
1

COD: A Cooperative Cell Outage Detection
Architecture for Self-Organizing Femtocell

Networks
Wei Wang, Student Member, IEEE, Qing Liao, Student Member, IEEE, Qian Zhang, Fellow, IEEE

Abstract—The vision of Self-Organizing Networks (SON) has
been drawing considerable attention as a major axis for the
development of future networks. As an essential functionality
in SON, cell outage detection is developed to autonomously
detect macrocells or femtocells that are inoperative and unable
to provide service. Previous cell outage detection approaches
have mainly focused on macrocells while the outage issue in
the emerging femtocell networks is less discussed. However,
due to the two-tier macro-femto network architecture and the
small coverage nature of femtocells, it is challenging to enable
outage detection functionality in femtocell networks. Based on
the observation that spatial correlations among users can be
extracted to cope with these challenges, this paper proposes
a Cooperative femtocell Outage Detection (COD) architecture
which consists of a trigger stage and a detection stage. In the
trigger stage, we design a trigger mechanism that leverages
correlation information extracted through collaborative filtering
to efficiently trigger the detection procedure without inter-cell
communications. In the detection stage, to improve detection
accuracy, we introduce a sequential cooperative detection rule
to process spatially and temporally correlated user statistics.
Numerical studies for a variety of femtocell deployments and
configurations demonstrate that COD outperforms the existing
scheme in both communication overhead and detection accuracy.

Index Terms—Femtocell, Self-Organizing Networks, Cell Out-
age Detection

I. INTRODUCTION

Self-Organizing Networks (SON) have recently been recog-
nized as an attractive paradigm for the next-generation cellular
systems by standardization bodies [1], [2], which enables
autonomic features in networks, including self-configuration,
self-optimization and self-healing [3], [4]. In the self-healing
mechanism, cell outage detection is considered to be one of
the fundamental functionalities, which aims to autonomously
detect cells in an outage state, i.e., cells that are inoperable
and cannot provide any service due to hardware failures, soft-
ware failures or even misconfigurations [2]. Cell outage often
results in decreased capacity and coverage gap. Such degraded
performance leads to high user churn rate and operational
expenditures [5]. However, detecting outaged cells is non-
trivial. The outaged cells cannot be detected by Operations
Support System (OSS) when the detection systems of the
outaged cells malfunction [6]. In addition, it is difficult for
the cellular system management functions to detect outaged
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cells directly when the outage is caused by misconfigurations.
Identifying these outaged cells usually requires unplanned site
visits and usually takes hours or even days [5]. To reduce
manual costs and detection delay, the cell outage detection
function is proposed in [2] to automatically identify the
outaged cells by users’ performance statistics analysis.

The 3GPP standard [2] defines the essential steps to realize
cell outage detection function: i) performance statistics are
monitored continuously, and ii) an appropriate self-healing
process is triggered if the monitored parameters meet the
cell outage detection condition. Research community explores
different approaches to realize the functions and fulfil the
requirements determined in the standard. Most, if not all,
previous cell outage detection approaches have focused on
macrocells [7]–[9]. However, traditional macrocell networks
are likely to be supplemented with smaller femtocells de-
ployed within homes and enterprise environments in the next-
generation cellular networks [10], [11], where outage occurs
more frequently because of inappropriate indoor human in-
teractions and unplanned deployments of large numbers of
femto access points (FAPs). Unfortunately, when applied to
femtocell networks, existing macrocell outage detection works
fall short due to the distinct features of femtocell networks.
The distinct features of femtocell networks that differ from
macrocell networks are described as follows.

• Dense deployments. Since there are normally tens or
hundreds of femtocells deployed within a macrocell, the
number of femtocells is much larger compared with
macrocells. The centralized statistics analysis adopted
by macrocell outage detection approaches [7] [8] will
involve high communication overhead if applied directly
in femtocell networks, which will degrade the femtocell
service.

• Vertical handover. Femtocell users can vertically han-
dover between femtocell and macrocell. However, this
vertical handover issue is not considered in the existing
macrocell outage detection approaches [7], [8]. In the
two-tier femto-macro cellular networks, when a femtocell
outage occurs, its users may handover to macrocell and
be unaware of the outage. This can be misleading in the
user statistics analysis.

• Sparse user statistics. Unlike macrocell with large cov-
erage, small scale indoor femtocell usually only supports
a few active users (typically 1 to 4 active mobile phones
in a residential setting [12]). Macrocell approaches [7],
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[8], which are based on user statistics within one cell,
however, fall inaccurate due to the sparsity of user
statistics with high uncertainty caused by severe indoor
shadow fading. In the worst case, femtocell with small
coverage may have no active users in certain time slots,
leading to the failure of these algorithms.

To overcome the aforementioned challenges in femtocell
networks, we propose an efficient detection architecture, re-
ferred to as COD (Cooperative femtocell Outage Detection),
which consists of an intra-cell trigger stage and an inter-cell
detection stage. The core idea of this architecture includes the
following considerations: 1) To reduce communication over-
head, the trigger procedure runs on each FAP in a distributed
manner without any inter-cell communications. We design
a low cost mechanism to trigger the detection for possible
outage femtocell via long term passive monitoring of users’
Reference Signal Received Power (RSRP) statistics. The RSRP
statistics are user’s basic physical layer measurements on the
linear average of the downlink reference signals across the
channel bandwidth [13]. 2) The trigger decisions are based
on spatial correlations among users’ RSRP statistics, rather
than disconnected devices [14], [15] or neighbor list [7] as
in traditional approaches. The RSRP statistics correlations
are leveraged to distinguish the vertical handover case and
the outage case. 3) To cope with the data sparsity issue, a
detection rule enables neighboring femtocells to cooperatively
detect outaged femtocells over a certain period of time, so as
to expand the statistics over the space domain and the time
domain to obtain enough information. A data fusion rule is
used to process the statistics to make a final decision.

According to the above three guidelines, the key problems
behind this architecture are how to extract correlations of
intra-cell RSRP statistics in space domain and how to ex-
tract correlations of inter-cell RSRP statistics in space and
time domains. To tackle these two problems, We propose an
efficient trigger mechanism and a cooperative detection rule,
respectively. In the trigger stage, each FAP predicts the current
normal RSRP statistics of its neighboring cells based on the
notion of collaborative filtering [16]. To leverage collaborative
filtering in RSRP prediction, we propose an efficient algorithm
with convergence guarantee and provable error bound. The
trigger decision is made based on the comparison between the
predicted statistics and real statistics. In the detection stage,
statistics within a geographical area, referred to as cooperation
range, are processed at the macrocell base station (MBS) via
the sequential detection model [17]. Based on this model, we
exploit the spatial characteristics of the statistics to derive the
minimal time needed to make a final decision.

To the best of our knowledge, this paper is the first work
to explore the outage detection problem in the context of
femtocell networks. The main contributions of this work can
be summarized as follows:

• This paper proposes a correlation based outage detection
architecture for the two-tier femtocell networks. In par-
ticular, we consider the challenge caused by the salient
features of femtocell networks, i.e., dense deployments,
vertical handover, and sparse user statistics. This archi-

tecture can be used as a general framework for designing
femtocell outage detection schemes.

• A distributed trigger mechanism with provable error
bound and convergence guarantee is designed to reduce
the communication overhead and to address the vertical
handover issue. The trigger mechanism leverages col-
laborative filtering to exploit the spatial correlations of
RSRP statistics. The extracted spatial correlations enable
the trigger mechanism to make a trigger decision without
any inter-cell communication overhead. To leverage col-
laborative filtering in RSRP prediction, we also propose
an efficient algorithm with guaranteed convergence and
provable error bound.

• A cooperative detection rule is proposed to cope with
the data sparsity issue by extracting both the spatial and
temporal correlations of RSRP statistics over multiple
femtocells. In particular, we take sequential hypothesis
testing as data processing rule, based on which we
identify the impacts of the cooperation range and the user
density on detection performance by deriving closed-form
expressions. Analytical results show that the expected de-
tection delay is inversely proportional to the user density
and the cooperation area, and is independent of the FAP’s
transmission power.

• We conduct extensive numerical studies, and the evalua-
tion results show that the proposed approach outperforms
the conventional method in terms of communication cost
as well as detection accuracy.

The rest of the paper is organized as follows. Related works
are reviewed in Section II. Section III describes the system
model. Section IV illustrates the rationale of the proposed
COD architecture. Section V introduces the trigger mechanism
in COD, and analyzes its convergence property and error
bound. Section VI formulates the cooperative outage detection
problem in COD as a sequential hypothesis testing problem
and derives analytical results. Numerical results are presented
in Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORK

SON functions are defined in 3GPP standards [1], [2] to
reduce capital and operational expenses by bringing self-
configuration, self-optimization, and self-healing abilities to
cellular systems [18], [19]. Many existing works have fo-
cused on self-configuration and self-optimization [20]–[22].
General issues in self-configuration and self-optimization in
heterogeneous cellular networks are studied in [20]. Inter-cell
interference mitigation approaches are proposed in [21], [22]
as a use case in self-optimization function. Recently, self-
healing issue in cellular networks has also been studied in the
research community [9], [23]–[26]. Most of these studies have
devoted to cell outage compensation [24]–[26]. Cell outage
compensation aims at mitigating the degradation of coverage,
capacity and service quality caused by cell outage. Amirijoo et
al. [24] formulate the macrocell outage compensation as an op-
timization problem to maximize coverage given the constraints
on quality defined in terms of cell-edge user throughout. Xia
et al. [25] propose a genetic algorithm based mechanism to
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minimize network performance degradation. Different from
[24], [25], Wang et al. [26] focus on self-healing problem in
femtocell networks, and propose a local cooperative architec-
ture to allow more femtocells to assist the recovery process of
an outaged femtocell. In this paper, we have focused on the
cell outage detection part of self-healing function. Existing cell
outage detection schemes have focused on macrocell [7], [9],
[27]. A autonomous clustering algorithm is proposed in [9]
to collect RSRP statistics for outage detection. In [7], user’s
neighbor cell list reports are leveraged to construct a visibility
graph, whose topology changes are used to detect outaged
macrocells. However, these cell outage detection studies do
not consider the distinct features of femtocell networks, and
thus cannot be directly applied to femtocell outage detection.
Mobility robustness optimization (MRO) [28] is a solution for
automatic detection and correction of errors in the mobility
configuration, while this paper focuses on the outage that
total radio services fail. Minimization of driving test (MDT)
technique [27], [29] detects outage by comparing the current
measurements with pre-stored measurements that model the
normal case. The MDT technique is similar to the benchmark
data used in this paper, while the difference is that we extract
the spatial correlations based on collaborative filtering to cope
with the unique challenges in femtocell networks.

Troubleshooting has been studied in previous works [7],
[8], [30]. Khanafer et al. [8] propose a framework to process
historical user statistics via offline Bayesian analysis to diag-
nose the root causes for the cell outage. Based on a similar
but enhanced offline analysis model, Wang et al. [30] further
study the outage troubleshooting problem in the context of
femtocell networks. These works focus on offline analysis of
the root causes after an outage has been detected, while we
emphasize the online detection of the outaged cell.

In wireless LANs, there have been a lot of studies on node
failure and faults detection problems [14], [15]. [15] is the first
study on fault detection and diagnosis in the IEEE 802.11
infrastructure wireless networks. In [15], the client conduit
protocol is proposed to allow clients to cooperatively identify
the root cause of disconnection issues. A fault management
system is designed in [14] to automatically detect fault nodes
and troubleshoot network problems, in which the detection
procedure is triggered only when a client is disconnected
from AP. However, these outage or fault detection approaches
cannot be applied to the femtocell outage detection scenario
due to the unique challenges listed in Section I.

In cognitive radio networks, primary user detection [31],
[32] is also related to our work. These works focus on
detecting the signals of primary users by spectrum sensing.
The fundamental differences between these works and ours
are twofold. First, the issues caused by the two-tier architec-
ture of femtocells are not involved in these works. Second,
the communication overhead is more strictly constrained in
femtocell outage detection since femtocell should guarantee
quality of service for the users in the first place.

III. SYSTEM MODEL

In this section, we introduce the network model, the user
model and the channel model.

A. Network Model

We consider a typical two-tier femtocell network architec-
ture where a set of femtocells F = {1, ..., F} are overlaid
on a macrocell. Femtocell f operates under the FAP f . A
femtocell experiences outage with certain probability in the
process of operation. The outaged FAP cannot transmit or
receive any signal. We assume that the coarse location infor-
mation of FAPs can be obtained by the MBS. FAPs transmit
reference signals periodically in the downlink. The reference
signals, which facilitate user’s channel measurements (e.g., the
RSRP measurement), are sent back to the FAPs as feedback
messages.

B. User Model

The locations of the users are unknown. The users transmit
or receive data from their associated FAPs, and periodically
report the RSRP statistics of all neighboring cells to their
associated FAPs, providing guidance in handover and cell
reselection decisions. We assume that the users in an area
A follow a Poisson point process with density ρ, i.e., nA ∼
Poi(n; ρ|A|), where nA is the number of users within the area
A.

C. Channel Model

The channel gains of a user u to an FAP f are determined
based on the model described in [33]:

h = (
do
du,f

)aeXu,f eYu,f , (1)

where do is the reference distance (e.g., 1 m), du,f the distance
between the FAP f to the user u, and a the path loss exponent.
eXu,f and eYu,f are shadow fading factor and multi-path fading
factor, respectively. The shadow fading follows a Gaussian
distribution described by Xu,f ∼ N (0, σ), ∀u, f . The multi-
path fading is modeled by Rayleigh fading with zero mean,
and thus E[eYu,f ] = 0.

Shadow fading effects are assumed to be independent over
time. With this assumption, the RSRP statistics of a user are
independent random variables. Note that all RSRP statistics
of a user can be characterized by Eq. (1). As such, the RSRP
statistics at a certain user u are independent and identically
distributed (i.i.d.), and thus can be approximated as a Gaussian
distribution using the Central Limit Theorem (CLT). Then, the
distribution can be given as [34]:

ru ∼

{
N (No,

No
2

M ) H0

N (Pu +No,
(Pu+No)

2

M ) H1

(2)

where ru is user u’s RSRP statistics, Pu the received signal
strength at user u, No the noise power, and M the number of
signal samples, e.g., 5× 103 /ms for 5 MHz band. H0 stands
for the outage case and H1 for the normal case.

IV. RATIONALE OF THE COD ARCHITECTURE

In this section, we first use a motivational example to
illustrate the requirements of femtocell outage detection and
our observation. Then, we propose the COD architecture.
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Fig. 1: Cases in femtocell outage detection

A. Requirements of Femtocell Outage Detection

Due to the unique features of femtocell networks, the
following requirements need to be imposed when designing
a femtocell outage detection architecture.

First, the communication overhead should be minimized to
preserve the capacity of the femtocells. This can be achieved
by: 1) designing a distributed trigger mechanism that involves
much less communication overhead compared with the detec-
tion stage, and 2) minimizing the detection time (i.e., detection
delay) of the detection stage.

Second, the effectiveness of the outage detection should
be guaranteed even in the event of vertical handover. Fig. 1
illustrates the vertical handover issue in the two-tier femto-
macro architecture. In the normal case (Fig. 1(a)), all fem-
tocells operate normally and the user U1 is associated with
the femtocell FAP1. Then, U1 vertically handovers to the
MBS, which is caused by the movement of U1 (Fig. 1(b))
or the outage of FAP1 (Fig. 1(c)). Unfortunately, many ex-
isting approaches cannot differentiate the outage case (Fig.
1(c)) from the vertical handover case (Fig. 1(b)). In wireless
LAN diagnosis or fault detection, the detection procedure is
usually triggered by disconnected users [14], [15], which is
not applicable in femtocell outage detection since users can
handover to macrocell when there is no available femtocell
around (e.g., Fig. 1(c)). Neighbor list based approaches [7],
[35] are proposed to detect outages by looking at the changes
in the network topology. The core idea of neighbor list based
approaches is to construct a visibility graph based on UEs’
reports about neighbor cells whose signals can be heard by
the UEs. As listed in the tables in Fig. 1(b) and Fig. 1(c), the
neighbor lists of UEs in both cases are the same. As such,
the visibility graphs constructed based on UEs’ neighbor lists
are identical in these two cases, and thus cannot distinguish
the outage case from the vertical handover case. Therefore,
a trigger mechanism that can differentiate between these two
cases is required.

Another unique feature of femtocell is that, the indoor fem-
tocell supports much fewer users compared with the macrocell.
Since severe indoor shadow fading results in the fluctuation

of user statistics, analysis based on the sparse user statistics
may lead to inaccurate results. To design a robust detection
rule, the accuracy should be guaranteed even when femtocells
have very few users.

B. Observation

To design a femtocell outage detection architecture that
achieves the aforementioned requirements, we further investi-
gate the spatio-temporal correlations in RSRP statistics. In Fig.
1, U2 keeps moving in all the three cases, while U1 remains
in the same location in the normal case and the outage case
but moves away from FAP1 in the vertical handover case.
The tables in Fig. 1 show the corresponding RSRP statistics,
which are classified into three levels: 1(+) for strong received
signal from a certain FAP, 1(-) for weak received signals, and
0 for no received signal. Comparing Fig. 1(a) and Fig. 1(c),
U2’s RSRP statistics from FAP2-FAP4 are the same while
the RSRP statistics from FAP1 are different. A previous study
[36] shows that users in close proximity have similar signal
statistics, and the estimation of location similarity is more
accurate when there are more FAPs nearby. Therefore, we
can infer that the locations of U2 in Fig. 1(a) and Fig. 1(c)
are probably close, and thus the RSRP from FAP1 should
be similar in the two figures if FAP1 is normal in Fig. 1(c).
Thus, the difference between RSRP statistics from FAP1 in the
two figures indicates that FAP1 may be experiencing outage
in Fig. 1(c). On the other hand, comparing Fig. 1(a) and
Fig. 1(b), the locations of U2 are considered to be quite
different since the U2’s RSRP statistics from FAP2-FAP4 in
both cases have weak correlations. Therefore, even though
the RSRP statistics from FAP1 are very different in the two
cases, we cannot infer whether FAP1 is experiencing outage
or not. Based on the above analysis, we observe that the UE
vicinity relations that lie in the RSRP statistics can be used
to enhance outage detection. To achieve this goal, an FAP can
check the states of neighboring FAPs by comparing current
statistics with historical statistics in normal cases. Note that
the scenario discussed above is only a toy example to illustrate
that it is possible to leverage user statistics across different
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femtocells to detect outages. While the topology is simple in
this example, the observation is applicable to general cases of
typical two-tier femto-macro networks.

Based on this observation, we can tackle the vertical han-
dover issue and enable the distributed trigger mechanism. In
the trigger mechanism, each femtocell monitors the state of its
neighboring femtocells based on correlations between current
RSRP statistics and historical RSRP statistics reported by the
users. Moreover, multiple femtocells can cooperatively process
RSRP statistics by further exploiting the correlations over a
period of time to cope with the user sparsity issue.

C. COD Architecture Overview

The goal of COD is to detect outaged femtocells accurately
and efficiently by meeting the requirements discussed in
Section IV-A. To achieve this goal, two stages are involved:
a distributed trigger stage with no inter-cell communications,
and a cooperative detection stage with high accuracy and little
delay. In the trigger stage, each FAP collects the user-reported
RSRP statistics and sends the MBS a trigger message if current
statistics are abnormal. Then, the MBS initiates the detection
stage and makes a final decision based on RSRP statistics
collected from multiple FAPs within the cooperation range.

Fig. 2 illustrates the COD architecture. Before the trigger
stage, each FAP stores a copy of benchmark data beforehand,
which is collected when all FAPs are normal. Benchmark data
contains the RSRP statistics from all neighboring FAPs in
the form of a matrix R, where element Ru,f in R is the
RSRP of user u from FAP f . In self-organizing femtocell
networks, the initial benchmark data can be collected at the
self-configuration phase. Then, the benchmark data is updated
by adding newly reported RSRPs and removing the outdated
RSRPs to maintain a constant size.

In the trigger stage, each FAP runs the trigger algorithm to
monitor the states of neighboring femtocells by checking the
reported RSRP statistics from its associated users. To check
whether the RSRP statistics are normal or not, the FAP predicts
the expected normal RSRP statistics based on the benchmark
data via collaborative filtering. As for an FAP i, if the RSRP

statistics from a neighboring FAP f deviate from the predicted
normal statistics, then FAP i will send a trigger message to the
MBS to trigger the detection stage to further decide whether
the FAP f is experiencing outage. Otherwise, FAP i updates
its benchmark data with the RSRPs reported in this round and
continues monitoring FAP f in next round.

In the detection stage, all the FAPs within the cooperation
range report the statistics collected in trigger stage to the
MBS periodically until the MBS collects enough information
to make a final decision. In each iteration, based on the newly
reported RSRP statistics, the MBS processes the statistics via
data fusion to update decision statistic, and compares it with
pre-computed thresholds (i.e. η0 and η1), until it is qualified
to make a final decision. The thresholds are computed to
guarantee the pre-defined false alarm and misdetection rates.
If the decision statistic is below the lower threshold (i.e. η0),
the MBS makes a final decision that FAP f is experiencing
outage. If the decision statistic is above the higher threshold
(i.e. η1), the MBS decides that FAP f is normal. Otherwise,
the MBS continues to take another round and accumulates
more RSRP statistics.

V. COLLABORATIVE FILTERING-BASED TRIGGER
MECHANISM

In this section, we propose a distributed trigger mechanism
based on collaborative filtering to make a trigger decision
without any inter-cell communication overhead. Then, we
analyze the error bound and convergence properties of the
proposed mechanism.

A. Trigger Mechanism

The trigger stage contains two steps, namely, the normal
RSRP statistics prediction and the trigger decision, as illustrat-
ed in Fig. 2. To predict normal RSRP statistics, we leverage
the notion of collaborative filtering to explore the correlations
among the femtocell users. Collaborative filtering is originally
used in recommendation systems to compare a user’s flavor
to some reference users’ flavors based on their rated items,
so as to predict the rating of that user on a certain item.
Treating users as rows and items as columns, the ratings form
a matrix. Then, collaborative filtering aims to reconstruct a
matrix with missing entries by exploiting correlations across
different rows. In the trigger mechanism, we consider the
femtocell users as users in a recommendation system, the
FAPs as items, RSRP statistics as ratings and the benchmark
data as the flavor data of reference users. Similar to the
recommendation systems, we leverage collaborative filtering
to predict the RSRP statistic from a target FAP based on
the benchmark data matrix. In contrast to neighbor list based
approach, we exploit the fine-grained RSRP values instead
of cell-level visibility information. The fine-grained RSRP
values contain the vicinity relations among UEs, which can be
used to assist outage detection (e.g., vicinity relation can help
differentiate the outage case from the vertical handover case
as shown in Fig. 1). Note that different from recommendation
systems, we consider the RSRPs of a user at different times as
separate rows because the same user can have different RSRPs
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at different times and locations. Since the benchmark data is
collected in normal cases, the predicted RSRP statistic is the
expected normal RSRP statistic. If the predicted RSRP statistic
and the collected RSRP statistic are significantly different, the
target FAP is very likely in an outaged state. Based on this
intuition, we design a trigger mechanism as follows.

1) Normal RSRP Statistics Prediction: To make a trigger
decision, the expected normal RSRP ru,f of a user u from
the target FAP f needs to be estimated. The first step is
to leverage collaborative filtering to profile users and FAPs
by exploiting correlations among them. Matrix factorization
(MF), which decomposes a matrix as a product of two low-
rank latent matrices, is one of the most popular techniques for
collaborative filtering with attractive accuracy and scalability
[37]. We exploit the correlations of RSRP statistics via MF as
follows.

Suppose that the user u is associated with the FAP b and b
needs check whether a neighboring FAP f is normal based on
ru,f . The RSRP statistics of u from all FAP b’s neighboring
FAPs are denoted as ru ∈ R1×m, and the benchmark data
matrix stored in FAP b is denoted as Rb ∈ R(n−1)×m. Let
R̂ =

[
ru

Rb

]
. Via MF, the RSRP matrix R̂ is transformed

into a low-rank matrix U ∈ Rn×d representing user’s latent
profile and another low-rank matrix V ∈ Rm×d representing
FAP’s latent profile, where d ∈ N is smaller than m,n. U and
V are computed as follows.

min
U,V

∥∥∥(R̂−UV⊤
)
⊙ I
∥∥∥2
F
, (3)

where ∥ · ∥F is the Frobenius norm, and ⊙ signifies the
element-wise multiplication. I is the index matrix to indicate
the expected normal RSRP r̂u,f ∈ R that we want to predict
by setting the corresponding element in I, e.g., I1,f , as 0
while leaving all other elements in I as 1. We can eliminate
I by replacing the original value of ru,f with “Any”, where
x− Any = 0,∀x ∈ R.

However, (3) does not consider the intrinsic geographical
structure of femtocells. To remedy this problem, our ob-
servation is that the links between a receiver and nearby
transmitters experiences similar multipath environments [38],
which implies that the nearby FAPs have similar latent pro-
files. To exploit the geographical structure of femtocells, we
leverage the graph regularized nonnegative MF (GNMF) [39].
The basic assumption in GNMF is that data points reside
on the surface of a manifold that lies in a low-dimensional
space, that is, if two data points are close enough in high-
dimensional space (i.e., RSRP statistics) they are still close
in low-dimensional space (i.e., the FAP’s latent profile V).
Specifically, GNMF constructs an adjacent graph G to rep-
resent the local geographical structure of users. In G, each
node associates an FAP and an edge is established between
two nodes if one node belongs to the k nearest neighbors
of another. The node distance is measured by the Euclidean
distance between FAPs’ latent profiles {Vf : ∀f}. Based on
G, we can build an adjacent matrix W as follows:

wij =

{
1, fj ∈ Nk(fi)
0, otherwise (4)

where wij is an element in W and Nk(fi) denotes the k
nearest neighbors of the FAP fi. The value of k is usually
set to be a relatively small number as only very close FAPs
can maintain vicinity in lower dimension (latent profiles)
[40]. However, it is still an open problem in the matrix
factorization literature to obtain the optimal value of k. In
our simulations, we empirically set k to 5, which demonstrates
good performance in most cases. To preserve the geographical
structure of FAPs, the objective is to minimize

n∑
i=1

n∑
j=1

∥Vi −Vj∥22Wij = tr(V⊤LV) (5)

where L = D−W is the Laplacian matrix of G, where D is a
diagonal matrix defined by Djj =

∑
l wjl , and tr(·) signifies

the trace operator over a symmetric matrix. Considering (3)
and (5) together, we arrive at the objective of GNMF:

min
U,V

∥∥∥(R̂−UV⊤
)∥∥∥2

F
+ λtr(V⊤LV), (6)

where λ > 0 is a trade-off parameter over the manifold
regularization term.

To solve Problem (6) efficiently, we proposed a rank-one
residue approximation algorithm. The main idea is inspired by
the well-known rank-one residue iteration [41] and hierarchical
alternating least squares [42]. Instead of updating the whole
U and V, we recursively update their columns with the
remaining variables fixed. For the kth column of U and V,
the subproblems are

min
U·k≥0

∥Ek −U·kV
T
·k∥2F (7)

and
min

V·k≥0
∥Ek −U·kV

⊤
·k∥2F + λV⊤

·kLV·k, (8)

where Ek denotes the residue of R̂ after eliminating the kth
column of U and V, i.e., Ek = R̂ −

∑
l ̸=k U·lV

T
·l . U·k

and V·k denote the kth columns of U and V, respectively.
The subproblem (8) is derived from the following equation:
tr(V⊤LV) =

∑d
k=1 V

⊤
·kLV·k.

The following lemma shows that these two subproblems can
be efficiently solved.

Lemma 1. The subproblems (7) and (8) can be solved by
updating the columns of U and V according to the following
rules:

U·k =

∏
+(EkV·k)

∥V·k∥22
, (9)

V·k =
∏
+

((∥U·k∥22I + λL)−1E⊤
k U·k), (10)

where
∏

+(·) is an element-wise projection that shrinks neg-
ative entries to zero.

Proof. See Appendix A.

Based on the above lemma, we show that the update rules
always converge to the optimal solution.

Theorem 1. Updating the columns of U and V according to
(9), (10) converges to the optimal solution of the subproblems
(7) and (8).
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Proof. See Appendix B.

After solving Problem (6), we use the latent profiles U and
V to predict the normal RSRP ru,f . Note that since Iu,f is
set to 0, the value of ru,f will not affect the computation of
U,V. Then, the missing element ru,f in R̂ can be predicted
by U and V:

r̂u,f = UuV
⊤
f . (11)

2) Trigger Decision: Based on the predicted normal RSRP
r̂u,f , the trigger decision is made according to the maximum
likelihood rule. In particular, r̂u,f is treated as the mean of the
normal hypothesis H1 as defined in Eq. (2), the noise power
No as the mean of the outage hypothesis H0, and the actual
current RSRP ru,f as the test statistic. If the probability of ru,f
under H0 is larger than the probability of ru,f under H1, the
detection stage is triggered. Otherwise, FAP runs the trigger
procedure over again on the newly arrived RSRP statistics.

B. Error Bound Analyses for Normal RSRP Prediction

Note that previous error bounds derived for low-rank ap-
proximation are only for multi-class rating [43], while the
RSRP statistics are continuous variables. Besides, the shadow
fading should also be considered in the error analysis. With
these considerations, we analyze the error bound for our
trigger mechanism as follows.

According to the channel model described by Eq. (1), the
RSRP statistics are largely affected by shadow fading. In
our analysis, multi-path fading is neglected since a typical
femtocell channel bandwidth, e.g., 5 MHz [44], is much
larger than coherent bandwidth. We denote the true received
signal strength matrix without shadow fading as P, whose
corresponding RSRP matrix is R̂. If the unit of signal strength
is dBm, we have R̂ = P+X, where X is the shadow fading
matrix with each element following Gaussian distribution
N (0, σ). The approximation error with respect to P is defined
to be E

(
P,UV⊤) , 1

mn

∑m
i=1

∑n
k=1 |Pi,k − Ui,kVi,k|.

Then, we derive the upper bound of E
(
P,UV⊤) through

the following theorem.

Theorem 2. For any received signal strength matrix P and
shadow fading matrix X with each element following Gaussian
distribution N (0, σ), with probability of at least 1−δ, we have

E
(
P,UV⊤)

≤
m∑
i=1

n∑
k=1


√√√√√rank(R̂)∑

l=d+1

o2l +
d∑

l=1

|1− ol|Vi,lUk,l

+ ε, (12)

where ε satisfies e
−ε2

2σ2 (1−Q(ε)) = δ
1

mn /2.

Proof. See Appendix C.

VI. SEQUENTIAL COOPERATIVE DETECTION VIA
DATA-FUSION

In this section, we first formulate the cooperative detection
problem in the detection stage as a sequential hypothesis
testing problem. Then, we derive the closed-form expression of

average detection delay by approximating the test statistics. Fi-
nally, based on the closed-form expression of average detection
delay, we analyze the impacts of several system parameters on
the performance of the cooperative outage detection.

A. Sequential Hypothesis Testing

We assume that the detection for FAP f is triggered. The
vector of test statistics collected in detection round t is denoted
as θt = [r1t , ..., rit , ..., rnt ]

T , where rit is the user i’s RSRP
from f in detection round t. nt is the number of users within
the cooperation range R centered by the location of f . As
shown in Eq. (2), the RSRP statistics can be approximated as
a Gaussian distribution in both normal and outage cases. Thus,
our outage detection problem is a binary decision problem for
deciding whether hypothesis H0 or H1 is true, given the test
statistics θ, where θ = [θ1

T , ...,θt
T , ...,θT

T ].
To solve the binary decision problem, the MBS keeps

collecting new test statistics from users until the amount of
information and the resulting testing performance are satisfied.
To achieve this goal, we take Wald’s Sequential Probability
Ratio Test (SPRT) [17] as the data processing rule to decide the
stopping time of making a final decision. The main advantage
of SPRT is that it requires the minimal number of test statistics
to achieve the same error probability, which is attained at the
expense of additional computation. In the sequential decision
process, the MBS computes the log likelihood ratio and
compares it with two thresholds η0 and η1. It either settles on
one of the two hypothesis, or decides to make another round
of statistics collection.

The likelihood ratio in detection round t is defined by:

λt , ln
p(θt|H1)

p(θt|H0)
, (13)

where p(θt|Hk) is the joint probability density function
(p.d.f.) of test statistics collected in detection round t under the
hypothesis Hk (k = 0, 1). Note that test statistics are assumed
to be i.i.d. and follow the Gaussian distribution described in
Eq. (2). Thus, Eq. (13) can be written as:

λt = ln
p(r1t , ..., rnt |H1)

p(r1t , ..., rnt |H0)
=

nt∑
it=1

ln
p(rit |H1)

p(rit |H0)
, (14)

where rit is approximated as rit ∼ N (µk, σk) under the
hypothesis Hk, according to the CLT. Note that σ0

2 = No
2

M

and σ1
2 = Pu+No

2

M , where Pu and No are the average received
signal power at users and the noise power. Recall that in
the detection stage, we leverage user statistics from neighbor
femtocells to collaboratively check the status of a femtocell.
As such, Pu is the received signal power emitted from a
neighbor femtocell to a user. Normally, a femtocell has small
coverage, and thus the signals from an FAP to a user associated
to a neighbor or even further FAP are usually very weak.
Therefore, the SNR corresponding to the signals from an FAP
to neighbor users is very low. In a very low SNR environment,
it is reasonable to approximate (Pu +No) as No, and hence
σ1 ≈ σ0. Then, Eq. (14) can be expressed as:

λt =
(µ1 − µ0)

∑nt

it=1 rit +
1
2nt(µ0

2 − µ1
2)

σ0
2

. (15)
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The next step is to determine the decision statistic ΛT in
detection round T . ΛT is defined to be the joint likelihood
ratio of a sequential test statistics θ1, ...,θT :

ΛT , ln
p(θ1, ...,θT |H1)

p(θ1, ...,θT |H0)
, (16)

where p(θ1, ...,θT |Hk) is the joint p.d.f. of test statistics under
Hk). Regarding that the test statistics are Gaussian and i.i.d.,
we have:

ΛT =
T∑

t=1

ln
p(θt|H1)

p(θt|H0)
=

T∑
t=1

λt, (17)

and based on Eqs. (15) and (17), we further derive ΛT as
follows:

ΛT =
(µ1 − µ0)

σ0
2

T∑
t=1

nt∑
it=1

rit +
Tnt

2σ0
2
(µ0

2 − µ1
2). (18)

The decision of SPRT in detection round T is based on the
following rules [17]:

ΛT ≥ η1 ⇒ accept H1

ΛT ≤ η0 ⇒ accept H0

η0 < ΛT < η1 ⇒ take another detection round,
(19)

where η1 and η0 are the detection thresholds, which are
determined by the predefined values of desired false alarm
rate α and misdetection rate β. However, the outage detection
problem is opposite to the detection problem described in [17]
in the sense of misdetection rate and false alarm rate, since
H0 is hypothesis for outage occurrence while H1 for event
occurrence in [17]. Thus, the detection thresholds are given
by:

η1 = ln
1− α

β
and η0 = ln

α

1− β
. (20)

where α and β are the desired false alarm rate and misde-
tection rate, respectively. Although the actual achievable false
alarm and misdetection rates could be slightly higher than α
and β due to approximations and assumptions [45], [46], the
real implementation can still refer to α and β to control the
actual performance.

B. Average Detection Delay Analysis

The aim of SPRT is to achieve the desired false alarm
and misdetection rates with the minimal number of detection
rounds, which stands for detection delay. The expected number
of detection rounds is computed according to [17]:

E[ΛT ] = E[T ]× E[λt]. (21)

First, we derive the expectation of ΛT in normal cases,
namely, under hypothesis H1. According to (19), H1 is
accepted when ΛT reaches the threshold η1, otherwise H2

is accepted (i.e., false alarm). Thus, ΛT reaches the threshold
η0 with the probability of false alarm rate α and reaches the
threshold η1 with probability (1−α). Then, according to Eq.
(20), we derive the expectation of ΛT under H1:

E[ΛT |H1] = (1− α) ln
1− α

β
+ α ln

α

1− β
. (22)

Similarly, we derive the expectation of ΛT under H0:

E[ΛT |H0] = β ln
1− α

β
+ (1− β) ln

α

1− β
. (23)

Next, according to Eq. (15), the expectation of λt under Hk

can be expressed as:

E[λt|Hk] =
(µ1 − µ0)E[

∑nt

it=1 r
k
it
] + 1

2E[nt(µ0
2 − µ1

2)]

σ0
2

,

(24)

where rkit is RSRP from the FAP we are detecting under
hypothesis Hk.

According to Eqs. (22) (23) and (24), we derive the average
detection rounds in normal cases:

E[T |H1] =
σ0

2(1− α) ln 1−α
β + σ0

2α ln α
1−β

(µ1 − µ0)E[
∑nt

it=1 r
1
it
] + 1

2E[nt(µ0
2 − µ1

2)]
,

(25)

and the average detection rounds in outage cases:

E[T |H0] =
σ0

2β ln 1−α
β + σ0

2(1− β) ln α
1−β

(µ1 − µ0)E[
∑nt

it=1 r
0
it
] + 1

2E[nt(µ0
2 − µ1

2)]
.

(26)

To further analyze the impacts of cooperation range, FAP
transmission power, and user density, we need to derive
the expectation of the sum of test statistics E[

∑nt

it=1 r
k
it
],

which, however, has no closed-form expression. Thus, we
approximate the test statistics as follows.

We first approximate E[
∑nt

it=1 r
1
it
]. Note that test statistics

follow the Gaussian distribution as described in Eq. (2). The
expected sum of test statistics under H1 can be written as:

E

[
nt∑

it=1

r1it

]
= E

[
nt∑

it=1

ritN
(
Pit +No, σ0

2
)]

, (27)

where Pit is the received signal strength from the FAP we
are detecting. In practice, the measurement error (i.e., σ0

2) is
much smaller than RSRP. Thus, we can approximate Eq. (27)
as follows:

E

[
nt∑

it=1

r1it

]
≈E

[
nt∑

it=1

Pit

]
+ E

[
nt∑

it=1

No

]

=PoE

[
nt∑

it=1

(
do
dit

)a

eXit eYit

]
+NoE[nt]

=PoE

[
nt∑

it=1

(
do
dit

)a
]
E
[
eX
]
E
[
eY
]
+NoE[nt],

(28)

where Po is FAP’s transmission power in normal cases, ( do

dit
)a

the user i’s channel gain from path loss at time t, eX and
eY the shadow fading factor and multi-path fading factor,
respectively. According to [47], the sum of interference of
transmitters with a Poisson distribution to a receiver can be
approximated as a log-normal distribution. Correspondingly,
we can approximate the sum of the received FAP signal
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strengths at users with Poisson distribution as a log-normal
distribution in a similar way. Thus, we have:

E

[
nt∑

it=1

(
do
dit

)a
]
∼ Log-N (µm, σ2

m), (29)

where µm and σ2
m are given by [47]:

µm =
1

2
ln

(
m4

1

m2
1 +m2

)
and σ2

m = ln

(
m2

1 +m2

m2
1

)
, (30)

where mk (k = 1, 2) is the kth cumulant of
∑nt

it=1(
do

dit
)a

given as:

mk =
2ρπdkao
ka− 2

(
1

ϵka−2
− 1

Rka−2

)
, (31)

where ρ is the user density, ϵ the minimum separation between
a user and an FAP, and R the cooperation range. Only users
within R will report their RSRP statistics to the MBS. In
femtocell networks, we have ka − 2 > 0 and ϵ ≪ R. Thus,
mk can be approximated as:

mk ≈ 2ρπdkao
(ka− 2)ϵka−2

. (32)

By far, we have derived all the expectations that are needed
to compute the sum of test statistics, i.e., E[

∑nt

it=1(
do

dit
)a] =

eµm+ 1
2σm , E[eX ] = e

1
2σ and E[eY ] = 1. For the average

number of test statistics within cooperation range nt, since
user follow Poisson distribution, we have E[nt] = ρπR2.

Based on all the above analysis, we finally have E[λ|H1] to
be approximated as:

E[λ|H1] ≈
(µ1 − µ0)ρπ

σ2
o

×

((
No −

µ1 + µ0

2

)
R2 +

2Pod
a
oe

1
2σ

2

(a− 2)ϵa−2

)
.

Then, we derive E[λ|H0] as follows. According to (2),
E[
∑nt

it=1 r
1
it
] can be expressed as:

E[
nt∑

it=1

r0it ] = E[
nt∑

it=1

ritN (No, σ0
2)] = NoρπR

2. (33)

Similarly, we derive E[λ|H0] as:

E[λ|H0] =

(
No − µ1+µ0

2

)
(µ1 − µ0)ρπR

2

σ2
o

. (34)

Finally, the expected detection delay under H1 and H0 can
be derived by substituting (33) into (25) and substituting (34)
into (26), respectively.

E[T |H1] =
σ0

2(1− α) ln 1−α
β + σ0

2α ln α
1−β

(µ1 − µ0)ρπ

((
No − µ1+µ0

2

)
R2 +

2Poda
oe

1
2
σ2

(a−2)ϵa−2

) ,

(35)

E[T |H0] =
σ0

2β ln 1−α
β + σ0

2(1− β) ln α
1−β(

No − µ1+µ0

2

)
(µ1 − µ0)ρπR2

. (36)

Since α and β are predefined, we have the following
observation based on Eq. (36):

Proposition 1. The average outage detection delay is inversely
proportional to the user density and the cooperation area (i.e.
πR2), but is independent of the FAP’s transmission power.

VII. NUMERICAL RESULTS

In this section, we demonstrate the performance of COD,
and the impacts of some system parameters on the detection
accuracy and delay with simulation results.

A. Simulation Setup

We consider a two-tier cellular network comprised of
multiple femtocells overlaid on a macrocell. Femtocells are
distributed randomly within an area of 1000 m × 1000 m.
All FAPs operate at the carrier frequency of 2.5 GHz with 5
MHz channel bandwidth [44]. Femtocell users are distributed
randomly within the same area, and are associated with the
FAP with the strongest RSRP. Users send their RSRP reports
every 0.1 s. Each femtocell user moves according to the
random waypoint mobility model [48] within the range of
the network area. Each user moves with speed interval of
[0,10] m/s, pause time interval of [0,1] s, and walk interval
of [2,6] s. The propagation model is determined based on
the ITU and COST231 model which are described in [49],
[50]. The transmission powers of FAPs are set according to a
self-configuring power control scheme [21]. The misdetection
rate and false alarm rate parameters α = β = 0.01. Unless
explicitly otherwise stated, the numbers of FAPs and users
are 100 and 1000, respectively, cooperation range R = 600
m, and the standard deviation of the shadow fading dB-spread
σdB = 8 dB [44], where σdB = 10σ/ ln(10). The simulation
results are the average results from 5000 randomly generated
network topologies.

To demonstrate the merits of the proposed statistic correla-
tion based architecture, we compare COD with the commonly
used maximum likelihood ratio based approach [51] referred
to as MAJ. In MAJ, each user associated with the femtocell
in normal state collects RSRP statistics, decides a binary
hypothesis problem based on the maximum likelihood ratio,
and reports the binary decision directly to the MBS. Then,
the MBS makes the decision by majority vote. For a fair
comparison, we enhance MAJ by collecting test statistics of
the same number of detection rounds as with COD. Thus, both
schemes have the same detection delay. To show the perfor-
mance gain from spatial correlations, we also compare COD
with distributed and centralized schemes, both of which adopt
the same detection techniques as used in COD but exploits
different spatial diversities: the distributed scheme detects
outages based on RSRPs collected within each femtocells,
while then centralized scheme detects outages by collecting
all RSRPs within a macrocell.

B. Overall Performance

Fig. 3a, Fig. 3b, and Fig. 3c illustrate the overall perfor-
mance of COD, i.e., average overhead, detection accuracy
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Fig. 3: Overall performance

and detection delay. Average overhead is defined to be the
overall number of statistic reports transmitted in each detection
round divided by the number of users. Detection accuracy is
defined to be the probability of correctly detecting an outaged
femtocell. Note that we do not show the false alarm rate in
the figures since it is less than 0.001 in all cases, which is
much higher than the misdetection rate. Detection delay is
defined as the number of detection rounds. In Fig. 3b and Fig.
3c, we set uniform transmission power for FAPs to evaluate
the performance of COD under different transmission power
levels.

Fig. 3a shows that the average overhead of COD is smaller
than MAJ when varying the average time interval between
outages. The merit of COD comes from the distributed trigger
mechanism. The average overhead of COD decreases when
the average time interval between outages increases, namely,
the frequency of outages decreases. This is because the lower
frequency of outages means that there are fewer chances of
COD triggering the cooperative detection stage, which requires
more overhead than the trigger stage. Note that in practice,
the frequency of outages can be much lower (i.e., larger time
interval), in which case the merits of COD are more obvious.

Fig. 3b depicts the detection accuracy for various FAP
power levels, and it is shown that COD outperforms MAJ
in detection accuracy by more than 20% in all cases demon-
strated. We also see that the proposed scheme achieves similar
accuracy compared to the centralized scheme, and outperforms
the distributed scheme over 20% in all cases. This is because
COD exploits spatial correlations by collaborative filtering
and data fusion to obtain more information for the final
decision, while MAJ simply aggregates statistics by majority
vote. We observe that both COD and MAJ detect outaged
femtocells with higher accuracy as the FAP power increases.
This is because when FAP transmission power increases,
the gap between the RSRP statistics in normal cases and
RSRP statistics in outage cases is larger, making it easier to
differentiate these two cases.

From Fig. 3c, we see that COD enjoys similar detection
delay compared with the centralized scheme, and can detect
outage within two detection rounds in all cases in the figure.
Fig. 3c also indicates that the difference in the detection delays
of COD without trigger stage and COD approaches zero when
FAP transmission power increases. The reason is that as the

FAP power gets larger, it is easier to differentiate outage cases
from normal cases, the probability of immediately triggering
the detection stage is higher. We also observe that the detection
delay of COD without trigger stage is independent of the FAP
transmission power, which matches our analytical results in
Proposition 1.

VIII. CONCLUSIONS

This paper proposes COD, a cooperative detection architec-
ture to detect femtocell outages. COD considers the challenges
caused by the distinct features of the two-tier femto-macro
networks, including dense deployments, vertical handover, and
sparse user statistics. To resolve these issues, COD leverages
collaborative filtering and sequential hypothesis detection to
exploit the spatial and temporal correlations among RSRP
statistics across different femtocells. Our evaluations show
that our cooperative detection largely reduces communica-
tion overhead and achieves higher detection accuracy than
the existing approach under the same delay condition. Both
analytical and numerical results validate the correlation-based
cooperative detection architecture, which can be used as
a general framework for future femtocell outage detection
scheme design. This paper also provides some guidelines
through theoretical analyses and numerical evaluations that
the detection performance is inversely proportional to the user
density and the cooperation area, but is independent of the
FAP’s transmission power.

APPENDIX A
PROOF OF LEMMA 1

The subproblem (7) should be solved in two cases, that is,
V·k = 0 and V·k ̸= 0. If V·k = 0, the subproblem (7) has an
infinite number of solutions. Therefore, the kth column of both
U and V should be removed in the remaining computation. If
V·k ̸= 0, according to [39], the subproblem (7) has a closed-
form solution

U·k =

∏
+(EkV·k)

∥V·k∥22
. (37)

Similarly, the subproblem (8) should be considered in two
cases, that is, U·k = 0 and U·k ̸= 0. If U·k = 0, the kth
column of both U and V does not take part in the remaining
computation and should be taken off. If U·k ̸= 0, below we
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show how to solve (8) in an analytic formulation though it is
not as direct as (37).

We solved the constrained optimization (8) by using the
Lagrangian multiplier method [52]. The Lagrangian function
of (8) is

L = ∥Ek −U·kV
⊤
·k∥2F + λV⊤

·kLV·k − ⟨V·k, λ⟩, (38)

where γ is the Lagrangian multiplier for the constraint V·k ≥
0. Based on the Karush-Kuhn-Tucker (K.K.T.) conditions, the
solution of [39] satisfies

V·k ≥ 0, γ ≥ 0,
∂L

∂V·k
= −E⊤

k U·k + (∥U·k∥22I + λL)V·k − γ = 0

γV·k = 0
(39)

where I ∈ Rn×n is an identity matrix. With simple algebra,
based on (14), we update columns of V as follows:

V·k =
∏
+

((∥U·k∥22I+ λL)−1E⊤
k U·k). (40)

By updating columns of U and V alternatively with (37) and
(40), respectively, until convergence, which solves Problem
(6).

APPENDIX B
PROOF OF THEOREM 1

Note that the feasible sets of U·k and V·k are ΩU
k ⊂ Rm

+

and ΩV
k ⊂ Rn

+. According to [53], since R̂ is bounded, we
can set an upper bound for ΩU

k andΩV
k and can thus consider

them as closed convex sets.
Therefore, the GNMF problem can be written as a bound-

constrained optimization problem

min
[U,V]∈Ω

∥∥∥∥R̂−
d∑

k=1

U·kV
⊤
·k

∥∥∥∥2
F

+ λ

r∑
k=1

V⊤
·kLV·k, (41)

where Ω =
∏d

k=1 Ω
U
k ×

∏d
k=1 Ω

V
k is a Cartesian product of

closed convex sets. Since the objective function of (41) is
continuously differentiable over Ω and the proposed algorithm
updates the kth column of Uand V with the optimal solutions
of (9) and (10), every limit point generated by (9) and (10) is
a stationary point [52].

For completeness, we must consider cases when either U·k
or V·k is zero. As mentioned above, such columns should be
removed without changing the value of the objective function
(41). Therefore, these columns do not destroy the theoretic
analysis, which completes the proof.

APPENDIX C
PROOF OF THEOREM 2

Let E
(
R̂,UV⊤

)
denote the approximation error with

respect to R̂, i.e., E
(
R̂,UV⊤

)
, 1

mn

∑m
i=1

∑n
k=1 |R̂i,k −∑d

l=1 Ui,lVl,k|. We first derive the upper bound for
E
(
R̂,UV⊤

)
.

We denote the singular values of R̂ as {o1, ..., od}. Let Σ
be a diagonal matrix where the lth element on the diagonal is
ol, we have

∣∣UV⊤ −UΣV⊤∣∣ = m∑
i=1

n∑
k=1

∣∣∣∣∣
d∑

l=1

(1− ol)Vi,lUk,l

∣∣∣∣∣ . (42)

Similarly, we have

∣∣∣R̂−UΣV⊤
∣∣∣ = m∑

i=1

n∑
k=1

∣∣∣∣∣R̂i,k −
d∑

l=1

olVi,lUk,l

∣∣∣∣∣ . (43)

Then, we can derive

E
(
R̂,UV⊤

)
≤

m∑
i=1

n∑
k=1


√√√√√rank(R̂)∑

l=d+1

o2l +
d∑

l=1

|1− ol|Vi,lUk,l

 .

(44)

Now we develop the upper bound for E
(
P,UV⊤). Recall

that R̂ = P + X, where X is the shadow fading matrix
with each element following independent Gaussian distribution
N (0, σ). Then, we have

E
(
P,UV⊤)− E

(
R̂,UV⊤

)
=

1

mn

m∑
i=1

n∑
k=1

(∣∣∣∣∣Pi,k −
d∑

l=1

Ui,lVl,k

∣∣∣∣∣
−

∣∣∣∣∣Pi,k +Xi,k −
d∑

l=1

Ui,lVl,k

∣∣∣∣∣
)

≤ 1

mn

m∑
i=1

n∑
k=1

|Xi,k| =
1

mn

mn∑
i=1

|Xi|. (45)

Let Y = 1
mn

∑mn
i=1 |Xi|. By incorporating the exponential

Chebyshev’s inequality, ∀t > 0,

Pr[Y ≥ ε] ≤ e−tεE[etY ] = e−tε
mn∏
i=1

E[e
t

mn |Xi|]

= e−tε

(
2

σ
√
2π

∫ +∞

0

e
t

mnxe−
x2

2σ2 dx
)mn

= e−tε

(
2e

σ4t2

2(mn)2 Q(− tσ2

mn
)

)mn

= e
σ2t2

2mn −εt(2− 2Q(
tσ2

mn
))mn, (46)

where Q(·) signifies the Q-function. To derive a tight bound,
we set t = mnε

σ2 to minimize the exponential term in the right
hand side of the above inequality. Therefore, we have

Pr[Y ≥ ε] ≤ e
−mnε2

2σ2 (2− 2Q(ε))mn. (47)

Let δ = e
−mnε2

2σ2 (2− 2Q(ε))mn, we have Pr[Y < ε] ≥ 1− δ.
By combining Eq. (44), we prove the theorem.
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