In binary classification, precision is defined
as P = 75, where TP and FP are the count of
true positive and false positive. For multi-class problems,
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it can be generalized as follows:

Zl __TP
i=1 TP,+FP;
B R

where [ is the number of classes, T'P; and F'P; are the

true positive and false positive of i-th class, respectively.
o Recall measures the completeness of a classifier, which is

defined as the percentage of positive tuples are predicted

as positive ones, i.e., R = TPTJF% in binary classifica-
tion. Again, for multi-class problems, it can be extended
as follows:

P = (11)

zl TP
i=1 TP, +FN;
l b
where [ is the number of classes, TP; and I'N; are the
true positive and false negative of i-th class, respectively.

R= (12)

Note that above generalizations of precision and recall are
referred as the “macro-averaging”, which gives equal weights
to all classes when computing the averaged precision and re-
call. However, there is another generalization approach named
“micro-averaging”, in which each tuple makes equal contri-
bution to the overall metric and thus big classes with more
tuples are preferred when averaging [22]. As the identification
of each user is equally-important in our scenario, we adopt
the macro-averaging approach.

Subsection V-A, V-B and V-C evaluate the impact of exci-
tation configuration, user state and usage issues, respectively.
The results for these experiments demonstrate our system is
robust to these confounding factors. Also, the overall test in
section V-D shows that VibID can archive a high identifica-
tion performance (average precision=0.98, recall=0.96) in an
uncontrolled scenario of 8 users.

A. Excitation Configuration

The configuration of excitation, i.e., its frequency bandwidth
and vibration duration of each frequency, plays a vital role
in our system. A wider frequency band of excitation can
explore more information from different frequencies and a
longer vibration duration time can alleviate the interference
of transient-state vibration, but both of them require longer
excitation time, which will degrade user’s experience. To find
the balance between performance and usability, we study
the choices of these configurations affect our system in this
section.
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Fig. 11. Impact of arm posture. Fig. 12. Impact of muscle state.

1) Frequency Bandwidth: As discussed in section III-A,
when the excitation frequency is near the natural frequency of
users’ arms, the resonance effect can magnify the differences
in users’ characteristics, i.e., the damping ratio £. Therefore, a
wide frequency bandwidth of excitation which can help exhibit
more patterns near the natural frequencies, but it also requires a
longer excitation duration, which degrades the user experience
of our system.

To find the optimal frequency bandwidth of excitation,
we collect users’ response data under various excitations of
different frequency bandwidth. For this test, the vibration at
each frequency is empirically set to 1.4 seconds, which is
longer than needed according to our experience. Then, we
use these data to perform use identification and compare the
system performance via 10-fold cross validation. Note that,
since the lowest excitation frequency of our system is 23 Hz,
a frequency bandwidth of 10 Hz includes frequencies from 23
Hz to 33 Hz, and so on.

According to Figure 9, both precision and recall gener-
ally increase as the frequency bandwidth enlarges, as more
response patterns at different frequencies can be explored.
Meanwhile, we observe a diminishing effect of marginal
utility, i.e., when the frequency bandwidth of excitation is
larger than 40 Hz, the gain of wider excitation bandwidth
diminishes. This may result from the fact that a 40-hertz
excitation band stepping from 23 to 63 Hz has already included
the natural frequencies of most human arms.

Therefore, as a compromise between performance and us-
ability, we set the frequency bandwidth of excitation to be
40 Hz in our system and used this setting for the remaining
experiments.

2) Vibration Duration: Another important design concern
of excitation is the vibration duration of each frequency.
As the free vibration and forced vibration both coexist in
users’ responses, a longer vibration duration can ensure the
system enter the steady state in which the interference of free
vibration is negligible. However, a longer vibration degrades
user’ experience.

To find the optimal value of vibration duration, we first col-
lect users’ response data by using different vibration duration
at each vibration frequency. Then, we compute the precision
and recall of VibID with users’ data collected under different
vibration durations and report in Figure 10. Surprisingly, we
find there are not much difference between these settings.
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To further investigate the reason behind this result, we have
examined all the users’ response data and observed that the
interference of transient state is quite minor in our system.
Figure 16 shows an example case, where the upper figure is a
user’s response data along Y axis, while the lower one is the
close-up of the response in the red-dot-line box. We highlight
the transient state in the close-up and find that this period
only lasts less than 0.07 seconds. This is due to the fact that
our excitation is quite small with respect to the mass of arm,
thus the effect of free vibration is insignificant. As a result,
a small vibration duration would be sufficient for our system.
Consider the controlling granularity of vibration motor and
other hardware constraints, we set the vibration duration to
0.5 seconds and use this setting in the remaining experiments.

B. User State

In our vision, a reliable user identification system should be
robust to various confounding environments. In this section,
we evaluate how the confounding factors from user side affect
our system’s performance, including: arm position, muscle
state and user mobility.

1) Arm Position: By designing VibID to be a wristband-
like device, the user identification of our system can easily be
triggered by a specific user motion, e.g., raise the forearm as
we did when trying to read the time from the watch. However,
in real application, we can image that our system need to
perform user identification under different arm/hand position,
because the arm positions of this motion can be different each
time.

To examine the impact of arm position, we ask volunteers
to place their arm in different positions of various angles with
respect to the ground. For example, 0° indicates the arm is
parallel to the ground, while 30° means the arm rotates 30
degree clockwise from the position in 0°. For each position,
we collect 15 responses from each user, so there will be
120 responses (15 x 8 users) under each position. Then, to
simulate various application scenarios, we train our system
with responses collected from a specific angle, e.g., 0°, but
test with responses from different angles.

Figure 11 shows the result of this experiment. Note that the
x axis is labeled in the format of “training angle - testing
angle”. For example, “0 - 30” indicates that we train our
system with data collected at 0° arm angle but test with data
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Fig. 15. Impact of wearing location.

from 30°, and “0 - x” means the classifier is initialized with
0° data, but test with responses collected under different arm
positions.

From this figure, we notice there is a small decrease in
system performance if we train and test our system with data
collected from different arm positions. The reason, we suspect,
is due to a slight drift of underlying tissues when the arm
position changes, especially for connecting tissues, such as fat
and synovial membranes. However, such degradation is quite
minor, in most case, our system still can achieve a precision
above 91.2% and a recall larger than 89.7%, which is sufficient
for our system.

2) Muscle State: We also investigate whether the muscle
states of users’ arms affect our system. To this end, we have
collected two data set: First, we ask volunteers to squeeze
their hand hardly during the experiments in order to collect
their response data when their arms are in tense state. Also,
we collect another set of data when users’ arm is in relaxed
state for comparison. By training and testing our system with
users’ response data collected from different muscle states,
we explore the effect of muscle state and present the result in
Figure 12. Again, for the simplicity, we name the experiment
setting labeled at X axis as previous experiment similarly,
where “r-t” means the system is trained with data from relaxed
muscle but tested by data collected when users’ arms are
in tense state, and “x-x” stands for using both data from
relaxed/tense muscle states to train and test our system.

According this figure, we can see an obvious performance
attenuation when we use the data from relaxed muscle to train
the model, but test it with data collected from tense muscle.
Such difference could result from the stiffness variation caused
by muscle contraction. To combat this problem, one solution
is to consider such variation in the training phase. This can be
simply done by using the response data collected from tense
muscle to train the classifier. The result of “x-x” setting in the
Figure 12 indicate such solution can perfectly alleviate this
problem.

3) User Mobility: Another major confounding factor from
user side is the user’s mobility. As most of human mobility
exhibit low frequency(less than 5 Hz), which is far away from
the lowest frequency of our excitation(23 Hz), so we simply
adopt a Butterworth bandpass filter to remove the inference of
user mobility.
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To evaluate the performance of VibID in mobile scenario,
we ask volunteers to walk at normal pace during the data
collection. Then, we compare the system performance under
three different settings: (I). “s-s”, in which we evaluate our
system on data collected in static scenario via 10-fold cross
validation; (II). “s-m”, in which the classifier is trained by the
static data, but tested with data collected from mobile scenario.
(IID). “x-x, which means the system is trained and tested with
data from both static scenario and mobile scenario. According
to Figure 13, we notice the precision and recall drop to 90.4%
and 87.3% respectively in the “s-m” setting. This may be
explained by the fact that there are still some interferences that
cannot be filtered perfectly, such as the mobility inference from
higher-order harmonics, or the ripple effect caused by FIR
filter. However, such result is sufficient for our purpose and
minor performance fluctuation is acceptable for our system.

C. Wearing Location

The key insight of VibID is the differences of the biological
compositions of users” arm will cause the discrepancy in users’
response data. However, in real application scenario, a major
concern is that the wearing locations of our system can be quite
different each time. For example, a user may normally wear
VibID near the end of wrist at Loc. 1 as shown in Figure 14,
but in some cases, he may also wear the wristband at Loc.
2, Loc. 3 or even Loc. 4. It is obvious that the underlying
tissue composition of these locations are quite different. As
a consequence, the response patterns of a single user change
with wearing location, which eventually results in confusion
in user identification.

To investigate the extent of this problem, we ask volunteers
to wear our wristband at different locations as indicated in
Figure 14, in which the distance between locations is one
centimeter. For each wearing location, we collect 120 response
data from 8 volunteers.

We start with a baseline test, in which we use the data
collected from Loc. I to train our classifier, then use the data
collected from the other locations to test our model. Since we
only use data from one wearing location to train the classifier,
we term this experiment setting as “#loc < 1 ”. According to

Figures 15, the system’s performance significantly decreases
as the testing location moving away from the training location.
This is because the larger distance between the training loca-
tion and testing location is, the more different the composition
of underlying tissues will be.

A remedy is to consider the differences caused by wearing
location in training phase. To validate this solution, we also
conduct another experiment, in which we train a model with
data collected from Loc. 1 and Loc. 2, then test it with data
from different locations. The result is labeled as “#loc < 2
in Figure 15. We notice that this method can significantly
increases the performance. Similar effect can be observed if we
keep increasing the number of locations included in training
phase. These result implies that we still ensure a relatively
good performance by considering different wearing locations
in training phase.

We acknowledge that, as there are many possible wearing
locations which cannot be fully included in the training phase,
this method can only alleviate the performance degradation. To
completely solve the problem, one possible way is to quantify
the changing trend in users’ response data caused by the
change of wearing locations. However, such analysis requires
more volunteer participation and biological experiments, we
leave it for future exploration.

D. Evaluation in Uncontrolled Scenario

To verify VibID’s robustness to temporal changes of users’
biological states and simulate the real application scenario
of our system, we conduct a month-long evaluation in a
uncontrolled scenario.

In this evaluation, we first ask volunteers to wear VibID
wristband at different locations as indicated in Figure 14, and
use the corresponding data to initialize our system. Then,
instead of carefully controlling the confounding factors, we
relax all the constraints and ask volunteers to use our system as
she/he would like. Also, to investigate our system’s robustness
to user’s biological changes over time, we intentionally collect
the vibration responses of each user in several different weeks.
For each user, we collect 120 response data in such uncon-
trolled setting and there are 960 responses (120 x 8 users) in
total. Table IIT gives the basic biological information of each
volunteer.

TABLE III
DETAILS OF HUMAN SUBJECTS
User No. Age Gender Wrist Circumference BMI
1 28 M 17.8 34.7
2 26 M 15.5 20.7
3 23 M 17.5 24.9
4 28 M 16.2 252
5 23 F 15.3 21.8
6 24 F 14.1 17.5
7 23 M 17.5 29.4
8 28 F 14.0 20.8

Then, we evaluate our system’s performance under such
setting by performing user identification with these data.
Figure 17 shows the normalized confusion matrix, in which
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each item m;; indicates the averaged percentage of the ¢-th
user is identified as the j-th user. For example, mss = 0.95
implies 95% of the response data from 5-th user is correctly
classified, while ms4 = 0.04 indicates 4% of her responses is
misclassified as data from the 4-th user.

According to this matrix, we can observe the identification
accuracy is quite high, the worst one is 91%. This result
indicates that our system is robust to biological changes of
users over time and can achieve a good performance in real
application scenarios.

VI. DISCUSSION

In this section, we discuss the limitation of VibID and the
possible directions of further exploration.

A. Implementation Issue

We understand there are still some challenges need to be
combated when implementing VibID on commercial off-the-
shelf devices.

The first challenge derives from the limitation of op-
erating system. As vibrators on existing wearable devices
are mainly used for haptic feedback and notification, OS has
placed many constraints on fine-grained control of its vibration
patterns. For example, Android only provides an API to change
the ON/OFF state of vibrator [23]. However, we envision that,
with such available hardware and idea, wearable device and
OS manufacturers can easily include such function into their
future design.

Another concern rises from the energy requirement of
vibrator: Does such vibration-based system imply a high
energy consumption? There are some observations may help
the justification for this issue: First, our system does not pose
any strict requirement on the input voltage of vibrator. The
frequency range of generated vibration mainly depends on the
characteristics of vibrator, not the input voltage. Meanwhile,
although our prototype adopts a vibrator with maximal 3.3V
DC input (which is a common voltage standard for many IC

board), any haptic vibrator available on wearable device should
work as we only leverage the relative vibration amplitude, not
the absolute value, in our identification model. Moreover, our
system does not need frequent vibrations. It only needs to
vibrate for 2 seconds at the moment when the user puts on
our wristband. Such energy consumption is relatively minor
comparing to the frequent notification or haptic feedback via
vibration.

B. Usage Issues

As the function of VibID replies on vibration responses of
users, it uses a short-term vibration as an excitation, a natural
concern is whether such vibration is obtrusive to users. In
fact, vibration is wildly adopted on many existing wearable
devices as a method of notification and haptic feedback, e.g.,
Fitbit Charge [1], Jawbone UP [24] and Apple watch [2].
Besides, as a user identification solution, VibID only needs
to vibrate for 2 seconds at the moment when user puts on our
system on his/her wrist. Such vibration is comparable to the
vibration of notification and should be acceptable to users.

Apart from this, our system also pose some requirements
on how to use it: we require the wristband is well-contacted
with users’ skin to ensure a good data quality. Also, to
improve the system’s robustness to wearing locations, we may
need users to initialize our system with different wearing
locations. However, such requirements are not demanding,
many other existing identification systems also pose similar
requirements. For instance, fingerprint reader requires a good
contact between users’ fingers and the sensor, while camera-
based user identification needs to take users’ portraits from
different angles.

C. Future Exploration

To make our system more reliable and accurate, there are
some directions worth to explore in the future:

o Choice of excitation. Due to the hardware limitation, our
system leverage stepped sine sweeping as the excitation
form. Further investigation on different excitation forms,
e.g., pseudo-random or fast sine chirp excitation [25], can
help the improvement of identification accuracy.

« Noise in more complicated scenarios. Our prototype can
only remove the noise caused by the users’ movements,
such as walking and texting. We can image there will be
more noises in complicated scenarios, e.g., riding on a
bus. Future work will be focused on this area.

« Long-term body variation. Although we have investi-
gated users’ biological changes over weeks in our evalu-
ation, our current prototype may not be able to handle
the long-term body variation, e.g., gaining or loosing
weight in several months. One possible solution for such
long-term change is to update our identification model
over time. For example, each time a user is correctly
recognized, we can update our model with his/her recent
vibration response, and this process can be done period-
ically.



VII. RELATED WORK
A. Modal analysis

The concept underlying our work resembles the modal anal-
ysis, which is a study of the dynamic properties of structures
under vibration [25] and is widely used in the many engineer
fields, such as: structure design [26—28], industrial manufactur-
ing [29-31] and architecture damage detection [32—34]. There
two different routes for modal analysis: the theoretical one
starts with the dynamic properties of target structure, i.e.,
the natural frequencies, damping and vibration mode shapes,
and tries to analyze the response level of structure under
different excitations. On the contrary, the experimental modal
analysis estimates the dynamic properties by examining its
vibration patterns. To obtain accuracy result, experimental
modal analysis often requires strictly-controlled experiment
settings and high quality data acquisition devices. Although
inspired by the modal analysis, our system differs from it in
two aspects: First, our system does not aim to exactly compute
the dynamic properties from users’ responses. Instead, we
are only interested in leveraging the discrepancy in responses
to identify users. Also, our system is not restricted in the
strictly-controlled lab environment and we only needs low-
cost devices/sensors.

B. User Identification on Wearable Devices

As user identification is a fundamental problem of the
security and data privacy issues, extensive efforts have been
devoted into the quest of a reliable and practical user identi-
fication solution for wearable devices.

In this field, many researches leverage the biometrics to
identify users [4-6, 35]. The dedicated biometric devices, such
as: capacitive touch screen [4], or bio-impedance sensor [5],
are utilized to extract users’ biometric as an identifier. For
example, Vu et al. propose to use the charge variation caused
by human finger touch on capacitive screen to detect the signa-
ture encoded in a specially-designed ring in [4]. However, the
prevalence of these approaches is hindered by the requirement
of dedicated devices. Instead of relying dedicate devices to
measure the biometrics of users, some other works extract
users’ gaits from motion sensors, and leverage the gait patterns
to distinguish users [6, 35]. Since gaits are only observable
when user is moving, this solutions are limited to mobile
scenario.

On the other hand, some researchers have investigated the
possibility of performing user identification via usage behavior
modeling. In [7], the authors use the data stream on mobile
phone, e.g., email, contact, cell tower ID or even the WiFi AP
address, to model users’ usage behavior. By comparing the
usage patterns, the system can identify the users and detect
anomaly usage. A similar idea is proposed in [8, 9], in which
the authors build a user identification model with the user’s
touching behavior and reaction of device. As accurate user
behavior modeling needs a large data set and requires high
computation power, such approach does not fit well in the
scenario of wearable devices.

Compared with these works, our system enables user identi-
fication with a vibration motor and accelerometer sensor, both
of with are the existing low-cost devices available for most
wearable devices. Besides, our system does not require any
user intervention.

C. Vibration for Other Purpose

As a common physical phenomenon in our world, variation
has been well-investigated and adopted in many areas. The
authors in [36] proposed to a method to recover sound from
silent videos by observing the environmental vibration caused
by the sound, and they extent the idea to study the mate-
rial prosperities in videos [37]. Meanwhile, Roy er al. [23]
designed a system which enables communication between
mobile phones by modulating information on mechanical
vibrations, and the authors in [38] studied the privacy issues
exposed by wireless vibrometry. As a complementation, our
work proposes a method to leverage the vibration responses
to identify users on wearable devices.

VIII. CONCLUSION

In this paper, we introduced VibID, a new user identification
system for wearable devices through bio-vibrometry. The key
idea is that the biological difference of users leads to a
diversity in characteristics of users’ body, and such difference
is reflected in users’ response to a mechanical vibration. Thus,
we can leverage such discrepancy in vibration responses to
distinguish users. By carefully design our system, we imple-
ment VibID with a vibrator motor and three-axis accelerom-
eter, which are existing low-cost sensors available to most
wearable devices. According to comprehensive experiments,
we demonstrate our system is robust to various confounding
factors and can achieve a good performance in small-scale
scenarios.
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