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Abstract—This paper studies spatial spectrum sharing (SSS)
based multi-user cognitive radio (CR) networks that allow
secondary users (SU) to access the licensed spectrum as long
as the interference powers of primary users (PU) to be lower
than a certain threshold. Although recent results have shown
that multi-hop relaying has a great potential on improving the
performance of CR networks, finding effective methods to control
and manage SUs to achieve the optimal performance is still a
challenging problem. In this paper, we model CR networks as a
non-cooperative game in which each SU obtains benefits through
both spectrum sharing by paying prices to PUs and multi-hop
relaying by paying price to nearby SUs. Optimal power allocation
methods for SUs are investigated under different assumptions and
pricing functions. The conditions under which the optimal Nash
Equilibrium (NE) is obtained when all SUs use multi-hop relaying
are discussed. Our results are extended into large multi-user
CR networks with K source-to-destination pairs. Two distributed
algorithms are proposed. The first one is a sub-gradient based
power allocation algorithm in which SUs can iteratively adjust
their transmit powers to approach the payoff of a NE. The other
one is a Q-learning based relay selection algorithm which enables
each SU to iteratively search for a NE-achieving relaying scheme.

I. INTRODUCTION

A report published by FCC observes that most of the

spectrum allocated to current mobile service subscribers was

either unused or rarely used for most of the time [1]. This

motivates the study of using the cognitive radio (CR) to

solve the spectrum under-utilization problem. In CR networks,

unlicensed users, known as secondary users (SU), learn from

the environment and intelligently decide what and how can

the licensed spectrum owned by the licensed users, known as

primary users (PU), can be further utilized.

In this paper, we consider a special type of CR networks,

called spatial spectrum sharing (SSS), in which PUs can

maintain a certain level of QoS as long as their interfer-

ence powers are lower than a tolerable threshold, called

interference-temperature limit [2]. The channel capacity and

information theoretic bounds for SSS based CR networks

were first studied in [3]. The result was extended into fading

channels in [4] in which optimal power allocation methods

for SUs were derived under different fading channel models.

Recently, it was shown that the performance of CR networks

can be further improved if SUs could help each other during

the transmission [5] [6]. However, it was also observed that
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multi-hop relaying introduces both flexibility and complexity

to the network operation, and if parameters are not properly

selected, it cannot provide any improvement over the direct

transmission. Currently, finding effective ways to control and

manage SSS based CR networks with multi-hop relaying,

especially in networks with multiple secondary source-to-

destination pairs, is still an open problem.

This paper focuses on optimizing parameters and operations

of multi-user CR networks. This issue becomes more complex

when multi-hop relaying is allowed because if SUs are selfish,

they tend to keep forcing others to serve as relays without

returning the favor. In this paper, we try to find a balanced

point for the above network by using a game theoretic model

in which each SU obtains benefits through both spectrum

sharing by paying prices to PUs and multi-hop relaying by

paying prices to SUs who serve as its relays. One advantage

of our work over the previously reported results [3] [4] is

that we not only consider the performance of one specific

source-to-destination pair, but also investigate the interaction

among SUs and that between SUs and PUs. More specifically,

we define two types of pricing functions: the first one is

charged by SUs for selling their relaying service, and the

other is charged by PUs for selling the licensed spectrum.

The objective for each SU is to choose proper parameters and

strategies to improve its revenue and simultaneously minimize

the prices paid to PUs and relays. The optimal power allocation

methods for SUs are derived under three different assumptions.

Except for extending two traditional assumptions [4] into

our network model, i.e., transmitters know full channel state

information (CSI) or only know average channel gains, we

also introduce a new power allocation method which could

optimize the performance of SUs even if transmitters cannot

do any predictions but only know the current channel gains.

The Nash equilibrium (NE) of the game is discussed, and the

conditions under which all SUs choosing multi-hop relaying

achieves the optimal NE are studied.

To simplify our illustration, we first consider a simple

network model with two source-to-destination pairs and then

extend our results to the K source-to-destination pair case. In

addition, we investigate two new questions for large multi-user

CR networks: how to distributively control and optimize the

transmit powers of SUs and how to choose the “right” relaying

schemes for each SU in terms of the number and quality of

relays. To answer these questions, two distributed optimization

algorithms are proposed. The first one is a sub-gradient based

power allocation algorithm which enables SUs to iteratively

adjust their powers to approach the performance of a NE. The

other one is a Q-learning based relay selection algorithm for
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each SU to search for a NE-achieving relaying scheme. We

discuss possible extensions of our work and present numerical

results to demonstrate the performance improvement brought

by using the multi-hop relaying in CR networks.

The rest of this paper is organized as follows. The network

model and game formulation are presented in Section II. The

game theoretic analysis for CR networks with two secondary

source-to-destination pairs are presented in Section III. The

results are extended into large multi-user CR networks in

Section IV. The numerical results are presented in Section

V and the paper is concluded in Section VI.

II. NETWORK MODEL AND GAME THEORETIC SETUP

A. Network Model

Consider a CR network model in which K secondary

source-to-destination pairs, S1 to D1, S2 to D2, . . . ,

SK to DK , share the licensed spectrum with M PUs,

P1, P2, . . . , PM . To simplify our illustration, in this paper, we

only focus on the transmitter cooperation in which Si can

only serve as the relay for other secondary sources, i.e., Sj

for j 6= i, j ∈ [1, K]. The results of the receiver cooperation

can be similarly obtained. Let the transmit power of Si used

to send/forward signals for Sj be wi,j for i, j ∈ [1, K].
Let the channel gain between user l and m be hl,m where

l, m ∈ {S1, S2, ..., SK}∪{D1, D2, ..., DK}∪{P1, P2, ..., PK}
In our model, SUs can either directly send their signals or

cooperate with each other by using the decode-and-forward

multi-hop relaying. Assume that SUs use time division half

duplex transmission mode to void self interference and each

secondary source has been allocated the same amount of time

for its own transmission. For example, consider a U time

duration of transmission. If Si chooses the direct transmission,

it will directly send its own information to Di in U
K amount of

time. However, if Si chooses to use Li-hop relaying to send

its signals for Li ≥ 2, it only spends U
KLi

in sending its source

information to the closest relay and leaves all the rest
U(Li−1)

KLi

amount of time for the relaying transmission (each relay will

spend U
KLi

in forwarding the signal of Si). Note that, in our

settings, the relaying scheme chosen by each secondary source

does not affect the transmission of other source-to-destination

pairs. To simplify our discussion, we define a time scheduler

(TS) for the multi-user CR network as follows.

Assumption 1: We assume that there is a TS in the SU

network. Two main objectives for the TS are: 1) to ensure

that there is no collisions (more than one SU uses the licensed

spectrum at the same time); 2) to arrange the relays and time

for the transmission of each secondary source-to-destination

pair. More specifically, if Si chooses Li-hop relaying, it

will first send the request to the TS to schedule (Li − 1)
intermediate SUs (relays) and the respective time segments

for the relaying transmission. Note that the TS only provides

the time scheduling information and each SU cannot obtain

any other information from the TS. We assume the delay for

each SU to wait for the availability of relays and the time

scheduling information is negligible.

Note that a TS may not necessarily be a central controller.

For example, SUs can follow a pre-defined protocol to sched-

ule their transmissions, or they can compete/cooperate with

each other for the limited transmission opportunities [7].

To simplify our problem, in this paper, we assume there is

no pricing competition [8] and all PUs treat each SU equally.

Hence, we can combine the effects of M PUs as one, labeled

as PU 0. The interference power increment of PU 0 caused by

Si is given by ISi
= wi,jhSi,0 where hSi,0 =

∑M
k=1 hSi,Pk

.

B. Game Theoretic Setup

Define the following elements in our model: 1) Players

are SUs who share the licensed spectrum, 2) Strategies of

Si, denoted by si ∈ S where S is the set of all strategies

for SUs, are the options of actions. For example, in relay

selection games, si can be either direct transmission or multi-

hop relaying. In power allocation games, si can be different

transmit powers of Si , 3) Revenue of Si, denoted by ri,j ,

is the benefit earned by Si for using PU 0’s spectrum (ri,i)

and/or selling relaying services to Sj (ri,j for j 6= i and

i, j ∈ {1, 2, ...,K}), 4) Pricing function paid by Si is the price

charged by PU 0, denoted by c0,i, and/or Sj , denoted by ci,j ,

for selling the spectrum and/or providing relaying services,

5) Payoff of Si, denoted by πi, is the difference between its

revenue and price, i.e., πi =
∑K

j=1 (ri,j − ci,j).
Our model can be regarded as a special case of spectrum

leasing in which PUs are regarded as the spectral resource

owners and could lease a part of the resource to SUs in

exchange for remuneration [9] [10] [11]. The price charged

by PUs and SUs can either be used to exchange services with

each other [9] or be the profits of the network operators [10].

The main objective for each SU is to choose proper param-

eters and strategies to maximize its “long term” payoff. Let us

consider a repeated game with T time slots of transmission and

use subscript [t] to denote parameters during the tth time slot.

In every time slot, each source-to-destination pair can send a

certain amount of information. We assume the transmissions

in different time slots are independent and each player cares

for the performance of the future as same as that of the present

i.e., the time discount factor [12, Definition 6.1.2] is 1. In this

paper, transmit powers of SUs are limited in every time slot,

and hence the power constraint is defined as follows:

E

(

∑

j∈[1,K]

∑

i∈[1,K]
hSi,0[t]wi,j[t]

)

≤ Q0[t], (1)

where wj,i[t] = 0 if Si does not require Sj to serve as its

relay for i 6= j, i, j ∈ [1, K], and Q0[t] is the interference

temperature limit of PU 0 in time slot t.
Since the main effect of allowing spectrum sharing is to

increase the interference level of PU 0, it is reasonable to

define the price charged by PU 0 from Si to be a function of

its resulting interference power increment caused by Si, i.e.,

we have

ĉ0,i =
∑T

t=1
c0,i[t] =

∑T

t=1

∑K

j=1
α̃0,j[t]hSj,0[t]wj,i[t], (2)

where α̃0,i[t] is the pricing coefficient of PU 0 in time slot t
defined as,

α̃0,i[t] =
(

b0,i[t]wi,j[t]

)η
+ a0,i[t]. (3)
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and η, a0,i[t] and b0,i[t] are constants in time slot t. Note that

α̃0,i[t] characterizes the interaction between SUs and PU 0.

More specifically, a small α̃0,i[t] indicates that a slight incre-

ment of interference power will not cause much QoS degrading

for PU 0. However, if α̃0,i[t] is large, PU 0 is less likely to share

the spectrum with SUs and each SU needs to pay a relatively

high price for accessing the licensed spectrum. In this paper,

we mainly focus on two special types of α̃0,i[t]: α̃0,i[t] is a

constant (c0,i[t] is a linear pricing function of wi,j[t]), i.e.,

η = 0, and α̃0,i[t] is a linear function of the transmit power

of Si (c0,i[t] is a quadratic pricing function of wi,j[t]), i.e.,

η = 1, which are considered in Subsections III-B and III-C,

respectively. Assuming the decoding and re-encoding delay is

negligible and the transmit power is the main resource used by

each relay, we define the price charged by Si for serving as the

relay for the jth source-to-destination pair to be proportional

to wi,j , i.e., ĉi,j =
∑T

t=1 ci,j[t] =
∑T

t=1 βi,jwi,j[t], where βi,j

is a constant. Assume each SU tries to maximize its data rate,

and therefore the revenue of Si should be proportional to its

achievable rate Ri, i.e., r̂i,i =
∑T

t=1 ri,i[t] =
∑T

t=1 γiRi[t],
where i, j ∈ {1, 2, ..., K}, and γi is a constant which should

be large if spectrum sharing is the only way to maintain a

certain level of achievable rate, or small if there exist some

alternative ways/resources for Si to transmit important data.

Revenues obtained by Si to serve as the relay for Sj is defined

as r̂i,j =
∑T

t=1 ri,j[t] =
∑T

t=1 β̃i,jwi,j[t], for i 6= j, i, j ∈

{1, 2, ...,K} where β̃i,j is a constant.

Assumption 2: We assume only transmitters, i.e., S1 and

S2, can decide which operation should be chosen (direct

transmission or multi-hop relaying). Therefore, no SUs can

obtain revenues by forcing others to relay information. Except

from that, the revenue earned by Si by serving as the relay of

Sj can only be used for exchanging services with other SUs,

i.e., Sk for k 6= i, k, i, j ∈ [1, K]. We assume, during T time

slots of transmission, each SU maintains a balance between

the overall price paid to buy relaying services from others and

the revenue obtained for serving as relays, i.e., we have

r̂i,−i =
∑

t∈[1,T ]

∑

j∈[1,K]
j 6=i

ri,j[t]

= ĉ−i,i =
∑

t∈[1,T ]

∑

j∈[1,K]
j 6=i

cj,i[t]. (4)

The above assumption can be satisfied for a relatively long

period of transmission in which all SUs are selfish and always

tend to spend all relaying revenues on improving their payoffs.

In addition, we also assume no SUs can refuse the relaying

request of others, i.e., a TS is built to ensure the transmission

and relaying requests of SUs to be satisfied. These assumptions

avoid the case that selfish SUs in the networks keep using

multi-hop relaying and refuse to help others (free-riders)

without being punished, or some SUs always forward signals

for others without getting any benefits.

In the network with multiple secondary source-to-

destination pairs, one of the main objectives is to find the

NE. In other words, if the network operates at a NE, each SU

cannot achieve a higher payoff by choosing a different strategy,

given the strategies of other SUs. The formal definition of NE

is given below.

Definition 1: [13, Definition 23.1] A strategy profile s∗ is a

NE if, for every player Si and every strategy si for s∗, si ∈ S
and i ∈ [1, K], s∗ is at least as good as the strategy profile

(si, s
∗
j ) in which player Si chooses si while every other player

chooses s∗, i.e., for every player i, πi(s
∗
i , s∗−i) ≥ πi(si, s

∗
−i),

where subscript −i denotes all players except Si .

III. GAME THEORETIC ANALYSIS FOR TWO

SOURCE-TO-DESTINATION PAIR CASE

Let us consider the CR network model with two secondary

source-to-destination pairs, i.e., S1 to D1 and S2 to D2.

A. Game Theoretic Analysis

Following the game theoretic model established in Subsec-

tion II-B, in the tth time slot, four strategy pairs (s1[t], s2[t])
can be selected by S1 and S2 as discussed below.

1) Both S1 and S2 Using Direct Transmissions: In this

case, the price paid by Si for i ∈ {1, 2} to PU 0 is

given by cDT
0,i[t] = α̃0,i[t]hSi,0[t]wi,i[t]. Si obtains the fol-

lowing revenue which is proportional to its achievable rate:

rDT
i,i[t] = γi log

(

1 + hSi,Di[t]wi,i[t]

)

. Therefore, the payoff of

Si is given by

πDT
i[t] = rDT

i,i[t] − cDT
0,i[t]. (5)

2) Both S1 and S2 Using Multi-hop Relaying: In this case,

the cost of Si for i ∈ {1, 2} contains two parts: one is charged

by PU 0 from Si (for sending the source information) and S−i

(for forwarding signals of Si), denoted by cCT
0,i[t] = c̃CT

0,i[t] +

c′CT
0,−i[t] = α̃0,i[t]hSi,0[t]wi,i[t]+α̃0,−i[t]hS

−
i,0[t]w−i,i[t], and the

other is charged by the relay (i.e., S−i), denoted by cCT
i,−i[t] =

β−i,iw−i,i[t]. The revenue of Si also contains two parts: one

is proportional to its achievable rate Ri[t], denoted as

rCT
i,i[t] =

γi

2
min

{

E log
(

1 + hSi,S−i [t]wi,i[t]

)

,

E log
(

1 + hS
−i,Di[t]w−i,i[t]

)}

, (6)

and the other is earned by serving as the relay for S−i, denoted

as rCT
i,−i[t] = β̃i,−iwi,−i[t]. The payoff of Si using multi-hop

relaying is given by

πCT
i[t] = rCT

i,i[t] + rCT
i,−i[t] − cCT

0,i[t] − cCT
i,−i[t]. (7)

3) One SU Using Multi-hop Relaying and the Other SU

Using Direct Transmission: Assume only Si for i ∈ {1, 2}
uses multi-hop relaying. In this case, S−i not only transmits

its own information to D−i but also serves as the relay for

Si. Following the same line as the previous cases, the payoff

functions for Si and S−i are given by

πCTD
i[t] = rCT

i,i[t] − cCT
0,i[t] − cCT

i,−i[t], (8)

πDTC
−i[t] = rDT

−i,−i[t] + rCT
−i,i[t] − cDT

0,−i[t]. (9)

From (8) and (9), we have the following results,

πCTD
i[t] = πCT

i[t] − rCT
i,−i[t],

πDTC
−i[t] = πDT

−i[t] + rCT
−i,i[t]. (10)

The revenue earned by each SU for serving as the relay

should have different meanings for different systems. In a large
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network, for example, each SU can use this revenue to buy

the relaying service from others [9]. In some other systems,

the price charged by relays can be simply used for avoiding

free-riders[14].

B. Optimal Power Allocation Methods for CR Networks with

Linear Pricing Function

As observed in the previous section, the revenue of each

SU is closely related to its transmit power. Hence, finding

the optimal transmit power for each SU is very important

for the interference limited SSS systems. Let us introduce the

following assumption.

Assumption 3: It is observed that the achievable rate of the

multi-hop relay channel is always limited by the hop with the

lowest capacity and hence, if the transmit powers of the source

and relays are equal, there is always a part of the powers being

wasted. This problem becomes more serious in our proposed

model because a high transmit power also means a high price

charged by relays and PU 0. One way to solve this problem

is to adapt the forwarding powers of the relay to the CSIs of

its connected channels. More specifically, if Si chooses the

multi-hop relaying, w−i,i should be given by

w−i,i[t] = fiwi,i[t], (11)

where fi = hSi,S
−i [t]/hS

−i,Di[t] for i ∈ {1, 2}.

In this way, the overall achievable rate of multi-hop relaying

channels should always be equal to that of the first hop and no

powers will be wasted during the relaying transmission, i.e.,

R
CT
i[t] = E log

(

1 + hSi,S
−i [t]wi,i[t]

)

.

Following Assumption 2, each SU (i.e., Si) should balance

the accumulated price paid to relaying SUs and the accu-

mulated revenue obtained by serving as relays for others. In

other words, we can actually neglect the effect of c−i,i[t] and

ri,−i[t] in the payoff optimization problem because these two

values will be eventually canceled during T time slots of

transmission. Let us consider the linear pricing function case

and assume α̃0,j[t] of PU 0 in (3) to be a constant in time

slot t, i.e., α̃0,j[t] = α̃0[t]. Since the transmissions in different

time slots are independent with each other, in the rest of this

section, we focus on the transmission in the tth time slot and

drop the subscript [t] to simplify the notation.

1) Only Average Channel Gains are Known by Transmit-

ters: In this case, wi,i for i ∈ {1, 2} should be a constant.

If both S1 and S2 directly transmit their signals to the

corresponding destinations, wi,i should satisfy,

E (hS1,0w1,1 + hS2,0w2,2)

= w1,1E (hS1,0) + w2,2E (hS2,0) ≤ Q0, (12)

where if we assume the statistics of hS1,0 and hS2,0 are

fixed during each time slot, E(hS1,0) and E(hS2,0) are two

constants which can be obtained through feedbacks of PU 0.

If the SNR is low, the optimal transmit power of Si for

i ∈ {1, 2} is given by

wi,i =

(

γi

λE(hSi,0)
−

1

E(hSi,Di
)

)+

, (13)

where λ needs to satisfy λ ≥
γ1+γ2

Q+E(hS1 ,0)/E(hS1,D1)+E(hS2 ,0)/E(hS2 ,D2) if w1,1, w2,2 > 0.

Consider the case that both S1 and S2 use multi-hop

relaying. Following Assumption 3, if the SNR is low, the

optimal transmit power of Si for i ∈ {1, 2} is given by

wi,i =

(

γi

λ
[

E(hSi,0) + E
(

hS
−i,0fi

)] −
1

E(hSi,S
−i

)

)+

, (14)

where λ needs to satisfy

λ ≥
γ1 + γ2

2Q +
E(hS1,0)+E(hS2 ,0f1)

E(hS1 ,S2)
+

E(hS2,0)+E(hS1 ,0f2)
E(hS2 ,S1)

(15)

if both w1,1 and w2,2 are positive. The detailed proof is

given in Appendix A. By using (10) and the same methods

in Appendix A, we can directly obtain the optimal power

allocation method for the case with one SU choosing direct

transmission and the other one choosing multi-hop relaying.

Note that our results in (13) and (14) are different from the

single source-to-destination pair case in [4] in the sense that

wi,i is limited by both SU-to-PU and SU-to-SU channels.

2) Full CSIs are Known by Transmitters: In this case, wi,i

can be adapted to instantaneous value of the channel gains

to further increase the revenue of Si. If both S1 and S2 use

direct transmission, we can obtain the following optimal power

allocation methods by maximizing πDT
1 +πDT

2 over w1,1 and

w2,2, respectively. The optimal transmit power of Si for i ∈
{1, 2} is given by

wi,i =

(

γi

λhSi,0
−

1

hSi,Di

)+

(16)

where λ needs to satisfy λ ≥ γ1+γ2

Q+hS1 ,0/hS1,D1+hS2 ,0/hS2,D2

if w1,1, w2,2 > 0. Note that in (16), γ1

λhS1,0
and γ2

λhS2,0
are

called “water-levels” of w1,1 and w2,2, respectively. In other

words, Si should not transmit any signals if hSi,Di
is lower

than
λhSi,0

γi
.

Similarly, if both S1 and S2 use multi-hop relaying, the

optimal transmit power of Si can be obtained by maximizing

πCT
1[t] + πCT

2[t] over wi,i, which is given by

wi,i =

(

γi

λ
(

hSi,0 + hS
−i,0fi

) −
1

hS1,S2

)+

, (17)

where λ needs to satisfy λ ≥
γ1+γ2

2Q+(hS1 ,0+hS2 ,0f1)/hS1 ,S2+(hS2,0+hS1 ,0f2)/hS2 ,S1

if both

w1,1 and w2,2 are positive. The detailed proofs are given in

Appendix B.

3) Only Current Channel Gains are Known by Transmit-

ters: In previous subsections, we study two extreme cases:

1) transmitters do not know any CSIs except for the average

channel gains, 2) full CSIs can be accurately predicted by

transmitters. These assumptions may not always be applied.

For example, in many practical systems, transmitters cannot

predict any information, i.e., future CSIs or average channel

gains. In this subsection, we propose a new power allocation

method to solve the above problem. In our method, transmit-

ters only observe current channel gains.
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Following the network model in Section II, we assume that

each time slot can be further divided into B short segments

during each of which the channel fading coefficients can be

regarded as constants. We use l to denote the index of segment

for l ∈ [1, B]. Since SUs cannot do any predictions about

future channel gains, the power constraint in (1) should be

applied in every segment, i.e., we have the following power

constraint,

∑2

j=1

∑2

i=1
hSi,0(l)wi,j (l) ≤ Q0. (18)

Due to the space limit, in the rest of this subsection, we only

present results for the case that both S1 and S2 use multi-hop

relaying to transmit signals. The direct transmission case can

be obtained by using the similar method. For the lth segment

of transmission, πCT
i,i (l) can be re-written as

πCT
i (l) = γi log

(

1 + hSi,S−i
(l)wi,i(l)

)

(19)

−α̃0hSi,0(l)wi,i(l) − α̃0hS
−i,0(l)w−i,i(l).

Since πCT
i (l) is a quasi-concave function of wi,i, the

optimal transmit power of Si can be easily obtained by

maximizing (19) over wi,i if both w1,1 and w2,2 satisfy (18).

However, if (18) cannot be satisfied, we need to find the

optimal values of wi,i and w−i,−i in a linear function of
∑2

i=1

(

hSi,0(l) + hS
−i,0(l)fi(l)

)

wi,i = Q0. Therefore, the

optimal transmit power for Si in segment l is given by

wi,i (l) =

(

γi

λ∗(l)
(

hSi,0(l) + hS
−i,0(l)fi(l)

)

−
1

hSi,S
−i

(l)

)+

(20)

where λ∗ is given by,

λ∗(l) =























γi

2Q0+νSi
(l) ,

if (18) is not satisfied

and wi,i > 0, w−i,−i = 0,

γ1+γ2

2Q0+
P

2
j=1 νSj

(l)
,

if (18) is not satisfied

and w1,1, w2,2 > 0,
α̃0, Otherwise,

(21)

and νSi
(l) =

[

hSi,0(l) + hS
−i,0(l)fi(l)

]

/hSi,S−i
(l). From

(20), it is observed that knowing α̃0 from PU 0 only improves

the payoffs of SUs when the received power constraint defined

in (1) is not tight, i.e., Q0 being large enough.

C. Optimal Power Allocation Methods for CR Networks with

Quadratic Pricing Function

In Subsection III-B, we studied a CR network model in

which the price charged by PU 0 is a linear function of its

interference power, i.e., α̃0,i[t] is a constant. However, the

pricing function for a practical system may be more complex.

For example, in an interference sensitive network, even a slight

increment of the interference power could cause a huge QoS

degrading for PU 0. In this case, setting α̃0,i[t] to be a high

order polynomial function of the transmit power of Si , i.e.,

η > 1 in (2), could accelerate the power decreasing process

of SUs to avoid a long period of high interference to PU 0. In

this subsection, we consider the case that the pricing function

of PU 0 is a quadratic function of the transmit power of Si ,

i.e., α̃0,i[t] is given by

α̃0,i[t] = b0[t]wi,j[t] + a0[t]. (22)

Following the same line as Subsection III-B, we assume

ĉi,−i = r̂−i,i and focus on one time slot of transmission to

neglect the subscript [t]. Let us first consider the case that both

S1 and S2 directly transmit signals to D1 and D2, respectively.

Following the same setting as Section III, the payoff function

of Si can be written as follows:

πDT
i = γiE log (1 + hSi,Di

wi,i) − (b0wi,i + a0)hSi,0wi,i.

By maximizing πDT
i over wi,i under the constraint in (1),

we can derive the optimal transmit power of Si for i ∈ {1, 2}
as follows:

wi,i =

(
√

1

4h2
Si,Di

−
a0 + λ

4b0hSi,Di

+
(a0 + λ)

2

16b2
0

+
γi

2b0hSi,0

−
1

2hSi,Di

−
a0 + λ

4b0

)+

, (23)

where λ is a constant to ensure the power constraint in (1)

being satisfied.

Let us consider the case that both S1 and S2 use multi-hop

relaying to transmit signals. In this setting, πCT
i for i ∈ {1, 2}

can be re-written as follows:

πCT
i = γiE log

(

1 + hSi,S−i
wi,i

)

− (b0wi,i + a0)hSi,0wi,i

− (b0w−i,i + a0)hS
−i,0w−i,i. (24)

By maximizing (24) over wi,i and using Assumption 3,

the optimal transmit power for Si with full CSIs known by

transmitters is given by

wi,i =

(√

1

4h2
Si,S−i

−
Di

4AihSi,S−i

+
D2

i

16A2
i

+
γi

2Ai

−
1

2hSi,S−i

−
Di

4Ai

)+

, (25)

where Ai and Di are given by

Ai = b0

(

hSi,0 + hS
−i,0

h2
Si,S−i

h2
Si,Di

)

, (26)

Di = (a0 + λ)

(

hSi,0 + hS
−i,0

hSi,S−i

hSi,Di

)

, (27)

and λ is a constant to ensure that wi,j for i, j ∈ {1, 2} satisfies

the received power constraint in (1). Note that wi,i in (25) is

different from the result in (17) and is always larger than zero

if γi > Di

2hSi,S
−i

. By using the same method discussed in

Section III-B, we can calculate results for the cases that only

average or current CSIs are known by transmitters.

D. Cooperative Nash Equilibrium

Based on the above discussion, there are four strategy pairs

in each time slot of the considered game: S = {(πDT
1[t] , π

DT
2[t] ),

(πCTD
1[t] , πDTC

2[t] ), (πDTC
1[t] , πCTD

2[t] ), (πCT
1[t] , π

CT
2[t])}. Assume that

each SU fixes its transmission scheme during T time slots
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of communication. To simplify our discussion, we only focus

on the symmetric network and assume π̂CT
1 = π̂CT

2 , π̂DT
1 =

π̂DT
2 , π̂CTD

1 = π̂CTD
2 , and π̂DTC

1 = π̂DTC
2 in this subsection.

From Definition 1, we have the following results about the NE

supported by the 2 source-to-destination pair game,

1) If π̂DT
i > π̂CT

i for i ∈ {1, 2}, then (π̂DT
1 , π̂DT

2 ) is the

only NE of the game,

2) If π̂CT
i ≥ π̂DT

i for i ∈ {1, 2}, then (π̂CT
1 , π̂CT

2 ) is

a NE. Furthermore, if we assume π̂CT
i ≥ π̂DTC

i , then

(π̂CT
1 , π̂CT

2 ) is the only NE of the game.

Result 1) defines the conditions under which both S1 and S2

directly transmitting signals to the corresponding destinations

achieve the unique NE of the game. More specifically, in our

game theoretic model, S1 and S2 should not use multi-hop

relaying to transmit signals if the extra revenue brought by

using multi-hop relaying is smaller than the increased price

charged by PU 0 from the relay, i.e., we have

γi∆R̂
CT−DT
i =

T
∑

t=1

γiR
CT
i[t] −

T
∑

t=1

γiR
DT
i[t] ≤

T
∑

t=1

c′CT
0,−i[t]. (28)

This setting makes each SU to cautiously decide on whether

or not to use multi-hop relaying and hence avoid the scenarios

that some SUs impulsively request the relaying service of

others simply because they want to spend the revenues earned

by selling their relaying services during previous time slots.

As observed in [13], a NE is generally not the optimal

solution. However, it can be shown that, if the condition in

result 2) is satisfied, applying the multi-hop relaying to both

S1 and S2 will be the unique NE as well as the payoff

maximization solution of our game. Let us summarize this

observation in the following Lemma.

Lemma 1: Assume each SU fixes its transmission scheme

during T time slots of transmission. Using multi-hop relaying

for both S1 and S2 is the optimal NE of symmetric SSS based

CR networks if the improvement of the weighed achievable

rate γi∆R̂
CT−DT
i[t] for Si is larger than the sum of the price

paid to S−i and the price charged by PU 0 from the relay

(S−i) for i ∈ [1, 2], i.e.,

γi∆R̂
CT−DT
i > ĉX,i, (29)

where ĉX,i =
T
∑

t=1

(

c′CT
0,−i[t] + cCT

−i,i[t]

)

.

IV. EXTENDING TO LARGE CR NETWORKS

In this section, we extend the results in Section III into

a general CR network model in which K sources transmit

signals to the corresponding destinations over the licensed

spectrum. To simplify our illustration, we mainly focus on

the operations of one source-to-destination pair, labeled by S1

to D1, and assume there are L−1 intermediate SUs, labeled as

S2, S3, . . . , SL for L ≤ K, available to decode-and-forward

signals for S1 . Note that these intermediate SUs are also sec-

ondary sources which have their own information to transmit.

Therefore, if S1 wants to exploit intermediate SUs to relay its

signals, it needs to pay prices to each of these SUs and returns

the favor when necessary. Let the set of all SUs who require

the relaying service of S1 in time slot t be L̃1[t] for |L̃1[t]| ≤

K − 1. Following the network model and game theoretic

notations introduced in Section II, we define the revenue of S1

to be r̂CT
1,1 =

T
∑

t=1
rCT
1,1[t] =

T
∑

t=1
γ1R1[t] where γ1 is a constant.

Due to space limitation, let us only provide the results for the

linear pricing function case as discussed in Subsection III-B.

Define the revenue of S1, earned by being relays for other

SUs, as r̂CT
1,L̃1

=
T
∑

t=1
rCT
1,L̃1[t]

=
T
∑

t=1

∑

i∈L̃1[t]

β̃1,iw1,i[t], where

β̃1,i is a positive constant. The prices charged by intermediate

SUs from S1 are ĉCT
L̄,1

=
T
∑

t=1
cCT
L̄,1[t]

=
T
∑

t=1

L
∑

i=2

βi,1wi,1[t],

where L̄ = [2, 3, ..., L]. If S1 uses multi-hop relaying, it also

needs to pay price to PU 0 for the relaying transmission

of S2, S3, . . . , SL. Define the price charged by PU 0 to

be ĉCT
0,1 =

T
∑

t=1
cCT
0,1[t] =

T
∑

t=1

L
∑

i=2

α̃0,ihSi,0[t]wi,1[t]. Following

Assumption 2, we have r̂CT
1,L̃1

= ĉCT
L̄,1

. Using this setting, the

payoff function of S1 can be written as,

πCT
1 =

∑T

t=1

[

γ1R1[t] +
∑

j∈L̃1[t]

β̃1,jw1,j[t] (30)

−
∑L

k=2
βk,1wk,1[t] −

∑L

l=1
α̃0,lhSl,0[t]wl,1[t]

]

.

In a CR network with K source-to-destination pair, the main

objective is to solve the following optimization problem:

max
wi,j[t]

∑T

t=1

∑K

i=1
πi,i[t] (31)

s.t.
∑K

j=1

∑K

i=1
E
(

hSi,0[t]wi,j[t]

)

≤ Q0[t].

All results presented in the previous section can be directly

applied into the above model. For example, let us consider

the transmission from S1 to D1 with (L − 1)-hop relaying.

By assuming the transmission of SUs in each time slot

to be independent and transmit powers of SUs to satisfy

wi,1[t] = fi−1[t]wi−1,1[t] and wL,1[t] =
hSL−1,SL[t]

hSL,D1[t]
wL−1,1[t]

where fi−1[t] =
hSi−1 ,Si[t]

hSi,Si+1[t]
for i ∈ [2, L − 1], the optimal

transmit power for S1 with full CSIs known by transmitters

can be obtained as follows:

w1,1[t] =

(

γ1

λ(hS1,0[t] +
∑L−1

i=2 hSi,0[t]fi−1)
−

1

hS1,S2[t]

)+

, (32)

where λ is a constant to ensure transmit powers of all

SUs satisfying the subjective function in (31). Similarly, the

optimal power allocation methods under other operations and

assumptions discussed in Subsections III-B and III-C can be

directly obtained. We omit the detailed results due to the limit

of space.

It is observed that in large multi-user networks, the network

structures and user interactions greatly increase the complexity

of the optimization problem. More specifically, two new

questions that are naturally raised for this network are:

Q1) How to manage and optimize the transmit powers

for CR networks in a distributed fashion?
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Fig. 1. Illustration of Algorithm 1.

Q2) How to choose “proper” relays (in terms of the num-

ber and quality) for each secondary source-to-destination

pair to maximize the payoff?

In the following subsections, we propose two distributed

algorithms to solve the above problems. The first one is

a distributed power allocation method and the other is a

distributed relay selection algorithm.

A. A Distributed Power Allocation Algorithm

As discussed in Section III-B, achieving the optimal payoff

without allowing the transmitters to know the CSIs is a very

challenging task. In this subsection, we assume the channel

gains can be regarded as constants during each time slot and

the transmission scheme selected by each SU is fixed. A

distributed algorithm, denoted as Algorithm 1, is presented

in Figure 1. The proposed algorithm does not require the

CSIs to be known by transmitters or SUs to communicate

with each other. Following the same methods in [15], it can

be proved that, by using Algorithm 1, the payoffs of SU

networks approaches to a NE if the number of iterations is

large enough. In Figure 2, we show the time average payoff

of S1 under different numbers of iterations. It is observed that

the convergence performance of Algorithm 1 is closely related

to the iteration step size u. Generally speaking, the larger the

value of u, the faster rate of convergence to the payoff of a

NE. However, if u is too large, the average payoff will be

fluctuated during the first few iterations.
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Fig. 2. Convergence rate of Algorithm 1 with different step sizes.
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Fig. 3. Illustration of Algorithm 2.

B. A Distributed Relay Selection Algorithm

Following the same setting as Algorithm 1, channel gains

are assumed to be constants and the number of SUs who

have positive powers is fixed in each time slot. Let us divide

the time duration of each time slot into B small segments.

Define the Q-function for S1 in segment l of time slot t
as QS1 [t](s1(l)) = E[π1[t](s1(l))], where s1 denotes the

transmission scheme selected by S1, i.e., which and how many

nearby SUs should be chosen as relays of S1. Assume there
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Fig. 4. Convergence rate of Algorithm 2 with different values of ρ.

are L intermediate SUs located between S1 and D1, and hence

there are 2(L−1)−1 strategies can be chosen. The operations of

Algorithm 2 are described in Figure 3. Note that this algorithm

is similar to Robbins-Monro algorithm [16], and hence QS1 [t]

will converge to the average payoff of strategy s1. Each SU

will be more likely to choose the scheme with the highest

Q value which will eventually approach to a NE-achieving

relaying scheme [17]. The convergence proof is similar to

that of Robbins-Monro algorithm and hence is omitted here.

The convergence rate of Algorithm 2 is closely related to

the value of ρ. In Figure 4, we consider the 2 source-to-

destination pair case and present the convergence performance

of the probability of S1 choosing different schemes (either

direct transmission or multi-hop relaying). Note that in the

proposed Algorithm, the value of ρ controls the frequency

of the exploration, i.e., the smaller value of ρ, the higher

probability for Si to choose the high Q value strategy. This

explains the observation in Figure 4 that the convergence rate

of Algorithm 2 is decreased with ρ.

V. NUMERICAL RESULTS

As discussed in Section IV, a large multi-user CR network

can be regarded as an extended version of the network with

2 source-to-destination pair. Therefore, in this section, we

will first present numerical results for the CR network model

discussed in Section III and leave the results of K source-to-

destination pair case to the end of this section.

Denote the distance between two SUs as di,j for i, j ∈
{S1, S2, D1, D2, 0}. Let us consider the following channel

models,

hi,j = h̃i,j/dδ
i,j, (33)

where h̃i,j is a Rayleigh distribution random variable unrelated

to the distance of transmission and δ is the channel attenuation

exponent. To simplify our illustration, we focus on two types

of networks: 1) symmetric networks in which the locations

of two secondary source-to-destination pairs are geometrically

symmetric, i.e., dS1,D1 = dS2,D2 = dS1,S2 + dS2,D1 =
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Fig. 6. Numerical results for the payoff sum of S1 and S2 in SSS based

CR networks with multi-hop relaying

2 4 6 8 10 12 14 16 18
−0.1

0

0.1

0.2

0.3

0.4

d
32

 

 γ
1
 ∆ R

CT−DT

1

c
X,1

γ
1
 ∆ R

CT−DT
 with OPA

c
X,1

 with OPA

γ
1
 ∆ R

CT−DT

1
 with Current CSI

c
X,1

 with Current CSI

Fig. 7. Numerical results for the payoff of S1 in SSS based CR networks
with multi-hop relaying



9

2 4 6 8 10 12 14 16 18
−1

0

1

2

3

4

5

6

7

8
x 10

−3

d
S

1
,S

2

P
a
y
o
ff
 o

f 
S

1

 

 
π

DT

1

π
DT

1
 with OPA

π
DT

1
 with Current CSIs

π
CT

1

π
CT

1
 with OPA

π
CT

1
 with Current CSIs

Fig. 8. Numerical results for SSS based CR networks with multi-hop relaying
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dS2,S1 + dS1,D2 , and hence we fix dS1,D1 to study the payoff

of S1 under different dS1,S2 , 2) asymmetric networks in which

dS1,D2 and dS1,D1 are fixed (i.e., dS1,D2 =
dS1 ,D1

2
) and the

payoff sum of S1 and S2 under different dS1,S2 are considered.

Based on this setting, the difference between E(hS1,S2) and

E(hS2,D1) (or between E(hS1,S2) and E(hS1,D2)) will be-

come small if dS1,S2 approaches to
dS1,D1

2 , or large if dS1,S2

approaches to 0 or dS1,D1 .

Consider symmetric networks with a linear pricing function

first. It is observed in Figure 5 that the payoff of S1 using

multi-hop relaying is closely related to the location of the

relay. More specifically, if S2 is located near the middle point

between S1 and D1, multi-hop relaying could greatly improve

the performance of CR networks. However, the improvement

decreases when dS1,S2 approaches to 0 or dS1,D1 . This is

because, by following Assumption 3, if E(hS1,S2) is much

larger than E(hS2,D1), S2 will raise its forwarding power to

ensure all received signals to be successfully decoded by D1,

which also increases the price charged by PU 0. Note that

the optimal location of S2 which maximizes the payoff of S1

can be obtained by substituting (33) into πCT
1 and maximizing

the πCT
1 over dS1,S2 . The detailed derivation is omitted due

to space limit. Another interesting result in Figure 5 is that

if S2 is located in the middle point between S1 and D1,

multi-hop relaying with fixed transmit powers can provide a

higher payoff than the direct transmission with optimal power

allocation methods. In other words, multi-hop relaying can be

a more useful tool than optimal power allocation methods to

improve the performance of SSS based CR networks under

certain conditions. Numerical results for asymmetric networks

with linear pricing function are presented in Figure 6. It is

observed that, the payoff sum of S1 and S2 is decreased

with dS1,S2 if both secondary sources use direct transmission.

However, when using multi-hop relaying, the payoff sum can

be greatly improved, especially when dS1,S2 approaches to
dS1,D1

2 .

Note that the value of payoff in our setting can be negative.

For some systems, this could mean the price is too high for

SUs to use the licensed spectrum or some specific strategies.

In this case, SUs should either use alternative strategies and

optimization methods, such as multi-hop relaying, optimal

power allocation methods, etc., to increase their payoffs, or

stop sending signals over the licensed spectrum.

As discussed in Lemma 1, using multi-hop relaying for both

secondary sources achieves the performance of a NE if the

weighed achievable rate gain γi∆R
CT−DT
i for Si is larger

than the price ĉX,i charged by PU 0 and relays for i ∈ [1, 2].
Therefore, we present numerical results for the symmetric CR

network in Figure 7 in which γ1∆R
CT−DT
1 defined in the

left-hand-side of (29) and ĉX,1defined in the right-hand-side

of (29) are compared. It is observed that multi-hop relaying

can always be a NE-achieving scheme if the location of relay is

close to the middle point between source and destination, i.e.,

dS1,S2 ≈
dS1,D1

2
. However, γ1∆R

CT−DT
1 will be exceeded by

ĉX,1 if the relay is located close to either source or destination.

Let us consider CR networks with quadratic pricing func-

tions. Figure 8 shows the payoff of S1 when the network is
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symmetric. It is observed that with the increasing of dS1,S2 ,

the payoff of S1 with multi-hop relaying changes in a much

faster speed than that in the linear pricing function case. This

is because a part of the price charged by PU 0 from the relay is

a second degree polynomial function of the forwarding power

which, as mentioned in Assumption 2, should be proportional

to
hS1,S2[t]

hS2 ,D1[t]
. In addition, similar to the linear pricing function

case, multi-hop relaying cannot provide a higher payoff than

that of direct transmission when the relay is close to either

the source or destination. For the asymmetric network, it is

observed in Figure 9 that the payoff sum is decreased with

dS1,S2 if both S1 and S2 use direct transmission because the

revenue of S2 is decreased with dS2,D2 = dS1,D2 + dS1,S2 .

However, multi-hop relaying is an effective way to alleviate

the payoff decreasing process caused by the increasing of

dS1,D1 especially when the relay approaches to the middle

point between the source and destination.

In Figure 10, we consider CR networks with multiple

source-to-destination pairs and assume there are L−1 interme-

diate SUs located between S1 and D1. Similar to the 2 source-

to-destination pair case, it is shown that (L− 1)-hop relaying

provides a great performance improvement for CR networks. It

is also observed that there is a tradeoff between the number of

relays and payoff of S1. More specifically, with the increasing

of L, the distance of each hop is reduced, which increases

the revenue (or achievable rate). On the other hand, the time

duration used for S1 to transmit the source information will

be shorten, which decreases the revenue.

VI. CONCLUSION

This paper has exploited the game theoretic model to study

the optimization problem for SSS based multi-user CR net-

works with multi-hop relaying. In the considered system, each

secondary source can obtain benefits through both spectrum

sharing by paying prices to PUs and multi-hop relaying by

paying prices to the relaying SUs. The payoff of secondary

users under different settings and different types of pricing

functions of primary users have been studied. Furthermore, we

have proposed three power allocation methods corresponding

to the assumptions that transmitters have average knowledge,

full knowledge and current knowledge of channel gains. The

NE for the proposed game under different settings have been

discussed and the conditions for which applying multi-hop

relaying to all secondary users achieves the optimal NE have

been considered. Our results are extended into the multi-user

CR network model with K secondary source-to-destination

pair. Two distributed algorithms have been proposed for each

secondary source to search for the NE-achieving power al-

location method and relaying scheme, respectively. Numerical

results are presented to show the performance of CR networks

with multi-hop relaying in both symmetric and non-symmetric

network cases.
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APPENDIX A

OPTIMAL POWER ALLOCATION METHODS FOR DIRECT

TRANSMISSION

Consider the network model in Section II. Assuming the

transmissions for each secondary source during different time

slots are independent with each other. Our objective is to

maximize the payoff sum of SUs during the tth time slot.

More specifically, we need to find the solution of the following

optimization problem:

max
w1,1[t],w2,2[t]

πDT
1[t] + πDT

2[t] (34)

s.t. w1,1[t]E
(

hS1,0[t]

)

+ w2,2[t]E
(

hS2,0[t]

)

≤ Q0[t].

If the SNR is low, we have E(log(1 + SNR)) ≈ log(1 +
E(SNR)). Therefore, the Lagrange multiplier of (34) is given

by

LMDT = γ1 log
(

1 + E(hS1,D1[t])w1,1[t]

)

+γ2 log
(

1 + E(hS2,D2[t])w2,2[t]

)

− α̃0[t]E(hS1,0[t])w1,1[t]

−α̃0[t]E(hS2,0[t])w2,2[t] + λ′
t

(

Q0[t] − w1,1[t]E(hS1,0[t])

+w2,2[t]E(hS2,0[t])
)

. (35)

We have KKT conditions of the above equation as follows,

∂LMDT

∂w1,1[t]
= 0 ⇒ w1,1[t] =

(

γ1

λE(hS1,0[t])
−

1

E(hS1,D1 [t])

)+

, (36)

∂LMDT

∂w2,2[t]
= 0 ⇒ w2,2[t] =

(

γ2

λE(hS2,0[t])
−

1

E(hS2,D2[t])

)+

. (37)

where λ[t] = α0[t] + λ′
[t].

By substituting (36) and (37) into the subjective func-

tion in (34), we can show that λ needs to satisfy

λ[t] ≥ γ1+γ2

Q0[t]+E(hS1 ,0[t])/E(hS1,D1[t])+E(hS2 ,0[t])/E(hS2,D2[t])
if

the transmit powers of both S1 and S2 are positive.

The optimal power allocation methods for the case that

transmitters have full CSIs can be obtained by replacing the

average values with instantaneous value of CSIs.

APPENDIX B

OPTIMAL POWER ALLOCATION METHOD FOR BOTH S1

AND S2 USING MULTI-HOP RELAYING

Following the same line as Appendix A, let us consider

the case that both S1 and S2 use multi-hop relaying. Using

Assumption 3, we can write the optimization problem as

follows:

max
w1,1[t],w2,2[t]

πCT
1[t] + πCT

2[t] (38)

s.t.
1

2

[

E
(

hS1,0[t]w1,1[t]

)

+ E
(

hS2,0[t]w2,2[t]

)

+E
(

hS1,0[t]f2[t]w2,2[t]

)

+ E
(

hS2,0[t]f1[t]w1,1[t]

)]

≤ Q0[t]

Similar to Appendix A, we only consider the low SNR case

and re-write the objective function of (38) as follows:

πCT
1[t] + πCT

2[t] = γ1 log
(

1 + E(hS1,S2[t])w1,1[t]

)

+γ2 log
(

1 + E(hS2,S1[t])w2,2[t]

)

− α̃0[t]E(hS1,0[t])w1,1[t]

−α̃0[t]E(hS2,0[t])w2,1[t] − α̃0[t]E(hS2,0[t])w2,2[t]

−α̃0[t]E(hS1,0[t])w1,2[t]. (39)
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Solving the Lagrange multiplier, we have the following

KKT conditions:

w1,1[t] =

(

γ1

λ
[

E(hS1,0[t]) + E
(

hS2,0[t]f1[t]

)] −
1

E(hS1,S2 [t])

)+

,

w2,2[t] =

(

γ2

λ
[

E(hS2,0[t]) + E
(

hS1,0[t]f2[t]

)] −
1

E(hS2,S1 [t])

)+

,

Substituting the above equations into the subjective func-

tion in (38), we can have the condition of λ as λ ≥
γ1+γ2

2Q+
E(hS1,0[t])+E(hS2 ,0[t]f1[t])

E(hS1 ,S2[t])
+

E(hS2 ,0[t])+E(hS1 ,0[t]f2[t])

E(hS2 ,S1[t])

if both

w1,1[t] and w2,2[t] are positive.

The optimal power allocation methods for the case that

transmitters have full CSIs can be similarly obtained by

replacing the average values with instantaneous value of CSIs.
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