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ABSTRACT
Securely pairing wearables with another device is the key to
many promising applications, such as mobile payment, sen-
sitive data transfer and secure interactions with smart home
devices. This paper presents Touch-And-Guard (TAG), a sys-
tem that uses hand touch as an intuitive manner to establish
a secure connection between a wristband wearable and the
touched device. It generates secret bits from hand resonant
properties, which are obtained using accelerometers and vibra-
tion motors. The extracted secret bits are used by both sides to
authenticate each other and then communicate confidentially.
The ubiquity of accelerometers and motors presents an imme-
diate market for our system. We demonstrate the feasibility
of our system using an experimental prototype and conduct
experiments involving 12 participants with 1440 trials. The
results indicate that we can generate secret bits at a rate of
7.84 bit/s, which is 58% faster than conventional text input
PIN authentication. We also show that our system is resistant
to acoustic eavesdroppers in proximity.
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INTRODUCTION
Interacting with devices in proximity is becoming an intrinsic
feature of today’s wearables. This need stems from many
innovative applications that provide unobtrusive experience
to users. Examples are mobile payment [1] that allows users
to make purchases by simply putting their phones or wear-
ables near a contactless reader; wireless data transfer [14]
that uploads health and fitness data sampled by wearables
to nearby smartphones or data hubs; and smart lock [3] that
un/locks wireless-chip-equipped doors by sending commands
via nearby smartphones and wearables.
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Figure 1. Candidate applications of TAG. TAG facilitates wristband
wearables to establish a secure link to another device through hand
touch. The touch-based secure pairing is an intuitive and effective so-
lution for mobile payment, data transfer, and smart home interactions.

These interactions normally involve sensitive information,
which fuels the need for wearables to secure communication
channels from malicious eavesdroppers [9]. The de-facto ap-
proach to set up a secure link between two devices is based
on reciprocal information that is secretly shared by both sides.
The reciprocal information can be manually entered PIN codes
or pre-defined gestures [7, 31], bits generated from auxiliary
channels using dedicated sensors [17], or ambient signals [28,
20]. However, the current crop of wearables lack conventional
input interfaces and the special sensors required to support
these secure pairing techniques. For instance, many wristband
fitness trackers are only equipped with vibration motors and
accelerometers, while they may not have touch screens on
which to type PIN codes, light sensors [17] to capture laser
signals, or even microphones [28] to record ambient sound.
Moreover, ambient-signal-based approaches [28, 20] heavily
rely on the continuous existence of ambient signals, and are
vulnerable to nearby eavesdroppers.

In this paper, we show that hand touch can be used as an
auxiliary channel to securely pair wristband wearables and
touched devices in an intuitive manner, as illustrated in Figure
1. We design Touch-And-Guard (TAG), a system that generates
shared secret bits from hand touch using vibration motors and
accelerometers, which are equipped in almost all smartphones,
smartwatches, and wristband fitness trackers. Our observation
is that the hand and the touched device form a vibration system
whose resonant properties can be measured by the accelerom-
eters in both devices. In contrast, proximate eavesdroppers
can barely learn the resonant properties without physically
touching the hand-device system. The resonant properties of
the system is highly sensitive to different hands, devices, and
how the hand touches the device. Consequently, a rich context
of touch postures, positions and hand differences among users
[32] leads to different resonant properties, thereby providing



enough randomness to generate secret bits. The design of TAG
is inspired by modal analysis [12] in mechanical engineering.
Modal analysis determines the structural vibration properties
of an object by exciting it with forces of different frequencies.
To extract common information from the vibration respons-
es, we model our system as a vibration system and analyze
resonant properties shared by both sides. Then, we careful-
ly design an encoding scheme to extract secret bits from the
shared resonant properties.

To validate our system, we conduct a series of experiments
with 12 study participants and 1440 trials. In our experi-
ments, each participant wears a wristband equipped with an ac-
celerometer and touches an object attached with an accelerom-
eter and a vibration motor. We test our system with various
touch gestures, locations of the wristband, and objects of dif-
ferent materials. The results show that we can generate 13.72
secret bits on average in 1.75 seconds for each touch trial. The
amount of secret information generated per touch is compara-
ble to a 4-digit Bluetooth PIN code (13.2 bits). The bit rate is
7.84 bit/s, which is 58% faster than the conventional PIN input
[7]. The average bit mismatch rate is merely 0.467%, and the
success rate of pairing is 96%, which demonstrates the robust-
ness of our system. Through empirical study, we demonstrate
that our system is resistant to microphone eavesdroppers at
various distances.

The main contributions of this work are summarized as fol-
lows.

• We develop TAG, a new and intuitive way to securely pair
wristband wearables with nearby devices. To the best of our
knowledge, we are the first to leverage resonant properties
for secure pairing.

• We propose an algorithm to extract reciprocal informa-
tion from hand resonance using a haptic vibration motor
and accelerometers. The ubiquity of vibration motors and
accelerometers in today’s wearables and mobile devices
presents an immediate market for the proposed touch-based
secure pairing approach.

• We test our system on 12 participants with 1440 trials in
total, and conduct extensive experiments under various con-
ditions. The results show that we can generate secret bits
at a speed of 7.84 bit/s and achieve 96% success rate in
establishing a secure channel. Additionally, we empirically
demonstrate that acoustic eavesdroppers in proximity can
learn little information about the generated bits.

CHARACTERIZING HAND RESONANCE

Modal Analysis
A mechanical system’s resonant properties are determined by
its physical characteristics, including its mass, stiffness and
damping. A principal method to analyze the mechanical prop-
erties of a system is to break it down into a set of connected
elements.

In most cases, a mechanical system is modeled as a com-
plex multi-degree-of-freedom (MDoF) system, whose phys-
ical characteristics are represented as matrices. A complex
MDoF system can be represented as the linear superposition of
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Figure 2. A simplified model of the TAG system. A device or hand can
be modeled as a single element. A hand and a touched device can be
modeled as two coupled elements.

a number of single degree-of-freedom (SDoF) characteristics.
For simplicity, we illustrate the mechanical properties using
an SDoF model. As presented by Figure 2(a), an element can
be characterized by an infinitely rigid constant mass m with
elasticity represented by an ideal massless spring of constant
stiffness k.

In the TAG system, the hand and the device can be modeled as
two elements. When the hand touches the device, the system
can be modeled as two elements with interactions, as depicted
in Figure 2(b). When external forces f1(t), f2(t) are applied
to the system, the dynamic response of the system is governed
by the following equation.

Mẍ+Kx = f, (1)

where x =
[ x1

x2

]
is the displacement vector, and the ẍ is the

second-order derivative of x. M =
[m1 0

0 m2

]
is the mass matrix,

K =
[ k1+k1 −k2

−k2 k2

]
the stiffness matrix, and f =

[ f1
f2

]
the force

vector.

The displacements can be written in the form of Fourier trans-
forms:

xn(t) = ∑
ω

Xn(ω)eiωt ,n = 1,2, (2)

where Xn(ω) is the Fourier coefficient of xn(t). In our system,
the vibration motor with frequency ω0 can be expressed in the
form of a δ function as follows.

fn(t) = Fn ∑
ω

eiωtδ (ω −ωn),n = 1,2, (3)

where the δ function is defined by

δ (ω −ωn) =

{
1,ωn = ω
0,ωn � ω.

(4)

Taking (2) and (3) into (1), we yield

(K−ω2M)
[

∑ω X1(ω)

∑ω X2(ω)

]
=
[

F1 ∑ω δ (ω−ω1)
F2 ∑ω δ (ω−ω2)

]
. (5)

Based on (5), we can derive the frequency response func-
tion (FRF) of each element in the system, which describes
magnification factors under the forces of different frequen-
cies. The magnification factor is defined to be the ratio of
the steady-state displacement response amplitude to the static
displacement. As the closed-form expression is quite complex,
we illustrate the resonance properties using a concrete exam-
ple. We set k1 = 6,k2 = 3,m1 = 2,m2 = 1, f1(t) = 0, and f2(t)
can be any single frequency force. The FRF is depicted in
Figure 3.
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Figure 3. An illustration of resonance properties in a system of two cou-
pled elements. We set k1 = 6,k2 = 3,m1 = 2,m2 = 1, f1(t) = 0.

The FRF plot provides the following observations.

• First, the resonance properties of the two elements are con-
sistent. Specifically, the resonant frequencies of the two
elements are completely aligned with each other, and the
antiresonant frequency of one element is roughly aligned
with the local minimum frequency of the other element.

• Second, there are as many resonant frequencies as the num-
ber of DoFs in the system. Note that although we only
model one object as a SDoF with one element, the actual
object is a MDoF system consisting of multiple elements.
In practice, there are many resonant frequencies in the hand-
device system.

These observations imply that the resonance properties can be
used as reciprocal information to generate enough secret bits
for secure pairing.

Feasibility Study
To validate the above observations, we designed a prototype
as shown in Figure 4. The prototype consists of a wristband
with a triple-axis accelerometer, a cubic with a haptic vibration
motor and a triple-axis accelerometer. We use the InvenSense
MPU-6050 sensors as the accelerometers, which are equipped
in many commercial wearables and smartphones. The sam-
pling rate of accelerometers is 250 Hz. We use an Eccentric
Rotating Mass (ERM) motor, which is widely adopted in to-
day’s smartphones. We use an Arduino development board [2]
to control the motor to to sweep from 20 Hz to 125 Hz.

We ask participants to touch the cubic with the hand wearing
the wristband as depicted in Figure 4(b), and in the meantime
the vibration motor generates sweep excitation signals. The
accelerometer data at both sensors are recorded and compared.
Figure 5 illustrates the fast Fourier transform (FFT) of ac-
celerometer amplitudes in two touch trials. For both touch
trials, we observe that the resonant frequencies of the cubic
and the wrist are well aligned. Additionally, we observe that
the resonant frequencies in the two touch trials are different.
Note that these two touch trials are performed by the same per-
son, while the touch postures, strengths, and touch positions
are slightly different. It indicates that resonant frequencies
are quite sensitive to how a user touches an object, thereby
making resonance a unique signature to each touch trial.

SYSTEM DESIGN

Overview
Figure 6 gives an overview of TAG, which extracts shared se-
crets from hand resonance for secure pairing. TAG considers

(a) The TAG Prototype.
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Figure 4. Prototype setup.
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(b) Touch trial 2.

Figure 5. FFT of accelerometer data collected at the wristband and the
cubic.

a scenario where a user intends to establish a secure communi-
cation channel between its wearable and another device. The
user triggers this pairing intent by touching the device. Then,
the touched device generates vibration signals via a vibration
motor. The vibration signals are designed to excite the device
and the hand. As such, the accelerometers on the wristband
wearable and the device can capture the vibration responses
of the hand and the device, respectively. The wearable and the
device separately process their own accelerometer data to ex-
tract reciprocal information without any information exchange.
The accelerometer data process includes three steps: frequency
response extraction, resonance encoding, and reverse channel
coding. The frequency response extraction step screens out
noise and disturbance caused by the environment and hand
movements, and derives the desired frequency responses for
resonance analysis. After obtaining the frequency responses,
resonance and antiresonant frequencies are identified and en-
coded in the resonance encoding step. The reverse channel
coding aims to reduce the discrepancies between the encoded
bits by the wearable and the device. In particular, the original
encoded bit sequences are considered as messages with a limit-
ed number of errors, and are converted into shorter sequences
using a error correction code (FEC) decoder. The output of the
reverse channel coding is the reciprocal information shared by
the wearable and the device. It is worthwhile noting that in a
complete secret sharing protocol, information reconciliation
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Figure 6. An overview of the TAG system.

and privacy amplification are performed to extract more reli-
able secrets. The reciprocal information is used to establish a
secure channel. After successful pairing, the wearable notifies
the user by a specific haptic feedback.

Vibration Excitation
TAG is inspired by modal analysis in that resonance proper-
ties can be derived by exciting the target object with forces
of different frequencies. To this end, TAG utilizes an ERM
vibration motor as the excitation source. ERM vibration mo-
tors are widely equipped in today’s mobile devices to provide
haptic feedback and vibration notifications. The motors are
supplied with DC power and rotate an eccentric mass around
an axis to create a centripetal force, which causes the motors
and the attached devices to vibrate. The centripetal force is
the external force applied to the hand-device system, and can
be expressed as

f (t) = mdω2 sin(ωt), (6)

where m is the eccentric mass, d the distance from the center
of gravity to the center of rotation, and ω the angular velocity
of the rotation. The motors tune the input voltage to control
the angular velocity ω , which determines the amplitude and
the frequency of the force. In practice, the analog sinusoidal
waveform is approximately generated with binary voltage lev-
els using Pulse Width Modulation (PMW). In particular, PMW
modulates the duty cycles of the DC power to simulate a volt-
age between the DC power voltage and zero voltage. In our
system, we generate the vibration excitation by controlling
the duty cycles of the DC power. Specifically, we gradual-
ly increase the duty cycles to generate forces with sweeping
frequencies. Figure 7 gives a visual illustration of the our
vibration excitation.

The frequency range needs to be selected carefully to obtain
resonance properties. Previous studies [4, 5] have reported
that the natural frequencies of the human hand-arm systems
range from several Hertz to hundreds of Hertz. Therefore, a
subset of the resonant frequencies of the hand-device system
fall within this range. Apparently, the wider frequency range
we select, the more complete resonance properties we can
obtain. However, the maximal frequency that can be captured
by an accelerometer is gated by its sampling rate. According
to the Nyquist sampling theory, a sensor at f sampling rate can
capture signals at frequencies no more than f/2. As most of
the accelerometers equipped in today’s mobile devices support
up to 400 Hz sampling rates, the maximal frequency is gated
by 200 Hz. In addition, there is a tradeoff between the frequen-
cy range and the vibration duration. For a given frequency
sweeping speed, the vibration duration is proportional to the
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Figure 7. An illustration of vibration excitation.

frequency range. In our implementation, we select 20-125 Hz
as the frequency range, which is managed to generate secret
bits comparable to a 4-digit PIN code.

The speed of frequency sweeping determines the duration of
one touch trial. We aim to set the sweeping speed as fast
as possible to minimize the touch duration. The limit of the
sweep speed is gated by the transient state duration. When an
external force changes its frequency, the forced system needs a
short period of time before reaching the steady state. Note that
we can only accurately obtain the resonance properties when
the system is in the steady state. However, it is hard to identify
which part of the accelerometer data is collected in the steady
state, as the duration and patterns of the transient state depend
on many confounding factors. For each vibration frequency,
the collected accelerometer data contains two parts: the data in
the transient state and the data in the steady state. To amortize
the impact of the transient state, the vibration motor is set to
stay for enough time before increasing its frequency. As such,
the amount of data in the steady state is dominant and the
overall data retains strong resonant properties. We empirically
evaluate the system under various durations and set the motor
to sweep from 20 Hz to 125 Hz within 1.75 s, which eliminates
the impact of the transient state.

Frequency Response Extraction
To extract resonant properties, we first need to derive the
frequency response of the hand-device system from the raw
accelerometer data. We observe that the accelerometer data
at low frequencies is largely polluted by motion artifacts. In
practice, it is inevitable that the hand moves during the pairing
process. The acceleration caused by motion is usually much
larger than the vibration-induced acceleration, thereby making
it hard to extract vibration-induced acceleration. Fortunately,
the frequencies of motion artifacts concentrate at low frequen-
cies of several Hertz [34, 18]. Hence, we set the minimal
vibration frequency to over 20 Hz to avoid overlapping with
hand motion frequencies. As such, we only extract resonan-
t properties in the vibration frequency range where motion
artifacts are negligible.

Recall that although the resonant frequencies of different ele-
ments match each other, their responses at other frequencies
are not identical, as illustrated in Figure 3. These mismatches
in real systems are much more complex, and lead to local
variances which might mislead the resonant frequency iden-
tification. We observe that there are multiple peaks near one
resonant frequency. Thus, these local variances should be mit-
igated before performing resonance encoding. To this end, we



use a moving-average filter to eliminate these local variances.
We empirically find that the smoothing window of 10 samples
is enough.

Resonance Encoding
Resonance encoding translates the frequency response into a
sequence of bits. After local variance removal, we obtain two
highly similar curves in the frequency domain. To encode fre-
quency responses, we have the following alternative options:
1) encoding the amplitudes of the frequency response by quan-
tizing the amplitude of each frequency or frequency segment
into multiple levels; 2) encoding the shape of the frequency
response curve by classifying the curve of each frequency seg-
ment into several predefined shapes, such as ascending and
descending shapes; and 3) encoding the positions of resonant
and antiresonant frequencies. Although the first and second
options can preserve most of the information, they are inappli-
cable in our case. As we observe in Figure 5, the amplitudes
of the two frequency responses are not coincidental. Thus,
amplitude quantization would introduce many mismatches,
which would lead to a high failure rate in pairing. The shape-
based encoding faces a similar issue, as the two curves do not
coincide in non-resonant frequency ranges. Therefore, we turn
to the third option that encodes the resonant and antiresonant
frequencies to ensure the matching rate.

Our encoding algorithm consists of two steps: resonant and
antiresonant frequencies identification and modulation. We
use local maxima and minima in the frequency response to
identify the resonant and antiresonant frequencies. We employ
a sliding window to move across the whole frequency range,
and find all the extrema (i.e., maxima or minima) in each
sliding window. Note that there may be multiple extrema near
one resonant or antiresonant frequency due to local variances.
We observe that resonant frequencies separate from each other
by at least 10 Hz. To avoid repetitive extrema, we select at
most one maximum and minimum in each sliding window of
10 Hz. In particular, if there are multiple minima or maxima
in one sliding window, we select a winner based on amplitude
and discard the others. After scanning the whole frequency
response, the frequencies of all extrema are marked as resonant
or antiresonant frequencies.

Then, we modulate these frequency locations into a sequence
of bits. An intuitive method is to quantify frequencies and en-
code these frequency levels. However, this encoding method
leaks certain information as it has predictable patterns. The
order of resonant frequencies (e.g., in an ascending or descend-
ing order) must be preset so that the two sides can derive the
same sequence of bits, which leaks information in the encoded
bit sequence. For example, if the resonant frequencies are en-
coded in an ascending order in the bit sequence, eavesdroppers
know that the first codeword in the bit sequence is likely to be
small as it corresponds to the minimal resonant frequency. To
avoid such information leakage, we encode the relative loca-
tions rather than the absolute locations of resonant frequencies.
First, we divide the whole frequency range into N segments.
Then, we encode the relative locations of resonant and antires-
onant frequencies in the corresponding segment that covers
the frequencies, as illustrated in Figure 8. To encode relative
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Figure 8. An illustration of resonance encoding. The relative location
of each resonant or antiresonant frequency in its segment is encoded.
The encoded bit sequence C consists of encoded locations of resonant
frequencies {Ri} and antiresonant frequencies {A j}. Segments without
resonance or antiresonance are encoded as R0 or A0.

locations in a segment, we evenly divide a segment into m
subsegments, and quantify the frequency locations based on
these subsegments. Segments without resonant or antiresonant
frequencies are encoded as R0 or A0. In our implementation,
we use two bits to encode the relative locations in a segment.
We divide each segment into three subsegments and use “01”,
“11”, and “10” to encode frequencies in these subsegments.
We set R0 and A0 to be “00” to encode segments without reso-
nant or antiresonant frequencies. If there are multiple resonant
(or antiresonant) frequencies in one segment, we select the
frequency with higher (or lower) amplitude for encoding. Em-
pirical results show that there are 4-8 resonant (or antiresonant)
frequencies in 20-125 Hz. Hence, we divide the frequency
range into 6 segments.

Reverse Channel Coding
After resonant encoding, the wearable and the device derive
n-bit sequences, denoted as Cw and Cd , respectively. Due
to noise and mismatched local variances, Cw and Cd may
differ at certain bits. To correct these error bits, we employ
reverse channel coding (RCC), which trades off bit mismatch
rate with bit rate. RCC aims to convert two bit sequences
with slight differences into one identical codeword of shorter
length. In particular, we treat Cw and Cd as inputs, and use
an FEC decoder that maps Cw and Cd to their closest k-bit
codewords. As Cw and Cd contain quite small numbers of
different bits, they can be mapped to the same codeword with
high probability.

EXPERIMENT DESIGN

Experimental Setup
To validate the TAG system, we conducted experiments using
an experimental prototype as depicted in Figure 4. The pro-
totype uses an Arduino OCROBOT Mango II development
board to control an ERM vibration motor, and an Arduino
UNO development board to collect acceleration data from
two InvenSense MPU-6050 sensors. The vibration motor and
one accelerometer is attached to an object, while the other
accelerometer is worn on a wrist of the participant using a
wristband. To simulate the scenario of mobile payment, we
use a cubic box as the mobile payment end. The cubic size is
6.3 in (length) × 3.8 in (width) × 1.9 in (height), as shown
in Figure 4(b). In addition, we also attach sensors to a smart-
phone, a mouse, and a cup as the touched objects.

The maximal input voltage of the ERM motor is 3.3 V. We
developed an application to control the input voltage of the
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Figure 9. Specifications of our ERM motor.

motor using PWM. The vibration amplitudes and frequencies
of the motor under different voltages are measured and shown
in Figure 9. The sampling rate of the accelerometer sensors is
set to be 250 Hz to capture all vibration responses. The accel-
eration data is collected via an Arduino board and processed
offline using MATLAB R2014b.

We use an iPhone 5s as an acoustic eavesdropper that records
vibration-induced sound through its built-in microphone. The
iPhone 5s is placed in the proximity of 1-36 inches away
from the motor. We use the built-in microphone to record
acoustic signals during our experiments with a sampling rate
of 44.1 kHz. The recorded data during each touch trial is
uploaded to a PC, and is processed using the same algorithm to
infer the bit sequence derived from the acceleration data. The
experiment environment is in a quiet office so that vibration-
induced acoustic signals are not overwhelmed by background
noise. The sound pressure level (SPL) of the office during our
experiments is around 40-50 dB.

Enrolled Participants
We invite 12 volunteers, including 5 females and 7 males,
with ages ranging from 23 to 31. We specifically select sub-
jects to cover a wide range of wrist circumferences and body
mass indices (BMI). Wrist circumference and BMI are import
physical attributes related to hand vibrations, as our system
should be robust for users of different physical attributes. In
particular, the wrist circumferences range from 5.51 inches to
7.48 inches, and BMI ranges from 17.5 to 27.70.

Procedure
Prior to touch trials. The touched object was placed on a
desk in our office. An iPhone 5s was placed on the same desk
at a distance of 6 inches away from the object to eavesdrop
acoustic signals leaked from the vibration. Note that we varied
the distances in our security validation experiment. Prior
to starting touch trials, we demonstrated the performance of
different touch postures. We performed four touch postures,
including palm touch, fist touch, border touch, and corner
touch, to touch different areas of the object, as illustrated in
Figure 10.

Performing touch trials. Each participants were asked to wear
a wristband equipped with an accelerometer on its preferred
hand, and use that hand to touch the object. Seven participants
chose to wear the wristband on their left hands while five
others chose to wear it on their right hands. The wearing

(a) Palm touch. (b) Fist touch. (c) Border touch. (d) Corner touch.

Figure 10. Touch postures.

locations of the wristband were based on the participants’
own habits of wearing watches or wrist wearables. Then,
each participants was asked to perform four different touch
postures as we demonstrated in Figure 10. We only showed
different contact areas of these touch postures without specific
requirements on touch strength, or detailed hand/arm gestures.
The participants were asked to repeat each touch posture 30
times. One touch trial lasted 1.75s, during which the motor
vibrated with sweeping frequencies from 20 Hz to 125 Hz,
while the iPhone 5s used its built-in microphone to records
acoustic signals. The participants were allowed a small rest
period of around 5 s between trials of a posture, and a longer
break of 10-30 s between different postures. We yielded a
dataset with 1440 trials, where each participant contributed
120 trials. We collected additional trials from 4 participants in
controlled settings to study the impact of vibration durations
and wearing locations. Each participant performed 30 trials in
each vibration duration and wearing location setting.

EVALUATION

Evaluation Metrics
We employ the following metrics to evaluate the performance
of our system.

• Bit rate. We use bit rate to measure how fast we can generate
reciprocal information from resonant properties. Given the
number of secret bits (13.29 bits for a 4-digit PIN code)
required for pairing, a higher bit rate indicates a shorter
time needed for pairing. In our system, bit rate depends on
the vibration duration and the encoding scheme. Recall that
the vibration duration is gated by the period of the transient
state. The vibration duration should be long enough so
that the effect of the transient state does not overwhelm the
resonant properties in the steady state.

• Bit mismatch rate. Bit mismatch rate is defined as the ratio
of mismatched bits to the total number of generated bits.
A lower bit mismatch rate indicates a higher probability
that the wearable and the device generate the exact same
sequence of bits. The bit mismatch rate is also affected by
the vibration duration and the encoding scheme. There is
a tradeoff between bit mismatch rate and bit rate. Longer
vibration duration yields stronger resonant properties, there-
by achieving lower bit mismatch rate at the cost of lower
bit rate. We need to identify the optimal vibration duration
that delivers the highest bit rate while maintaining strong
resonant properties for encoding.



• Entropy. Entropy measures the average amount of informa-
tion contained in a message [10]. The entropy of a random
variable X is computed by H(X) =−∑n

i=1 Pr[xi] log2 Pr[xi],
where Pr[xi] is the probability of X’s possible value xi. In
our evaluation, we compute entropy per segment to measure
the uncertainty of the generated secret bits. The probability
of each bit is computed by counting its frequency in repeat-
ed trials. The secret bits with higher entropy contain more
information, and are harder for eavesdroppers to infer.

• Mutual information. Mutual information is a measure of the
amount of information about one random variable obtained
through another random variable [10]. We use mutual infor-
mation to measure the information leakage in our system.
Less mutual information between two random variables
X and Y indicates that one can learn less about X by ob-
serving Y . Mutual information close to zero between the
bit sequences obtained by the eavesdropper and those of
the wearable or the device indicates that the eavesdropper
is unable to obtain any useful information about the bit
sequences generated from resonant properties.

Pairing Performance
This section studies the pairing performance of our system in
terms of bit mismatch rate and bit rate. First, we conducted
a set of micro-benchmark experiments to evaluate the impact
of different settings. We varied the vibration durations to find
an optimal duration for one touch trial (Figure 11). In order
to test the robustness of our system, we asked participants to
wear the wristband at different locations (Figure 12). Then,
we followed the setup as described in the Procedure section
and obtained the overall performance across all participants
(Table 1 and Figure 13).

A key factor that affects the bit mismatch rates and bit rates
is the vibration duration. We need to identify the optimal
vibration duration that minimizes the negative impact of the
transient state to achieve bit mismatch rate with the maximal
bit rate. To this end, we empirically study the performance
under various vibration durations as shown in Figure 11. The
results of encoding schemes with and without RCC are il-
lustrated. We employ Hamming(7,4) as the channel coding
scheme. The results show that the bit mismatch rates dimin-
ish quickly when the vibration duration is larger than 1.5 s,
while the improvement is minimal when we further extend the
duration beyond 1.75 s. The results imply that the vibration
duration of 1.75 s is long enough to extract reliable bits at a
rate of 13.71 bit/s for the scheme without RCC and 7.84 bit/s
for the scheme with RCC. The bit rate in our system outper-
forms that of the conventional PIN code input, whose bit rate is
4.96 bit/s, according to the experiments in [7]. In the following
evaluation, we set the vibration duration to 1.75 s.

In real scenarios, the wearing locations of wrist wearables vary
among users. In our experiments, the wristband is put on loca-
tions according to participants’ habits of wearing watches or
wearables. Before proceeding to the results under this uncon-
trolled wearing setting, we conduct a separate experiment in
which we intentionally vary the locations of the wristband to
investigate the robustness of our system. We ask participants
to place the wristband close to their wrist joints (location 1),
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Figure 11. Bit mismatch rates and bit rates under various vibration
durations.
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Figure 12. Bit mismatch rates with different wearing locations.

and move the wristband 0.5 inch (location 2), 1 inch (location
3), 1.5 inches (location 4), and 2 inches (location 5) away from
their wrist joints. Figure 12 shows that the bit mismatch rates
of the scheme without RCC increase slightly when the wearing
location moves away from the wrist joint, while those of the
scheme with RCC stay below 0.8% across all locations. The
reason behind the results is that the vibration amplitudes of the
hand resonance decay when propagating along the forearm,
thereby making it harder to accurately identify the resonant
and antiresonant frequencies at the wristband. Fortunately, as
the bit mismatch rates are still lower than 6%, the scheme with
RCC can still correct most of these errors. Moreover, the cases
wearing wearables more than 1 inch away from the wrist joint
are quite rare. We observe that most of the natural wearing lo-
cations of the participants fall into the range between location
1 and location 2.

The overall performance with 1.75 s vibration duration and
uncontrolled wearing locations are given in Table 1 and Figure



Palm Fist Border Corner
w/o RCC 1.13% 0.57% 2.1% 3.9%
w/ RCC 0 0 0.43% 1.47%

Table 1. Bit mismatch rates of different touch postures.
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Figure 13. Bit mismatch rates of all participants.

13. The bit mismatch rates of different touch postures are
summarized in Table 1. The palm and fist touch postures
achieve zero bit mismatch rate under the encoding scheme
with RCC, while the corner touch posture performs worst
of all. The reason behind the results is that palm and fist
touch postures provide larger touch areas and thus lead to
stronger resonance, while the corner touch posture provides
the smallest touch area. The bit mismatch rates of all touch
postures are consistently low, which indicates the usability
of the touch-based secure pairing. Figure 13 shows the bit
mismatch rates across all participants, whose basic information
is listed in Table ??. On the whole, our system achieves bit
mismatch rates of 1.93% and 0.47% for the scheme without
and with the RCC, respectively. For the complete scheme,
i.e., the scheme with the RCC, the successful rate of secure
pairing for all trials is 96%, which indicates that generated bit
sequences in 96% of the trials are completely matched. The
average number of trials needed to for successful pairing is
1.04. It is worth noting that the results are comparable to other
secure pairing techniques [7, 28, 25, 19].

Security Validation
This section evaluates the security performance of our system.
To ensure the reciprocal information obtained from the reso-
nant properties is substantially unpredictable, we first measure
the randomness of generated bits (Figure 14, Figure 15). Then,
we study the information leakage under acoustic eavesdrop-
ping attacks (Figure 16-Figure 18).

Figure 14 measures the normalized numbers of resonant and
antiresonant frequencies falling into each segment. The num-
bers per segment are counted based on all trials in our ex-
periments. We observe that the normalized frequencies are
comparable to each other, except for that of the antiresonant
frequency in segment 6. The reason is that we may miss the
antiresonant frequencies when they are near the highest vibra-
tion frequency. Nevertheless, most resonant and antiresonant
frequencies are randomly distributed in different segments
with comparable probabilities. This indicates that we yield
reasonable randomness through our segment-based encoding
scheme.
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Figure 14. Normalized numbers of resonances and antiresonances per
segment.
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Figure 15. Entropy of generated bits.

We further quantify the randomness of the reciprocal infor-
mation using entropy. Figure 15(a) measures the entropy per
segment of the bit sequences directly derived from the reso-
nant properties without RCC. The code index represents each
of the 12 codes that encode the resonant and antiresonant loca-
tions, as illustrated in Figure 8. We observe that the entropies
of most codes approach two, which is the theoretical upper-
bound. The entropy of code 12 is lower as we miss some
antiresonant frequencies in the last segment due to the limita-
tion of vibration frequency. Figure 15(b) shows the entropy
per bit after applying RCC. We see that the entropies of all
bits approach the theoretical upper-bound, i.e., 1, indicating
high randomness of the generated bits.

In order to evaluate the information leakage to eavesdroppers,
we first compare the raw frequency responses obtained by
the wearable, the device, and the eavesdropper. The eaves-
dropper’s measurements are downsampled to match the ac-
celeration data. Figure 16 shows pairwise scatterplots of the
measurements collected by the three entities. The intuitive
meaning of the visual results is that the measurements of the
wearable and the device are well aligned with each other, while
the eavesdropper’s measurements are uncorrelated with those
of the wearable or device. The fundamental reason behind the
results is that the subtle vibrations of the hand and object incur
extremely small sound, which is overwhelmed by surrounding
noise and the acoustic signals generated from the motor.

To quantify how much information the eavesdropper can learn
from its measurements, we empirically compute the mutual
information between the bits derived by the three entities us-
ing the same encoding scheme. Figure 17 shows the mutual
information under various eavesdropping distances. Eaves-
droppers at different distances obtain a negligible amount of
information about the wearable’s and the device’s measure-
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(c) Eavesdropper vs. Device.

Figure 16. Comparisons of frequency response measurements. Amplitudes of each frequency is compared and plotted. We use the dataset of all trials.
The eavesdropper is 6 inches away.
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Figure 17. Mutual information under different eavesdropping distances.
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Figure 18. Mutual information under different touch postures.

ments. The mutual information between the eavesdropper and
the wearable (device) is less than 0.01, which indicates that
the eavesdropper can learn less than 0.01 bit for 1 bit of the
wearable’s (device’s) bit sequences. Figure 18 measures the
mutual information under different touch postures. The results
are consistent with Figure 17, in that the eavesdropper can
learn less than 1% information about the wearable’s and the
device’s bit sequences.

Different Objects
To test the feasibility of our system on different objects, we
extend our experiments by using an additional set of objects as
the touched devices, as shown in Figure 19. The participants
are asked to hold the smartphone or the mouse in their hands
wearing the wristband. The cup is placed on the desk and
the participants are asked to touch the area of the side. Other
settings are the same as described in the Procedure section.
Figure 20 shows the bit mismatch rates of different objects.
The performance varies among different objects due to their
different levels of resonant properties in the vibration frequen-
cy range. For all objects, the scheme without RCC achieves

(a) Cubic box. (b) Smartphone. (c) Mouse. (d) Glass cup.

Figure 19. Different objects as the touched device.
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Figure 20. Bit mismatch rates of different objects.

bit mismatch rates lower than 5%, and the scheme with RC-
C achieves bit mismatch rates lower than 1%, indicating the
feasibility of our system on these objects.

DISCUSSION

Security Protocols
We investigated the feasibility of generating shared secret bits
from the resonant properties of the hand and the touched ob-
ject. It provides an intuitive means to securely pair a wristband
wearable with another device. The focus of this paper is to gen-
erate shared secret bits for both sides, which is a common and
essential step of most secure pairing protocols. Our system
can be applied to different secure pairing protocols, includ-
ing PIN-based authentication, two-factor authentication, and
secret key based encryption. In particular, the secret bits gener-
ated from hand resonance can be used as the PIN code shared
by both sides, a proof of physical contact for the two-factor
authentication, or a basis to generate the secret key.

Accelerometer-based Eavesdroppers
The touched object in the TAG system can be held in hand
or put on a desk. We evaluate acoustic eavesdropping as vi-



brations produce sound and may leak information to acoustic
eavesdroppers in both cases. When the touched object is on
a desk, accelerometer-based eavesdropping is also possible
when the eavesdropper is placed on the same desk. In this
case, the desk, the object, and the touched hand form a coupled
system. How much information can be leaked to the eaves-
dropper depends on the physical properties of the desk, and
the distance between eavesdropper and the object. As the mass
of the desk is normally much larger than the object, resonant
vibration of the desk is much weaker than that of the object
and the hand. To decode the resonance-encoded information,
the distance between the eavesdropper and the object needs to
be quite short. The accelerometer-based eavesdropper can be
easily found and thus is not a major threat to TAG.

Visual Eavesdroppers
While we have empirically demonstrated that our system is
resistant to acoustic eavesdroppers in proximity, it has certain
limitations. Although the subtle vibrations of hand resonance
are too small to be captured by microphones, it might be
recovered by high-speed cameras. A recent study [11] has
successfully recovered acoustic signals from vibrations using
high-speed cameras. Although the vibrations of hand res-
onance is weaker than audible sounds as in [11], it is still
possible for a high-speed camera to recognize the subtle vibra-
tions of hand resonance and recover the measurements of the
accelerometers. Our main argument to this problem is that our
system is still safe against general shoulder surfers using eyes
or normal-speed cameras, which are threats to conventional
PIN code methods. One simple defense to high-speed cameras
is to block the line of sight. For example, we can use the other
hand to cover the hand performing the pairing, much as we do
to avoid shoulder surfers when typing our passwords.

RELATED WORK
Many approaches have been proposed to establish a secure
link between two devices based on shared secrets. The shared
secrets can be generated from user interactions, auxiliary chan-
nels, or authenticated with user actions or auxiliary chan-
nel. Examples of the former include gesture-based authen-
tication [7, 31] that encodes authentication information as
gestures defined by authenticators or users, and the techniques
that require users to simultaneously provide the same draw-
ings [29] or shaking trajectories [21]. The auxiliary channel
based approaches leverage a special channel to create shared
secrets. Many studies use ambient environments, such as am-
bient sound [28, 15], radio environment [20], or a combination
of multiple environments [22] as the proof of physical proxim-
ity. The auxiliary channel itself is also leveraged as the source
to generate shared secrets. Normally, the two devices send
messages to each other within a short time to measure the chan-
nel between them. Qiao et al. [25] use the frequency shapes of
the wireless channel between two devices to generate secret
bits. Similarly, Liu et al. [19] use the channel sate information
(CSI) as the shared secrets. Different from these approaches,
this paper exploits a new and intuitive method that generates
shared secrets through hand resonance. The advantages of our
method lie in its intuitive user interaction, and the ubiquity of
the required sensors, i.e., vibration motors and accelerometers,

in today’s wearables. Several recent advances [6, 16] have
proposed to use vibration signals to generate shared secrets for
physically connected devices. However, vibration signals leak
over the air and can be captured by acoustic eavesdroppers.

Vibration properties of objects have been exploited to enable
different applications. Ono et al. [23] develop a touch sens-
ing technique that recognizes a rich context of touch postures
based on the resonant changes when users change their touch
postures and positions. SoQr [13] estimates the amount of
content inside a container based on the vibration responses to
acoustic excitations. VibID [32] studies the vibration proper-
ties of different persons, and design a wristband wearable to
recognize household people based on their vibration proper-
ties. This paper is inspired by these studies, and takes it one
step further in that we exploit the resonant properties of two
objects (a hand and its touched device) in physical contact to
facilitate secure pairing.

Recent advances [27, 26, 33, 8] have empowered physical vi-
bration as a relatively slow but secure communication channel
for smart devices. The vibration channel can be used to authen-
ticate a shared key derived from a Diffie-Hellman exchange
over insecure wireless interfaces. Differently, TAG aims to
generate shared secrets directly from resonance and then use
the secrets to secure wireless communications. However, the
emitted acoustic signals cannot be completely canceled if there
are multiple eavesdroppers. Similarly, intra-body communi-
cation technologies [24, 30] are developed to allow users to
create a physical communication channel through hand touch.
Dedicated transceivers are installed for the intra-body com-
munications. Different from these techniques, this paper aims
to generate shared secrets from the vibration channel rather
than enabling a new communication channel. As such, we
can truly reap the security benefits from vibration channel,
while delivering high data rates from the traditional wireless
communication channels such as Bluetooth or Wi-Fi channels.

CONCLUSION
This paper presents TAG, a new and intuitive approach to
enable secure pairing for wearables. The insight is that a hand
and its touched object form a system whose resonant properties
are shared by both sides. We build a prototype to extract
shared secrets from the resonant properties using commercial
vibration motors and accelerometers. The ubiquity of vibration
motors and accelerometers in today’s smart devices maximizes
the chance of widespread acceptance for our system. We
demonstrate the feasibility of our system by evaluating with
12 participants. We collect 1440 trials in total and the results
show that we can generate secret bits at a rate of 7.84 bit/s
with merely a 0.467% bit mismatch rate.
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