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Abstract—Spectrum pooling has been shown to have a great
potential to improve the spectrum utilization, especially when
primary users (PUs) and secondary users (SUs) are allowed to
utilize a common spectrum pool. This paper studies the joint
optimization problem for a spectrum pooling system with both
PUs and SUs. We develop a novel hierarchical game theoretic
model which consists of an overlapped coalition formation
game model to analyze the pricing cooperation/competition
strategy among PUs and a non-cooperative game model to
investigate the resource competition among SUs. These two
game models are interrelated in a hierarchical game structure,
in which we also study the interaction between SUs and PUs.
Our model does not require SUs to have information about
spectrum access scheduling of PUs. Furthermore, we propose a
simple distributed joint optimization algorithm that can
optimize the coalition formation of PUs as well as the sub-band
allocation and transmit powers of SUs. To study different
fairness criteria and their effects on the payoff divisions among
PUs, we derive the optimal payoff division schemes of two
popular fairness criteria, namely Nash bargaining solution and
Shapley value fairness.

Index Terms—Cognitive radio, spectrum pooling, power
control, sub-band allocation, price adjustment, spectrum
sharing, game theory, Stackelberg game, coalition formation.

I. INTRODUCTION

Spectrum pooling is a technology that allows multiple
spectrum owners to merge their spectrum to form a common
pool. Different from the traditional frequency-division (FD)
based cognitive radio (CR) network framework (shown in
Figure 1 (a)), in which each primary user (PU) can only
access its exclusively licensed spectrum, a spectrum pooling
system (shown in Figure 1 (b)) allows multiple PUs to
coexist in the same spectrum, and hence has the potential to
improve spectrum utilization and efficiency.

Most of the current works of the spectrum pooling focus
on the economic incentive of PUs to trade their spectrum
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and assume that no unlicensed spectrum user, referred to as
secondary user (SU), exists in the system [2]–[5]. However,
in many existing wireless networks, simply allowing multiple
PUs to access a common spectrum pool cannot provide a
complete solution to the spectrum under-utilization problem.
For example, in cellular networks, the operators build the
infrastructure based on the worst-case scenario to support the
service demand during the peak hours (e.g., the Christmas
and new year’s eve) and hence the resource and
infrastructure remain under-utilized for most of the time. In
other words, the traffic patterns of different operators in the
same region can be highly correlated. For example, different
operators can experience similar peak and non-peak periods
in their networks. In this scenario, using spectrum pooling
can improve the spectrum efficiency during the peak hours.
It will, however, result in more empty spectral space in the
licensed spectrum pool [6] during the non-peak hours.
Therefore, the PUs in the spectrum pooling system should be
more willing to sell their available spectrum to SUs.

There are several problems when SUs are allowed to
access a spectrum pool. From the PUs’ point of view, the
spectrum pool is generally formed by combing the licensed
spectrum of multiple PUs, and hence the revenue obtained
from SUs should be shared by all the PUs. From the SUs’
point of view, the dynamic access of the PUs in the spectrum
pool makes SUs impossible to accurately estimate the
detailed transmission scheduling of each PU. For example, in
Figure 1 (b), the SUs cannot know the exact frequency band
and transmission scheduling of every PU, and hence the
transmission of each SU will have a high chance to cause
interference to multiple PUs. This causes another problem
because, generally speaking, different PUs have different
specifications such as locations, signal-to-noise ratio (SNR)
walls, capacities on tolerating the interference etc. Also,
different PUs may want to sell the spectrum to SUs for
different purposes. In other words, the pricing competition
among PUs for SUs in the spectrum pooling system is much
more complex than that of FD-based CR networks.

This motivates the work in this paper where we focus on
the joint optimization of a general spectrum pooling system
with the existence of both PUs and SUs. More specifically,
we study the CR network in which multiple
spectrum-coexisting PUs cooperate and compete with each
other on their prices charged to the SUs and multiple SUs
competing with each other for the limited resource are
unaware of the spectrum usage scheduling of PUs. We
attempt to answer the following questions: How can a
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(a) FD-based CR networks (b) CR networks with spectrum pooling

Fig. 1. Comparisons of CR networks with and without spectrum pooling: In FD-based CR networks in (a), each PU owns an exclusive frequency band
which can be known by SUs. If spectrum pooling is enabled in (b), multiple PUs dynamically coexist in a common spectrum pool and it is difficult for SUs
to know the instantaneous transmission scheduling of PUs. We use dotted lines to denote the accessing time and frequency of the SUs in the spectrum of
PUs.

flexible spectrum pooling system provide higher spectrum
efficiency and better performance than the FD-based CR
networks for both SU and PU systems? How can the PUs
compete or cooperate with each other to maximize their
payoffs? And how will the interactions of PUs affect the
interactions among strategic SUs? To the best of our
knowledge, this paper is the first work that tries to
investigate the joint optimization problem for the spectrum
pooling system with coexisting PUs and SUs.

To answer the above questions, we first propose a coalition
formation game framework to study the possible price
competition and cooperation among PUs and then formulate
a non-cooperative game model to study the competition for
transmit power and sub-band allocation among SUs. We
integrate these two game theoretic models into a hierarchical
game framework to study the joint optimization problem. We
show that the pricing optimization problem becomes
complex when multiple PUs coexist in a common spectrum
pool. One of the reasons is that the transmission of each SU
can be affected by the prices charged by multiple PUs. As a
result, the payoff to each PU depends not only on its own
price and strategy but also on those of other PUs.

We prove that allowing all PUs to fully cooperate or
selfishly compete with each other is generally not the
optimal choice. This is because of the diverse spatial
distribution of PUs and SUs and the cost of cooperation in
practical networks. This is different from most of the
previous game theoretic works on wireless networks, which
either neglect the cooperation costs when studying the fully
cooperative model for PUs [7], [8] or assume no information
exchange and coordination among PUs when investigating
the fully competitive case [9]–[12]. We then focus on finding
the effective methods for PUs to search for the optimal
coalition formation structure. It is observed that the
coalitions formed among PUs are generally overlapped. As
reported in [13]–[15], finding a low-complexity algorithm for
coalition formation games with overlapping coalitions is
generally difficult because of the combinatorial complexity
in distributing benefits to each member across multiple
coalitions. In this paper, we propose a distributed coalition
formation algorithm that allows PUs to form a unique, stable
coalition formation. Our proposed algorithm does not require
PUs to conduct an exhaustive search [16]. More importantly,

the maximal number of iterations required for the proposed
coalition formation algorithm does not depend on the
number of PUs. In our model, each PU will refuse to join a
coalition if it cannot obtain a fair share of the benefits.
Therefore, investigating different fairness criteria for dividing
the payoffs among PUs in each coalition is also important.
We study and compare two popular fairness criteria, that is,
Nash bargaining solution fairness and Shapley value fairness
for PUs. Simulation results are provided to evaluate the
performance of the proposed algorithm as well as the payoff
division to each member under different fairness criteria.

The rest of this paper is organized as follows. The works
that related to this paper is reviewed in Section II. The
channel model and problem formulation are described in
Section III. The game theoretic analysis and the distributed
algorithm are presented in Sections IV and V, respectively.
Different pricing fairness criteria are studied in Section VI.
The numerical results are presented in Section VII, and the
paper is concluded in Section VIII.

II. RELATED WORKS

Spectrum pooling has been recognized as one of the key
technologies in next generation wireless networks [3]. A
major research initiative “The End-to-End Reconfigurability
(E2R)”, funded by the European commission, has addressed
numerous challenges in spectrum pooling [17]. The
economic, policy and market challenges of spectrum pooling
have been systematically investigated in [2]. The
technological challenges of the possible system
implementation of spectrum pooling have been surveyed in
[3]. One work that is similar to spectrum pooling is the
mobile virtual network operator (MVNO) system in which
an MVNO can rent the spectrum and the mobile network
infrastructure owned by the operator for a limit period of
time [18], [19]. One of the main differences between the
MVNO system and spectrum pooling is that each MVNO
obtains exclusive use of spectrum and there are no overlaps
between spectrum rented by different MVNOs at the same
time. Another series of work, related to spectrum pooling, is
presented under the framework of inter-operator spectrum
sharing, which allows multiple operators to share and trade
licensed spectrum with each other. More specifically, the
authors in [4] proposed a distributed power allocation
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TABLE I
LIST OF NOTATIONS

Symbol Definition
J Set of SUs
K Set of PUs
M Set of available sub-bands
LSk

Set of sub-bands chosen by SU Sk

q
Pj

Charging threshold of PU Pj

qPj
Interference limit of PU Pj

βPj [l]
Pricing coefficient of PU Pj in sub-band l

ϖSk
Payoff of SU Sk

ϖPj
Payoff of PU Pj

ϖJ Total payoff of PUs
wSk[l] Transmit power of SU Sk in sub-band l
C[l] Set of PUs who can jointly charge the SUs in

sub-band l
θPj [l]

(
C[l]

)
Cooperation cost of PU Pj when it joins set C[l]
to decide the price of the SU in sub-band l

scheme for multiple operators coexisted in the same
frequency band. In [20], we introduced an inter-operator
carrier aggregation framework for an LTE Advanced system.
A potential game theoretic model has been used in [21] to
study the competition of users for base stations sharing the
same frequency band. The authors in [22] developed a
network architecture to achieve spectrum sharing between
operators and presented simulation results to evaluate the
resulting performance. In [5], the authors studied the
spectrum allocation among operators sharing a common pool
of spectrum resources. Different from these previous works
which only focus on the interactions among PUs, in this
paper, we consider joint optimization problem for a spectrum
pooling system with both SUs and PUs.

III. SYSTEM MODEL AND BASIC GAME SETUP

A. Channel Model

Let the sets of J PUs and K SUs be
J = {P1, P2, . . . , PJ} and K = {S1, S2, . . . , SK},
respectively. We assume that the SUs use orthogonal
frequency division multiple access (OFDMA)1, i.e., each
sub-band can only be occupied by one SU. This can be
achieved by using proper multiple access protocols [23], [24]
in SU networks. All the SUs compete for the set of the
available sub-bands M = {1, 2, . . . ,M} with M ≥ K. We
assume that each SU Sk can use multiple sub-bands, and we
label the set of sub-bands of SU Sk as LSk

⊆ M for
LSk

∩ LSj = ∅. Let LS = [LS1 ,LS2 , . . . ,LSK
] be the

sub-band allocation scheme for the K SUs. The PUs and
SUs have no a priori knowledge of each other’s signal
information.

In a practical system, any transmission of SUs can always
generate interference to the PU network. However, the PUs can
only charge SUs for the use of their licensed spectrum if the
interference caused by the SUs is “noticeable”. In this paper,
we assume that each PU only charges an SU if the received

1We consider the OFDMA system to simplify our discussion. Our results
can be easily extended into other systems with other communication modes.
Specifically, each sub-band can correspond to an exclusive resource block,
e.g., time, antenna, frequency etc.

interference from this SU is higher than a threshold, called the
charging threshold. Let us define the charging threshold for
Pj as q

Pj
, i.e., Pj can only charge the presence of an SU Sk

in sub-band l if

hjk[l]wSk[l] > q
Pj
, (1)

where hjk[l] is the ratio of channel gain between Sk and Pj

in sub-band l to the additive interference and noise power
received at PU Pj and wSk[l] is the transmit power of Sk in
sub-band l for l ∈ M. It can be easily observed from (1) that
the charging threshold is exactly the same as the SNR wall
proposed in [25] if every PU uses energy detection to detect
the existence of interfering SUs. In a spectrum pooling system,
all PUs combine their licensed spectrum to form a common
spectrum pool and hence each PU should be able to charge
and decide the prices of the SUs that access the common pool.
Our model can be applied into most of the other previously
studied scenarios in the literature. For example, if only one
PU can charge all the sub-bands, i.e., hjk[l] = 0 ∀ l ∈ M,
j ∈ {2, 3, . . . , J} and k ∈ {1, 2, . . . ,K}, the system model
under our consideration is equivalent to the CR network with
one PU (i.e., PU P1) and multiple SUs [26], [27]. If we assume
J = M and each PU can only charge one sub-band of SUs,
i.e., hjk[lSk

̸=lPj
] = 0 for j ̸= k (Pj only uses the sub-band

lPj ), the system model under our consideration becomes the
FD-based CR network in which PUs use FD mode to send their
signals and the SUs observe independent PU’s actions/states in
each sub-band [28], [29]. If we assume |LSk

| = 1 for Sk ∈ K,
our model becomes the system in which each SU can only
access one sub-band.

For SUs, (1) means that an SU Sk can use the licensed
spectrum for free if its transmit power is low enough to satisfy
the regularity. Therefore, (1) can be regarded as a lower bound
on the transmit powers for the SUs that are “affected” by the
prices of the PUs. In other words, PUs can only charge for
the presence of an SU when the received interference caused
by the SU is larger than the threshold [30]. In this paper, we
neglect the unchargeable SUs and only focus on the SUs that
are charged by at least one PU. In other words, the set of sub-
bands allocated to each SU is a subset of all the sub-bands
satisfying the transmit power constraint in (1), i.e., LSk

⊆ {l :
hjk[l]wSk[l] > q

Pj
, ∀l ∈ M}.

Another constraint for the SUs is the interference limit of
PUs. PUs in the spectrum pooling system can access any
parts of the spectrum pool and hence need to make sure that
their transmissions in each portion of the spectrum satisfy a
certain level of quality of service (QoS). We hence assume
that each PU Pj imposes the maximum tolerable interference
limit qPj

in each sub-band for every SU, i.e.,
hjk[l]wSk[l] < qPj

, ∀ l ∈ M and Pj ∈ J . This constraint
also satisfies the average interference limit of each PU Pj

for the entire licensed spectrum, i.e.,
1

KM

∑
Sk∈K

∑
l∈M

hjk[l]wSk[l] ≤ qavePj
, or total interference limit,

i.e.,
∑

Sk∈K

∑
l∈M

hjk[l]wSk[l] ≤ qtotPj
. Hence, the power



4

constraint for an SU Sk in each sub-band l is defined as

wSk[l] ≤ min
Pj∈J

{
qPj

hjk[l]

}
. (2)

In this paper, we assume that qPj
> q

Pj
, ∀Pj ∈ J . The list

of major notations used in this paper is provided in Table I.

B. Hierarchical Game Setup

We introduce a hierarchical game theoretic framework in
which the players of the game include both PUs and SUs.
The PUs have the priority in using the spectrum and the SUs
try to access the licensed spectrum and by paying prices to
the PUs.

We assume that if a PU is charging an SU Sk in a sub-band,
the PU can detect whether this SU has also been charged by
other PUs by eavesdropping whether any other pricing signals
are sent in the same sub-band. Note that each PU can only
detect whether or not there are any other PUs that charge the
same SU. However, this PU cannot know the exact prices of
other PUs or how many PUs are charging SU Sk, e. g., the
pricing function of each PU may be encrypted. Each PU will
only send unencrypted pricing information to the PUs it tries
to cooperate with. Let the subset of PUs who charge the SU
in sub-band l be C[l] and the set of sub-bands that are charged
by Pj be LPj . We define the payoff of SU Sk in a sub-band
l ∈ LSk

as

ϖSk[l]

(
wSk[l],β[l],LS

)
= RSk[l] − β[l]h•k[l]wSk[l], (3)

where RSk[l] = log2
(
1 + gSk[l]wSk[l]

)
, gSk[l] is the ratio of

the channel gain between the kth secondary sender-to-receiver
pair to the additive interference and noise power received by
SU Sk in sub-band l2. β[l] = (βPj [l])Pj∈C[l]

is a |C[l]| × 1
vector, βPj [l] is the pricing coefficient of PU Pj charged to
the SU in sub-band l. h•k[l] =

(
hjk[l]

)†
Pj∈C[l]

and † denotes
the transpose of a matrix. The overall payoff of SU Sk can
then be written as

ϖSk
(wSk

,β,LS) =
∑

l∈LSk

ϖSk[l]

(
wSk[l],β[l],LS

)
, (4)

where wSk
=
(
wSk[l]

)
l∈LSk

, β =
(
βPj [l]

)
Pj∈J ,l∈M is a

|J | × |M| matrix.
In our model, SUs are selfish and seek a sub-band allocation

scheme that no SU could benefit by unilaterally changing its
allocated sub-bands, i.e., each SU Sk tries to search for a set
L∗
Sk

of sub-bands by solving the following problem,

L∗
Sk

= arg max
LSk

⊆M
ϖSk

(
wSk

,β,LSk
,L∗

−Sk

)
, (5)

where −Sk denotes all SUs except Sk. In addition, each SU Sk

can adopt the optimal power control by solving the following
problem in each sub-band l ∈ LSk

w∗
Sk[l]

(
β[l]

)
= arg max

wSk[l]

ϖSk[l]

(
wSk[l],β[l],L∗

S

)
. (6)

2In this paper, we assume the interference caused by PUs to the SUs can
be regarded as a part of the additive noise at the corresponding receiver of
each SU. In other words, gSk[l]

is actually the ratio of SU Sk’s channel gain
to the aggregated additive noise and the interference from PUs.

Let us define the payoff obtained in each sub-band l and
the total payoff of each PU Pj as

ϖPj [l](wS ,β[l],LS , C[l]) = RPj [l] − θPj [l]

(
C[l]
)
, (7)

ϖPj (wS ,β,LS ,C) =
∑

l∈LPj

ϖPj [l](wS ,β[l],LS , C[l]),(8)

where wS = (wSk
)Sk∈K, C =

(
C[l]
)
l∈M,

βPj
=

(
βPj [l]

)
l∈LPj

and

RPj [l] = βPj [l]

∑
Sk∈K

1l∈LSk
hjk[l]wSk[l] is the revenue

obtained by PU Pj from charging the SU in sub-band l and
1l∈LSk

is the indicator function, i.e., if l ∈ LSk
(or l /∈ LSk

),
then 1l∈LSk

= 1 (or 1l∈LSk
= 0). θPj [l]

(
C[l]
)
≥ 0 is the

cooperation cost of Pj when it joins a set C[l] to charge the
SU in sub-band l. θPj [l]

(
C[l]
)
= 0 if Pj does not belong to

any sets, i.e., C[l] = ∅, or is the only member in a set to
charge an SU, i.e., C[l] = {Pj}. If a PU Pj is involved in a
multiple-PU set, i.e., |C[l]| ≥ 2, then θPj [l]

(
C[l]
)

should be a
positive value related to the transmit power and other
resources, such as time, spectrum, etc., used in exchanging
cooperation-related information among member PUs in the
set C[l] [16]. In our model, for any two disjoint subsets C1

and C2, we have
∑

Pj∈C1∪C2

θPj
(C1 ∪ C2) >∑

Pj∈C1 θPj (C1) +
∑

Pj∈C2 θPj (C2). The value of
θPj [l]

(
C[l]
)

directly affects the willingness of PU Pj to join
a set C[l]. If θPj [l](C[l]) exceeds the maximum revenue that
Pj could obtain by joining a set C[l], Pj will not cooperate
with any PU to set the price charged to the SU in sub-band
l. As we will observe later, the sets of PUs to charge
different SUs may be overlapped with each other. Hence, the
cooperation costs for a PU to join the sets charging different
SUs may be correlated with each other. For instance, if PU
Pj cooperates with another PU Pj′ to charge an SU Sk in
sub-band l, the cooperation cost between the same PUs Pj

and Pj′ for another SU Sk′ in another sub-band l′ may not
be as expensive as that between PU Pj and a different PU
Pj′′ for j′′ ̸= j, j′′ ̸= j′ and k′ ̸= k.

In this paper, we study the pricing competition and
cooperation for the PUs to maximize their payoffs. More
specifically, in our model, each PU can either define its price
independently without communicating with other PUs, or
negotiate with other PUs to jointly define the prices charged
to SUs in every sub-band. That is, the optimization problem
for each PU Pj in sub-band l is given by

max
C[l],βPj [l]

ϖPj [l]

(
w∗

S , βPj [l],β−Pj [l],L
∗
S , C[l]|FC[l]

)
. (9)

where FC[l]
is the fairness criterion agreed upon by all the PUs

in set C[l].
To solve the above problem, we develop a coalitional game

model in which all the PUs in one coalition only care about
the payoff sum. This payoff sum could then be divided among
all the members according to an agreed fairness criterion. We
hence can regard the PUs in one coalition J as a single entity
with payoff ϖJ (w∗

S ,β,LS ,C) =
∑

Pj∈J
ϖPj (w

∗
S ,β,LS ,C).
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Fig. 2. The relationship of different games in the proposed model of this
paper.

We then introduce a hierarchical game framework to find
an equilibrium point, known as the Stackelberg Equilibrium
(SE), for both SUs and PUs. The SE is defined as follows3.

Definition 1: [31, Definitions 3.27] We say
β∗ =

(
β∗
Pj [l]

)
l∈M,Pj∈J

and

w∗
S =

(
w∗

Sk[l]

(
β∗
[l]

))
Sk∈K,l∈M

form an SE with PUs as the

leaders and SUs as the followers for a given sub-band
allocation scheme LS if the power constraints in (1) and (2)
are satisfied, and for PUs, we have

β∗
Pj

= arg max
βPj

≥0
ϖJ

(
w∗

S , (βPj
,β∗

−Pj
),LS ,C

)
∀ Pj ∈ J (10)

where β∗
−Pj

=
(
β∗
Pi[l]

)
l∈M,Pi∈J\Pj

and for a given β∗,

w∗
Sk

(β∗) is given by

w∗
Sk
(β∗) = arg max

wSk
≥0

ϖSk
(wSk

,β∗,LS) . (11)

We say a pair (β∗,w∗
S) is the Pareto optimal SE if β∗

maximizes the payoff sum of PUs and w∗
S maximizes the

payoff sum of SUs.

IV. GAME THEORETIC ANALYSIS

In this section, we first derive the SE of the hierarchical
game model in Section IV-A. Then, in Section IV-B, we show
that neither fully competition nor fully cooperation among PUs
obtains optimal solutions and hence it is necessary to focus on
optimizing the possible pricing coalition formation structure
among PUs.

3Note that in [31, Definitions 3.27], the leader will choose the strategy that
can greentree its payoff in the worst case. However, as will shown later in
this paper, in our game, for the give pricing coefficients of PUs (leaders) and
sub-band allocation scheme LS , each SU (follower) will choose a unique
optimal transmit power to transmit its signal. Therefore, we can write the SE
of our game in (10) in which each leader will search for its strategy of SE by
assuming all SUs will use the optimal transmit power defined in (11). Note
that in our proposed algorithm in Section IV, PUs do not require to know the
optimal transmit powers of the SUs.

A. Hierarchical Game Theoretic Analysis

Each SU can optimize its transmit power and sub-band
access according to the given pricing coefficients of PUs. By
assuming β, C and LS to be fixed, we can solve (6) and
obtain the optimal transmit power of each SU Sk in every
sub-band l ∈ LSk

in equation (12) at the top of next page,
where (x)+ = max{x, 0}, uSk[l]

(
β[l], C[l]

)
= β[l]h•k[l]. The

above result can be regarded as the optimal transmit powers
of SUs [12] with power constraints of the spectrum pool
defined in (1) and (2). Note that, if
w∗

Sk[l]

(
β[l]

)
= min

Pj∈J

{ q
Pj

hjk[l]

}
, the resulting interference of

Sk is too low for Sk to be charged by any PUs in sub-band
l. In this case, the generated interference by SU Sk in
sub-band l is lower than the charging thresholds of all the
PUs. If C[l] ̸= ∅, the transmit power of at least one SU must
be positive and satisfy the power constraint in (1) in
sub-band l. We have the following result about the SE of the
proposed hierarchical game with a given sub-band allocation
scheme LS .

Proposition 1: Assume C and LS are fixed. (w∗
S ,β

∗) is a
pure strategy SE if the following equality holds,

uSk[l]

(
β∗
[l], C[l]

)
=

1

min
Pi∈C[l]

{
qPi

hik[l]

}
+ 1

gSk[l]

,

∀l ∈ LSk
and Sk ∈ K, (13)

and w∗
S =

(
w∗

Sk[l]

)
Sk∈K,l∈M

where w∗
Sk[l]

is given in (12).

Proof: See Appendix A.
From the above proposition and proof in Appendix A, we

can observe that the strategic SUs (each SU selects its
optimal transmit power in (12)) force the PUs to decrease
their prices to achieve the optimal payoffs. Note that, if the
SUs use the fixed transmit powers, the PUs should always
charge the highest possible prices to all SUs to maximize
their payoffs.

It is observed that the SE of the hierarchical game is
closely related to the sub-band allocation scheme LS of SUs
[12]. More specifically, each sub-band allocation scheme
corresponds to a different set of SEs. Let us define a
sub-band allocation game whose players are all the SUs,
payoff of each play is the payoff defined in (4) and the
action of each player is to choose a set of sub-bands that
maximize its payoff given the sub-bands allocated to other
SUs. In Section IV, we will propose a simple algorithm that
can achieve a unique Nash equilibrium (NE) [32, Definition
21.1] of the sub-band allocation game for SUs.

B. Coalition Formation Game Theoretic Analysis for PUs

First, let us consider the case that all the PUs selfishly
compete with each other on the prices charged to the SUs
and assume that all the PUs cannot exchange any
information. As observed previously. Because of the
spectrum coexistence of PUs, the optimal price of each PU
depends on the strategies and prices of other PUs. In other
words, it is generally impossible for all the PUs to choose
the optimal pricing coefficients to maximize their payoff sum
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w∗
Sk[l]

(
β[l]

)
=



min
Pj∈J

{ q
Pj

hjk[l]

}
, if uSk[l]

(
β[l], C[l]

)
≥ 1

min
Pj∈J

{ q
Pj

hjk[l]

}
+ 1

gSk[l]

,

(
1

uSk[l](β[l],C[l])
− 1

gSk[l]

)+

, if 1

min
Pj∈J

{ q
Pj

hjk[l]

}
+ 1

gSk[l]

> uSk[l]

(
β[l], C[l]

)
> 1

min
Pi∈J

{
qPi

hik[l]

}
+ 1

gSk[l]

,

min
Pj∈J

{
qPj

hjk[l]

}
, if uSk[l]

(
β[l], C[l]

)
≤ 1

min
Pi∈J

{
qPi

hik[l]

}
+ 1

gSk[l]

,

(12)

without exchanging information with each other. We hence
have the following results.

Observation 1: If PUs cannot exchange any information
among each other, the SE of the hierarchical game is not
optimal if there exist two PUs Pj and Pi such that
q
Pj

< qPi
and the cost of cooperation between Pj and Pi is

negligible for i ̸= j and i, j ∈ {1, 2, . . . , J}.
Proof: See Appendix B.

Let us now introduce the concept of the coalitional game
and consider another extreme case in which all the PUs fully
cooperate with each other and jointly decide the prices for
every SU in every sub-band. We will prove in Theorem 2 that
this case is also not optimal for the PUs. Let us provide the
following definitions that are useful in our analysis.

Definition 2: [13, Chapter 9] We define the set of all the
players as the grand coalition J . A coalition C is a
nonempty subset of the grand coalition J . A coalitional
game is defined by (J , v) where v is the characteristic
function, which associates every coalition C with a number
v (C). Here, v (C) is called worth which in this paper is
equivalent to the total payoff of a coalition C. We have
v (∅) = 0.

Definition 3: A coalitional game is said to be super-additive
if for any two disjoint coalitions C1 and C2, for C1, C2 ⊂ J ,
we have v

(
C1 ∪ C2

)
≥ v

(
C1
)
+ v

(
C2
)
.

Definition 4: A payoff vector of the coalition J is any
vector ϖ = (ϖPj )Pj∈J in RJ to divide the value v (J ). ϖ
is said to be group rational or efficient if

∑J
j=1 ϖPj = v(J )

and is said to be individual rational if
ϖPj ≥ v({Pj}), ∀Pj ∈ J . Let us also define an imputation
as a payoff vector satisfying both group and individual
rationality.

Definition 5: An imputation ϖ is unstable through a
coalition C if v (C) >

∑
Pj∈C

ϖPj . The core of v (J ) is defined

as the set of stable imputations. ϖ is in the core if and only
if ∑

Pj∈J

ϖPj = v (J ) and
∑
Pj∈C

ϖPj ≥ v (C) , ∀C ⊆ J . (14)

Recall that, in our model, each PU can only charge the
SUs whose resulting interference is larger than the charging
threshold. As we observe in the proof of Proposition 1, if a
PU Pj refuses to join a coalition C[l], then it can always raise
its pricing coefficient βPj [l] and will not allow SU Sk to cause
chargeable interference to its transmission. More specifically,
if l /∈ LPj , PU Pj will raise its pricing coefficient to limit
the transmit power of SU Sk in sub-band l to be lower than

P1 P2 P3

S2

S1

S3

S4
S5

Optimal Charging

Area of P3

Optimal Charging

Area of P2
Optimal Charging

Area of P1

Fig. 3. An example CR network with five SUs and three PUs. The shadowed
areas denote the optimal charging areas (SUs within this area should be
charged by the corresponding PU) of each PU.

its charging threshold, i.e., wSk[l] should satisfy hjk[l]wSk[l] <
q
Pj

.
We have the following results about the stability of the grand

coalition for our pricing coalitional game.
Observation 2: The core of the grand coalition J of the

pricing coalitional game is empty if there exists at least one
Pj ∈ J that satisfies the following condition in one sub-band
l,

RPj [l] < θPj [l](J ). (15)

Proof: See Appendix C.
Note that the condition in (15) may be satisfied by the

situations that the channel gain variations and interference
limits of other PUs cause the transmit power of the SU Sk

that accesses sub-band l to be lower than the chargeable
threshold of Pj , or the cost for Pj to join the grand coalition
J to be larger than the benefits obtained from charging SU
Sk in sub-band l.

We have the following remark from the above observations.
Remark 1: The core of the grand coalition is always empty

in a large multi-user CR network.
The above remark follows from the observation that the

condition in (15) can usually be satisfied for a CR network.
Let us illustrate this through an example shown in Figure 3.
Suppose that all SUs are randomly distributed in a network.
To simplify our discussion, we assume that each SU has been
allocated with an exclusive sub-band and hence neglect the
labels of the specific sub-band used by each SU will not cause
any confusion. Three PUs with equal interference limits are
located in a linear network. In this case, allowing PU P3 to
cooperate with PU P1 to decide the price of SU S4 may not be
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the optimal choice because allowing the transmit power of SU
S4 to be larger than the charging threshold of PU P3 may result
in a higher-than-tolerable interference for PU P1. In addition,
because the distance between PUs P3 and P1 is large, the
cooperation cost for forming a coalition is high too. Even the
transmit power of SU S4 does not cause high interference at
PU P1, the long distance between PUs P1 and P3 may result
in excessive energy consumption and large delay during their
information exchange. Also, if the cooperation costs of PU P3

to charge SUs S2 and S3 are larger than the benefits obtained
from SUs S2, S3 and S5, then PU P3 will have no incentive to
join the grand coalition but will only form a coalition with PU
P2 to charge SUs S2, S3 and S5. Thus, it can be observed that
PU P3 should only charge prices to S5 and form a coalition
with P2 to charge SUs S3 and also cooperate with both PUs
P1 and P2 to charge SU S2. And P3 should not join any
coalitions in deciding the prices of the farthest SUs S1 and
S4. The above observation can be easily extended to a general
CR network.

V. A DISTRIBUTED JOINT OPTIMIZATION ALGORITHM

We now consider the possible pricing coalition formation
among PUs. Let us illustrate an example using Figure 3
again to show the characteristics of coalition formation
among PUs. First of all, it is observed that the coalitions
formed by PUs to decide the prices of different SUs may not
be independent. For example, in Figure 3, PU P2 should
cooperate with PU P1 on deciding the price charging to SU
S1 in sub-band l and also cooperate with PU P3 on choosing
the price charged to SU S3 in another sub-band l′. Our
second observation is that the cooperation between two
disjoint coalitions may not always improve the payoff sum.
More specifically, let us consider the coalition formation
process among three PUs to charge an SU Sk in sub-band l.
Assume that the channel gains between SU S2 and three PUs
(P2, P1 and P3) in sub-band l satisfy

q
P2

h22[l]
<

q
P1

h12[l]
<

q
P3

h32[l]
,

and max
j∈{1,2,3}

{ q
Pj

hj2[l]

}
< min

j∈{1,2,3}

{
qPj

hj2[l]

}
. To avoid

confusions caused by the cooperation cost, we consider the
case that the cooperation cost does not play a dominant role
in the coalition formation process and hence if forming a
coalition between any two disjoint subsets improves the total
revenue of the PUs, it will also improve their total payoff.
That is, if RC1

[l]
∪C2

[l]
> RC1

[l]
+ RC2

[l]
, then

v
(
C1
[l] ∪ C2

[l]

)
> v

(
C1
[l]

)
+ v

(
C2
[l]

)
where RC =

∑
Pj∈C[l]

RPj [l]

and C1
[l] and C2

[l] are any two disjoint subsets of {P1,P2,P3}.
If no cooperation is allowed among PUs, as observed in
Observation 1 and Appendix B, the payoffs of three PUs
obtained from charging SU S2 in sub-band l are given by
ϖP2[l] = βP2[l]h22

q
P1

h12[l]
, ϖP1[l] = ϖP3[l] = 0. If we allow

PUs P1 and P2 to form a coalition {P1, P2} to charge SU
S2, the payoff sum of these two cooperative PUs becomes∑
i∈{1,2}

ϖPi[l] =
∑

i∈{1,2}

(
βPi[l]

hi2q
P3

h32[l]
− θPi[l] ({P1, P2})

)
which is always larger than the sum of their payoffs without
cooperations. However, this result does not hold when P2

and P3 cooperate without P1. In this case, the payoff sum is∑
i∈{2,3}

ϖPi[l] = βP2[l]h22[l]

q
P1

h12[l]
−

∑
i={2,3}

θPi ({P2, P3}),

which is always lower than the payoff sum without
cooperation because of cost of cooperation. To sum up, the
coalition formation framework of our model is different from
the traditional coalitional game model in [7], [16] in the
following senses:

1) The coalitions formed among PUs to charge different SUs
may be overlapped,

2) Cooperation between two disjoint coalitions of PUs does
not necessarily increase the payoff sum.

To solve the first issue, let us convert all the overlapped
coalitions into independent ones as follows. It is observed in
Section III-B that the payoff function of each PU Pj in (8)
is given by the summation of its payoff functions charged
to all of its chargeable SUs. It is observed that maximizing
the payoff of each PU Pj is equivalent to maximizing the
payoff of PU Pj earned from every sub-band charged to every
chargeable SU. We hence can separate the payoff of the PU
Pj into different independent parts according to different SUs.
In this way, for the rest of this paper, we only need to focus on
a pricing coalitional game in one frequency band l in which
PUs in a set C[l] cooperate with each other in deciding the
price charged to an SU Sk.

To solve the second issue, we rearrange the labeling
sequence of the PUs in C[l] by {P1̃, P2̃,. . . , P ˜|C[l]|

} where
q
P
j̃−1

h
j̃−1k[l]

<
q
P
j̃

hj̃k[l]
<

q
P
j̃+1[l]

h
j̃+1k

, ∀ j ∈
{
2, 3, . . . , |C[l]| − 1

}
. We

say the PUs are sequential if their rearranged labels are
consecutive, i.e., P

j̃−1
, Pj̃ , . . . , P̃

j+l
is sequential. We say

one set is sequential if all the elements in this set are
sequential. We say two or more disjoint sets are sequential if
each of these sets are sequential and the union of these sets
is sequential too, C1 = {P1̃, . . . , Pl̃} and
C2 = {P̃

l+1
, . . . , Pj̃} for 1 < l < j are sequential. We denote

the set of all the possible sequential sub-sets of C as C̃.
We have the following property for the proposed game.
Proposition 2: Assume (2) is always satisfied. Suppose two

disjoint nonempty coalitions C1
[l] and C2

[l] for C1
[l], C

2
[l] ⊂ C[l]

satisfy the following conditions,
1) P1̃ ∈ C1

[l] ∪ C2
[l],

2) C1
[l] ∪ C2

[l] is sequential,

3) If RC1
[l]
∪C2

[l]
>

∑
n∈{1,2}

RCn
[l]

, we have v
(
C1
[l] ∪ C2

[l]

)
>∑

n∈{1,2}
v
(
Cn
[l]

)
.

Then, C1
[l] and C2

[l] satisfy the super-additive condition.
Proof: See Appendix D.

The constrained coalitional game with all the subsets of
member PUs of a coalition C[l] satisfying the above conditions
is referred to as a sequential coalitional game.

Before presenting our proposed coalition formation
algorithm, let us provide some definitions which are useful
for proving our results.

Definition 6: An (overlapped) coalition formation structure
in the grand coalition J is any arbitrary group of coalitions
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{C1, C2, . . . , Cn} such that Ci, Cj ⊂ J and
∪n

i=1 Ci = J for
0 < i, j ≤ n. The coalition formation structure is called a
partition of J if the coalitions are disjoint Ci∩Cj = ∅ ∀i ̸= j
and

∪n
i=1 Ci = J .

The number of possible collections of coalitions of a
grand coalition grows exponentially with the number of
players. Therefore, finding a stable coalition formation
structure is important. Let us define the preference notation
in comparing different collections of coalitions as follows.

Definition 7: Assume S =
{
S1,S2, . . . ,Sn

}
and

T =
{
T 1, T 2, . . . , T m

}
are two coalition formation

structures of J with
∪

i∈{1,2,...,n}
Si =

∪
j∈{1,2,...,m}

T j = J .

Defining a comparison relation ◃, S ◃ T means that S is
preferable to T . In addition, let us define the Pareto order
for the comparison relation as follows. S ◃ T means
ϖPj (S) ≥ ϖPj (T ), ∀ Pj ∈ S, T with at least one strict
inequality (>) for a PU Pj where ϖPj (S) is the payoff of
PU Pj in a coalition formation structure S.

Definition 8: We say a collection of coalitions
S = {S1,S2, . . . ,Sn} of J is stable if none of players has
incentive to leave S , i.e., for all collections T ≠ S, S ◃ T
holds. In the case that ◃ represents the Pareto order, we say
the coalition formation structure S is a Pareto optimal payoff
distribution for all the players.

We have the following results about the feasible region of
the pricing coefficients. We assume that PUs can use
common knowledge or previous observation about SU
networks to estimate the approximate ranges of some
parameters for SUs. Combining the power constraints in (2)
with the payoff functions of PUs and SUs, we have the
following bounds for the pricing coefficients.

Proposition 3: Suppose that h < hjk[l] < h, 0 < gSk[l] <
g, ∀ Pj ∈ J , Sk ∈ K. Then each PU Pj only needs to adjust
its pricing coefficient βPj [l] within the range of 0 < βPj [l] < β
∀Pj ∈ J , l ∈ M where

β =
1

Jh

h

min
Pj∈J

{
q
Pj

}
+ h

g

. (16)

Proof: See Appendix E.
The above proposition defines a feasible region of the

pricing coefficient of Pj . In other words, each PU Pj only
needs to search for the optimal pricing coefficient β∗

Pj

within the region of [0, β].
In our model, each SU first estimates its payoffs in all the

sub-bands as if it is the only SU in these sub-bands, and then
waits for a short period of time before accessing the sub-bands.
We denote the maximum waiting time of SUs as τ̄ . Let us now
describe the algorithm below.

Algorithm 1: A Joint Optimization Algorithm
Definitions and assumptions: At iteration t,

- Let LPj (t) be the set of sub-bands which are charged
by PU Pj ,

- Let C[l](t) be the set of PUs who need to charge SU
in sub-band l,

- Let ∆C[l](t) be the set of PUs who charge SU in
sub-band l for the first time, i.e., C[l](t) = C[l](t −
1) ∪∆C[l](t) and C[l](t− 1) ∩∆C[l](t) = ∅,

- Let ϵ be the iteration step size which is a small
constant satisfying ϵ ≪ β and T = β

ϵ is an integer.
- Let USk

(t) be the set of sub-bands that Sk tries to
access,

- τ̄ ≪ D̄ is a constant where D̄ is the time duration
between the price changing of PUs and γ is a
constant known by all SUs satisfying
γ ≥ τ̄ max

Sk∈K,l∈M
ϖSk[l].

1) Initialization:
a) Set C[l](0) = ∅ and LPj (0) = ∅,
b) Each PU Pj broadcasts the pricing coefficients

βPj
(0) = [βPj [1](0), βPj [2](0) , . . . , βPj [M ](0)]

where βPj [l](0) = β ∀l ∈ M.4

2) Coalition Formation: For 0 ≤ t ≤ T ,
a) Receiving β(t), the SUs sequentially send a one-bit

training message to estimate their payoff in all the
sub-bands. SU Sk knows ϖSk[1], ϖSk[2], . . . , ϖSk[M ]

where ϖSk[m] is the payoff of SU Sk when sub-band
m is exclusively used by SU Sk. Each SU Sk ∈
K waits a short time duration τSk[l] =

γ
ϖSk[l]

< τ̄

before accessing sub-band l. If t < τSk[l], each SU
Sk updates the set USk

(t) = USk
(t)\{l} whenever it

receives l ∈ LSn broadcast by an SU Sn for τn[l] <
τk[l]. If SU Sk occupies sub-band l, it sets its transmit
power w∗

Sk[l]

(
β[l](t), C[l](t)

)
and inform all PUs in

C[l] its value of gSk[l].
b) At iteration t, if a PU Pj cannot charge any SUs,

i.e., LPj
= ∅, then go to Step 3) directly. If the PU

Pj charges the transmission of SUs in at least one
sub-band, it sends the list LPj

(t) to other PUs for
possible cooperation.

c) If this is the first time for PU Pj ∈ ∆C[l](t) to charge
the transmission of an SU Sk in sub-band l, Pj will
search for the previously received SU lists C[l](t−1),
i) If C[l](t−1) = ∅, a coalition C[l](t) will be formed

to decide the price uSk[l] of the SU Sk in sub-band
l such that

C[l](t) =
{
Pj : hjk[l]w

∗
Sk[l]

(t) ≥ q
Pj
, ∀ Pj ∈ J

}
,

and all PUs Pj ∈ C[l](t) will jointly calculate the
optimal sequential coalition C∗

[l](t) as follows:

C∗
[l](t) = (17)

arg max
C[l]∈C̃[l]

∑
Pj∈C[l]

ϖPj

(
w∗

S ,β
∗
[l], C[l],LS

)
,

where β∗
[l] is calculated from u∗

Sk

(
β[l](t), C[l]

)
using (13). Go to Step 3),

4Note that, at the beginning of each iteration, PUs need to pre-set the prices
for each frequency band of SUs without knowing how many SUs can afford
the price. Hence, we abuse the notation and use βPj [l]

(t) to denote the price
that PU Pj sets for use of sub-band l of SU Sk even if w∗

Sk[l]
= 0.
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ii) If C[l](t − 1) ̸= ∅, PU Pj ∈ ∆C[l](t) will
negotiate with PU Pi ∈ C[l](t − 1) for a possible
new division of revenue from SU Sk. Then, all
PUs Pj ∈ C[l](t) will update
C[l](t) = C[l](t − 1) ∪∆C[l](t) and then use (17)
to calculate the optimal sequential coalition. Go
to Step 3),

d) If a PU Pj has already joined the coalition to decide
the price charging to SU Sk in the previous iteration,
i.e., Pj ∈ C[l](t− 1),
i) If ∆C[l](t) ̸= ∅, PU Pj updates C[l](t) = C[l](t −

1) ∪ ∆C[l](t) and then uses (17) to calculate the
optimal sequential coalition. Go to Step 3),

ii) If ∆C[l](t) = ∅, directly go to Step 3).
3) Dynamic Coalition Updating: At the end of iteration t,

a) If LPj (t) = ∅, PU Pj will update the price βPj
(t) =

βPj
(t− 1)− ϵ for all frequency bands.

b) If LPj (t) ̸= ∅, PU Pj will jointly collaborate with
other PUs Pj , Pi ∈ C[l] ∀l ∈ LPj to update the price

uSk

(
β[l](t+ 1), C[l](t+ 1)

)
= uSk

(
β[l](t)− ϵ, C[l](t)

)
for l ∈ LPj . In addition, PU Pj will also update the
price

βPj [l](t) = βPj [l](t− 1)− ϵ, ∀l /∈ LPj (t), l ∈ M

for the rest of sub-bands.
Let t = t+ 1. Go to Step 2).

4) Termination: If one PU Pj ∈ C[l] detects higher than
tolerable interference from SU Sk, i.e., hjk[l]w

∗
Sk[l]

≥
qPj

, it will broadcast a “stop” message to all the members
in coalition C[l], and then all the PUs in coalition C[l] will
stop decreasing βPj [l] ∀Pj ∈ C[l].
a) If hjk[l]w

∗
Sk[l]

(t) > qPj
, ∀ Sk ∈ K and t ≤ T , the

algorithm ends with solution C∗
[l](t

∗
[l]) and

uSk

(
β[l](t

∗
[l]), C

∗
[l](t

∗
[l])
)

∀Sk ∈ K, Pj ∈ J , l ∈ M
where t∗[l] is given by

t∗[l] = arg max
t∈{0,1,...,T}

(18)∑
Pj∈C∗

[l]
(t)

ϖPj

(
w∗

S(t),β[l](t), C∗
[l](t),LS(t)

)
,

and C∗
[l](t) is given by (17).

b) Else the algorithm ends when t = T .

Note that in the above algorithm, the effects of the
cooperation cost has only been evaluated in (17) and (18).
This is because, in some systems, the total payoff of a
coalition may increase with more PUs to join, e.g., in
systems shown effects of positive network externalities [33].
Since the maximum number of sequential subsets of a set
C[l] is at most |C[l]|, the maximization operations in (17) and
(18) only require less than |C̃[l](t)| and T numbers of
searches, respectively.

The following theorem shows that Algorithm 1 achieves
both a unique, stable and ◃ maximal collection of coalitions
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Fig. 4. Coalition formation under different uS1 (βP ).

for the coalition formation game, as well as a pure strategy
SE for the hierarchical game defined in Proposition 1.

Theorem 1: If Algorithm 1 terminates, either we have
C[l] = ∅, for l ∈ M, or we have

1) The sub-band allocation scheme LS is an NE of the sub-
band allocation game given the resulting β∗;

2) If (13) is satisfied, the collection of coalition is unique,
stable and ◃ maximal for a sequential coalitional game
with the resulting LS , and (w∗

S ,β
∗) is a pure strategy

SE for the hierarchical game with the given LS ;
3) Otherwise (w∗

S ,β
∗) is within an ϵ distance of an SE for

the hierarchical game with the resulting LS .
Proof: See Appendix F.

Note that the results in 2) and 3) of Theorem 2 also hold
when SUs use any other sub-band allocation scheme in
Algorithm 1. This is because for any resulting sub-band
allocation scheme, using Algorithm 1, PUs can always find
the lowest pricing coefficients to make at least one PU
observe a higher than tolerable interference.

It is observed that the maximum number of iterations
required for Algorithm 1 is given by T ≤ β

ϵ , which is
independent of the number of SUs or PUs where β is a
constant defined in Proposition 3.

In Figure 4, we show the size of a coalition C[l] in sub-band l

and the payoff of Sk under different values of uSk

(
β[l], C[l]

)
.

It is observed that the size of the coalition as well as the
payoffs of SUs decrease with uSk

(
β[l], C[l]

)
. This verifies

our previous observations that PUs can use β to control the
collections of the grand coalition as well as the payoffs of SUs
and PUs.

VI. FAIRNESS CRITERIA FOR PAYOFF DIVISION WITHIN
EACH COALITION

Algorithm 1 presents a distributed coalition formation
solution. However, it does not describe how to fairly divide
the payoff among the members in each coalition. In this
section, we focus on one coalition C[l] in sub-band l and
investigate different fairness criteria for dividing the payoff
obtained from one SU Sk among the PUs. We can then drop
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the term (C[l]) and write the cooperation cost of each PU Pj

in C[l] as θPj [l] without causing any confusion. In this
section, we always assume that the core of the coalitional
game

(
C[l], v

)
is nonempty. In the rest of this section, we

study the payoff allocations among PUs in each coalition
using two of the most widely studied fairness criteria, i.e.,
Nash bargaining solution and Shapley value, both of which
belong to the axiomatic approach in the game theory [34].

A. Nash Bargaining Solution Fairness

Nash bargaining solution characterizes the outcome of a
bargaining process among PUs who can jointly decide the
prices of the same sub-bands. It is closely related to the
proportional fairness which has already been widely applied
into mobile networks [35], [36].

Let F be a closed convex subset of RJ that represents the
set of feasible payoff allocations of PUs in one coalition C[l].
Let ϖmin

Pj
be the disagreement payoff allocation of PU Pj ,

i.e., PU Pj will not cooperate with other PUs if ϖPj [l] <

ϖmin
Pj [l]

. Suppose
{
ϖPj [l] ∈ F|ϖPj [l] ≥ ϖmin

Pj [l]

}
is nonempty.

We define a J-player Nash bargaining problem to consist of
a pair

(
F ,ϖmin

[l]

)
where ϖmin

[l] =
(
ϖmin

Pj [l]

)
Pj∈C[l]

.

Definition 9: [13, Chapter 8] ϖ∗
[l] is said to be a Nash

bargaining solution in F with ϖmin
[l] for the coalition C[l],

i.e., ϖ∗
[l] = ϕ

(
F ,ϖmin

[l]

)
if the axioms of feasibility,

efficiency, individual rationality, scale covariance,
independence of irrelevant alternatives, symmetry5 are
satisfied.

Proposition 4: [13, Theorem 8.1] There is a unique
solution function ϕ(·, ·) that satisfies all five axioms in
Definition 9. This solution satisfies

ϕ
(
F ,ϖmin

)
∈ arg max

ϖ∗
[l]∈F,

ϖ∗
[l]≽ϖmin

[l]

∏
Pj∈C[l]

(
ϖ∗

Pj [l]
−ϖmin

Pj [l]

)
(19)

where ϖ∗
[l] ≽ ϖmin

[l] denotes ϖ∗
Pj [l]

≥ ϖmin
Pj [l]

for all Pj ∈ C[l].
Theorem 2: There exists a unique Nash bargaining

solution for a coalition C[l] in the proposed game, which is
given by βPj

=
(
βPj [l]

)
Pj∈C[l]

where βPj [l] is given by,

βPj [l] =
1

Jhjk[l]

(
1

ζ + 1
gSk[l]

+
Jθ̂Pj [l] − θ̂C[l]

ζ

)
(20)

where ζ = min
Pj∈C[l]

{
qPj

hjk[l]

}
, θ̂Pj [l] = θPj [l]+ϖmin

Pj [l]
and θ̂C[l]

=∑
Pj∈C[l]

θ̂Pj [l].

Proof: See Appendix G.
The main problem with the Nash bargaining solution is

that it neglects the dynamics of the coalition formation
process. More specifically, during the price updating process
in Algorithm 1, some PUs (i.e., the PUs who are close to the
SUs) can always join a coalition earlier than the other PUs.
In this case, if these earlier joiners cannot obtain higher

5We omit the details of these axioms due to space limit. Interest readers
please refer to pages 377-378 in [13].

payoffs than that of the later ones, they will lose the
incentive to further reduce prices to allow more PUs to join
the coalition. Thus, in the rest of this section, we consider a
fairness criterion that can take the contribution of each PU
during the coalition formation process into account.

B. Shapley Value Fairness

Let us consider the fairness of each PU using the Shapley
value.

Definition 10: [13, Chapter 9.4] Let L (C) be the set of
all possible coalitions among the PUs in the coalition C. A
Shapley value is a mapping ϕ : R|L(C)| → R|C| such that,
when the PUs in C play any coalitional game v, the expected
payoff to each player i would be ϕPi(v), i.e.,
ϕ(v) =

(
ϕP1(v), ϕP2(v), . . . , ϕP|C|(v)

)
. A Shapley value ϕ

must satisfy the axioms of symmetry, efficiency, dummy and
additive6.

It is proved in [13] that there exists a unique function ϕ
satisfying all the above axioms given by

ϕPj (v)

=
∑

S⊆C\{Pj}

(|S|)! (|J | − |S| − 1)!

(|J |)!
[v (S ∪ {Pj})− v (S)] .(21)

Theorem 3: The Shapley value of a coalition C[l] in the
proposed game is always in the core and the value of β that
yields the Shapley value fairness of a coalition C[l] is given
by

βPj̃ [l]
=


(

ηP
j̃
[l]−ηP

j̃−1
[l]−∆θP

j̃
[l]

hj̃k[l]ζ

)
, if 1 ≤ j ≤ J − 1,(

ηPJ [l]−ηP
J̃−1

[l]−∆θP
J̃
[l]

hj̃k[l]ζ

)
, if j = J,

(22)

where ζ is defined after (20), ηP0̃[l]
= 0,

ηPj̃ [l]
=

gSk[l]qP
j̃[l]

q
P
j̃

gSk[l]+hj̃k[l]
, ηPJ [l] =

gSk[l]ζ

gSk[l]ζ+1 . and

∆θPj̃[l]
=

∑
ĩ∈{1̃,2̃,...,̃j}

θPĩ[l]

({
1̃, 2̃, . . . , j̃

})
−∑

ĩ∈{1̃,2̃,...,̃j−1}
θPĩ[l]

({
1̃, 2̃, . . . , j̃ − 1

})
.

Proof: See Appendix H.

VII. NUMERICAL RESULTS

To evaluate the performance of our algorithm, we consider
a panel network in which two PUs, P1 and P2 are located
at the center, and all the SUs are randomly located in the
networks as shown in Figure 5. We assume that each SU can
only access one sub-band and hence can use Sk to denote the
corresponding sub-band of SU Sk. Let the pricing coefficients,
charging threshold and interference limit of both PUs be fixed.
We compare the performance of both SU and PU networks
under different numbers of active SUs in Figures 6 - 8. It is
observed in Figure 6 that, although the number of SUs being
detected by PUs increases with the number of overall SUs,
there always exist some SUs that can only be detected by

6We omit the details of these axioms due to space limit. Please see pages
437 - 438 in [13] for the details.
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Fig. 5. Pricing coalition formation setup in a panel network.
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one PU. In Figures 7 and 8, we observe that the coalition
formation between PUs using Algorithm 1 always increases
the payoffs of SUs and PUs. This verifies our conclusions in
Observations 1 and 2 and Remark 1 in Section IV-B. In Figure
9, we consider the number of PUs charging the same sub-band
of SUs under different numbers of PUs. We observe that the
coalitions of PUs can be highly overlapped. More specifically,
in may cases, every sub-band is charged by more than one PU
(i.e., the minimum number of PUs charging the same sub-band
exceeds two) and there always exists at least one sub-band that
is charged by more than half of the PUs.

To compare the performance of different fairness criteria,
we simulate a CR network in which two PUs, P1 and P2, try
to divide the payoff obtained from one SU S1 in a sub-band
l. Both PUs have the same threshold and interference limit.
The pricing coefficients βP1[l] and βP2[l] are fixed. Assume

that channel gain hj1 is given by hj1 =
ĥj1

dξ for j ∈ {1, 2}
where ĥj1 is the average channel path loss coefficient, d11
and d21 are the distances between S1 and P1, and S1 and P2,
respectively. ξ is the fading exponent. Consider the case of
both PUs located in a linear network and SU S1 moving from
the left to the right as shown at the top of Figure 10. Assume
that SU S1 is detectable to both PUs during its moving.

In the middle and bottom of Figure 10, we show the
payoffs and the percentages of payoff for PUs P1 and P2

under different fairness criteria. It is observed that the payoff
sum of PUs decreases when SU S1 moves closer to either
PU. This is because, as shown in Appendix A, the payoff
sum of PUs decreases with the transmit power of SU S1,
which is minimized when the distance between SU S1 and
either PU becomes the shortest. Figure 10 also compares the
payoff division between two PUs under different fairness
criteria. More specifically, the NBS equally divides the
payoff among PUs while the Shapley value divide the payoff
sum according to the contribution brought by each member
PU. It is observed that the Shapley value fairness criterion
distributes most of the payoff to one PU Pj when S1

becomes close to PU Pj for j ∈ {1, 2}. This is because in
our simulation, when SU S1 has the shortest distance to
either PU, the transmit power of S1 will be minimized to the
value that almost cannot be charged by P−j , and hence the
possible contribution of P−j to join the coalition approaches
zero.

VIII. CONCLUSION

In this paper, we have presented a hierarchical model for
CR networks to study the interaction between SUs and PUs
in a spectrum pooling system. We have proved that allowing
all PUs to compete with each other without exchanging any
information is generally not optimal. We have then proposed
a pricing coalitional game framework to investigate the
possible pricing coalition among PUs. We have observed that
the grand coalition of the pricing coalitional game is
generally not stable, and hence a simple algorithm has been
proposed to allow PUs to distributedly form a unique and
stable collection of coalitions. To further inspect the fairness
payoff division problem for PUs within each coalition, two

fairness criteria, Nash bargaining solution and Shapley value
fairness, have been studied and compared.
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APPENDIX

A. Proof of Proposition 1
Let us assume that the sub-band allocation schemes LS

and C are fixed and l ∈ LSk
. It can be shown that β takes

values in a nonempty compact set and the payoff function
ϖJ (w∗

S ,β,LS ,C) is continuous in this set. In addition, if
wSk[l] > min

Pj∈J

{ q
Pj

hjk[l]

}
, for a given β[l],

ϖSk[l]

(
wSk[l],β[l],LS

)
is a quasi-concave function of

wSk[l] with the optimal solution w∗
Sk[l]

given in (12). By

substituting w∗
Sk[l]

into ϖSk[l]

(
wSk[l],β[l],LS

)
, we have

ϖSk[l]

(
w∗

Sk[l]
,β[l],LS

)
= − log2

1 +

 gSk[l]

uSk[l]

(
β[l], C[l]

) − 1

+
−

1−
uSk[l]

(
β[l], C[l]

)
gSk[l]

+

. (23)

The above result shows that ϖSk[l]

(
w∗

Sk[l]
,β[l],LS

)
decreases with uSk[l]

(
β[l], C[l]

)
if w∗

Sk[l]
> min

Pj∈J

{ q
Pj

hjk[l]

}
.

Substituting w∗
Sk[l]

into ϖJ (w∗
S ,β,LS ,C), we have

ϖJ (w∗
S ,β,LS ,C) =

∑
Pj∈J

ϖPj (w
∗
S ,β,LS ,C)

=
∑
Pj∈J

∑
l∈LPj

 hjk[l]βPj [l]

uSk[l]

(
β[l], C[l]

) −
hjk[l]βPj [l]

gSk[l]

+

−θPj [l]

(
C[l]
))

=
∑
l∈M

∑
Pj∈C[l]

 hjk[l]βPj [l]

uSk[l]

(
β[l], C[l]

) −
hjk[l]βPj [l]

gSk[l]

+

−θPj [l]

(
C[l]
))

=
∑
l∈M


1−

uSk[l]

(
β[l], C[l]

)
gSk[l]

+

− θC[l]

(
C[l]
) ,

where θC[l]

(
C[l]
)
=

∑
Pj∈C[l]

θPj [l]

(
C[l]
)

is a constant.

It is observed that ϖJ (w∗
S ,β) is a linearly decreasing

function of uSk[l]

(
β[l], C[l]

)
. We hence can claim that

ϖSk

(
w∗

Sk
,β[l]

)
and ϖJ are maximized when

uSk[l]

(
β[l], C[l]

)
is minimized in every sub-band. Combining

(2) and (12), we can derive the lower bound of
uSk[l]

(
β[l], C[l]

)
in (13).
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B. Proof of Observation 1

Consider a CR network with two PUs, labeled as P1 and
P2, and one SU, labeled as S1 in sub-band l. Let us first focus
on the case that both PUs can detect the existence of S1. In
this case, the following condition must be satisfied,

max

{ q
P1

h11[l]
,
q
P2

h12[l]

}
< wS1

(
βP1[l], βP2[l]

)
(24)

=

(
1

h11[l]βP1[l] + h12[l]βP2[l]
− 1

gS1[l]

)+

< min

{
qP1

h11[l]
,
qP2[l]

h12[l]

}
, (25)

and the payoff of each PU Pj for j ∈ {1, 2} is given by
ϖPj [l] = βPi[l]h1j[l]wS1[l]

(
βP1[l], βP2[l]

)
. Note that Pj cannot

know the exact value of βP−j [l]. If P1 assumes that P2

chooses the lowest possible pricing coefficient βP2[l], then
choosing the lowest βP1[l] for P1 will cause
wS1

(
βP1[l], βP2[l]

)
to be equal to the maximum value given

in the right-hand-side of (24), which is a constant unrelated
to the pricing coefficients of both PUs. In this case, we can
observe that the payoff of P1, given by
ϖP1(βP1[l]) = βP1[l]h11[l] min

{
qP1[l]

h11[l]
,
qP2[l]

h12[l]

}
, increases with

βP1[l]. Therefore, P1 should increase its pricing coefficient
βP1[l] to the maximum possible value which will lead to the
left-hand-side of (24). On the other hand, if P1 assumes that
P2 chooses the highest possible βP2[l], then
wS1[l]

(
βP1[l], βP2[l]

)
will again result in the left-hand-side of

(24) and hence following the same reason, P1 will also
choose the maximum value of βP1[l]. In other words, as long
as one PU detects that an SU has been charged by multiple
PUs in a sub-band, this PU will always choose the highest
pricing coefficient for this SU. This will eventually cause the
payoff of PU Pj to be zero for Pj = arg max

i∈{1,2}

{ q
Pi[l]

h1i[l]

}
.

Let us now consider the case that the SU S1 can only be
charged by one PU P1. In this case, we have

q
P1[l]

h11[l]
< wS1[l]

(
βP1[l]

)
=

(
1

h11[l]βP1[l]
− 1

gS1[l]

)+

< min

{
qP1[l]

h11[l]
,
q
P2[l]

h12[l]

}
. (26)

The payoff of P1 is given by

ϖP1[l] = βP1[l]h11[l]wS1[l]

(
βP1[l]

)
=

(
1− h11[l]βP1[l]

gS1

)+
,

which decreases with βP1[l]. In other words, if the SU can
only be charged by one PU P1, this PU will always choose
the lowest pricing coefficient to maximize its payoff, which
will result in a payoff sum of

ϖP1[l] +ϖP2[l] = βP1[l]h11[l]wS1[l]

(
βP1[l]

)
+ 0

=
min

{
qP1[l]

h11[l]
,
q
P2[l]

h12[l]

}
min

{
qP1[l]

h11[l]
,
q
P2[l]

h12[l]

}
+ 1

gS1[l]

. (27)

However, as shown in Proposition 1 and Appendix A that
if both PUs can cooperate to decide the price of S1 and

∑
j={1,2}

θPj [l] ({P1, P2}) → 0, the optimal payoff sum of both

PUs should be given by

ϖP1[l] +ϖP2[l] =
min

{
qP1[l]

h11[l]
,
qP2[l]

h12[l]

}
min

{
qP1[l]

h11[l]
,
qP2[l]

h12[l]

}
+ 1

gS1[l]

. (28)

We hence can claim that (27) is always less than (28) when
q
Pj

< qP−j
for j ∈ {1, 2}. The above observation can be

directly extended into the CR networks with J PUs and K
SUs. We omit the detailed discussion due to space limit.

C. Proof of Observation 2

In the proposed model, if PU Pj cannot charge an SU Sk

that uses sub-band l, the PU cannot obtain any revenue from
sub-band l, i.e., RPj [l] = 0. Combining this observation with
ϖPj [l] = RPj [l] − θPj [l](J ) < 0, we have

v(J ×M) =
∑

Pi×l∈J×M

ϖPi[l]

=
∑

Pi×l∈J×M\{Pj}×{l}

(
ϖPi[l] +ϖPj [l]

)
<

∑
Pi×l∈J×M\{Pj}×{l}

ϖPi[l]

= v(J ×M\{Pj} × {l}).

× denotes a Cartesian product operation.
This means that if PU Pj joins the grand coalition in

sub-band l, it cannot provide a positive payoff improvement.
However, if Pj does not cooperate with any PUs in sub-band
l, its payoff is zero. In other words, it is impossible to find
an imputation that lies in the core of the grand coalition
defined in (14). This concludes our proof.

D. Proof of Proposition 2

To prove Proposition 2, we only need to show that any
coalition C[l] = C1

[l]∪C2
[l] formed by combining two sequential

coalitions C1
[l] and C2

[l] improves the total revenue, i.e., RC[l]
>

RC1
[l]
+RC2

[l]
. We then can use condition 3) to verify the super-

additive condition. More specifically, assume P1̃ ∈ C1
[l] and β[l]

is fixed. We have

RC1
[l]
+RC2

[l]
=

∑
Pj∈C1

[l]

(
βPj [l]hjk

q
P

M̃

h
M̃k

)

< RC[l]
=

∑
Pj∈C[l]

(
βPj [l]hjk

q
P

Ñ

hÑk[l]

)
(29)

where M = |C1
[l]| + 1 and N = |C1

[l] ∪ C2
[l]| + 1. Note that in

(29), the revenue of RC2
[l]

equals zero if C2
[l] cannot cooperate

with C1
[l]. This completes our proof.
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E. Proof of Proposition 3

Let us now prove that it is not necessary for each PU to
consider a value of pricing coefficient that is larger than β.
Suppose that every PU Pj chooses a value βPj [l] > β > 0 ∀
Pj ∈ J . Then substituting (16) into w∗

Sk
(β[l]) and using some

operations, we have

w∗
Sk[l]

(β[l]) <
1∑

Pj∈J
hjk[l]β

− 1

gSk[l]
< min

Pj∈J

{ q
Pj

hjk[l]

}
, (30)

which means that if βPj [l] > β, no PUs can detect the presence
of the SU Sk. According to our setup, this means that no PU
can obtain any payoff from the licensed spectrum. The proof
is now complete.

F. Proof of Theorem 1

Let us consider first result in Theorem 1. It can be easily
shown that by following the sub-band allocation scheme in
Step 2-a) of Algorithm 1, the waiting time of each SU to
join sub-band l decreases with its payoff and hence the SU
achieving the highest payoff in a sub-band can always occupy
the sub-band earlier than other SUs. In addition, as observed
in Appendix A, the payoff of each SU Sk is only related to
uSk[l]

gSk[l]
and we have

ϖSk[l] > ϖSn[l] ⇒
uSk[l]

(
β[l], C[l]

)
gSk[l]

>
uSn[l]

(
β[l], C[l]

)
gSn[l]

⇒
(T − t) ϵ

∑
Pj∈C[l]

hjk[l]

gSk[l]
>

(T − t) ϵ
∑

Pj∈C[l]
hnk[l]

gSn[l]
.

This means that if the payoffs of two SUs Sk and Sn satisfy
ϖSk[l] > ϖSn[l] in iteration t, this relationship will not change
during the following price decreasing process [12]. In other
words, each SU has no intention to change its selected sub-
band given the sub-bands of the others, which is the definition
of the NE of the sub-band allocation game.

Let us now consider results 2) and 3). As mentioned in
Section IV, the coalition formation among PUs in different
sub-bands can be overlapped. However, if we focus on the
coalition formation process within each sub-band l, the grand
coalition of PUs can be partitioned into two disjoint
coalitions: one is a subset of PUs that can jointly charge the
SU in sub-band l and the other is the subset of the rest of
PUs. Following the same line as Section IV, let us focus on
the possible coalition formed among PUs to decide the price
of one SU Sk in a sub-band l. Let us assume l ∈ LSk

. In
this case, the grand coalition J has been partitioned into two
disjoint coalitions: C[l] and Cc

[l] = {Pj : hjk[l]w
∗
Sk[l]

< q
Pj
}.

Here we abuse the notation and use C to denote the partition
of {C, Cc} for C ∪ Cc = J . First, let us prove that the
coalition formation in one iteration t of Step 2) in Algorithm
1 is unique, stable and ◃ maximal for a given pricing vector
β[l].

Proposition 5: Suppose (2) is satisfied and condition 3) in
Proposition 2 holds. For a given β[l] = [βP1[l], . . . , βPj [l]],
the coalition formation achieved by Step 2) in Algorithm 1 is
unique, stable and ◃ maximal.

Proof: From (12), it is observed that, if β[l](t) is fixed,
the values of uSk

(β[l](t), C[l](t)), w∗
Sk
(β[l](t)) and the set of

PUs who satisfy (1) are fixed too. Thus, C[l] is the unique
result for the given β[l](t). β[l](t) is also a unique vector for
the chosen β and ϵ. Following the same line as [37], let us
now prove that the resulting coalition formation is stable and
◃ maximal. It can be shown that the resulting coalition C[l](t)
in iteration t has the following properties,
P1) For any two disjoint sequential coalitions

C1 = {P1̃, . . . , Pj̃} and C2 = {P
j̃+1

, . . . , Pl̃} in C[l]
such that j̃ = |C1|, l̃ − j̃ = |C2| and C1 ∪ C2 ⊆ C[l], we
have {C1 ∪ C2} ◃ {C1, C2};

P2) For any sequential coalition C3 = {P1̃, . . . , Pj̃} such that
|C3| > |C[l]| and C3 ⊆ J , we have C[l] ◃ {C3};

P3) For any non-sequential coalition C4 such that C4 ⊆ J ,
we have C[l] ◃ {C4}.

Property P1 is a direct result of Proposition 2. Property P2
comes from the fact that Pj cannot charge SU Sk if PU
Pj /∈ C[l], and hence the contribution of the PU Pj ∈ C3\C[l]
in the coalition C3 is always negative (because of the
cooperation cost), i.e., ϖPj = −θPj < 0, ∀Pj /∈ C[l]. To
prove Property P3, we observe that if a PU Pj̃ for |C4| > j̃

is not involved in the coalition C4, following the same line
as Property P2 we can claim that the PU Pñ for
ñ ∈ {j̃, . . . , |C4|} can only provide negative payoff to the
coalition and eliminating PU Pñ can increase the payoff sum
of coalition C4. Hence, using Properties P1 and P2, we can
show that C4 is always less preferable than C[l]. Properties P1
- P3 include all the possible partitions of PUs for charging
the SU in sub-band l. Hence, combining properties P1 - P3
and using the transitive, irreflexive and monotonic properties
of ◃ [37], we can claim that, for all partitions C5 ̸= C[l] and
C5 ⊆ J , C[l] ◃ C5 holds. This concludes the proof.

Let us now consider the case that condition 3) in Proposition
2 does not hold. We have the following result.

Proposition 6: If a coalition is formed by a set of PUs that
is not sequential, the core of the coalition is empty.

Proof: If condition 3) in Proposition 2 is satisfied, the
above result can be directly proved by using Proposition 2.
Let us now show that the result still holds if condition 3) in
Proposition 2 cannot be satisfied. It is observed in
Observation 2 that, for a non-sequential coalition C[l], we can
always find two disjoint subsets C1

[l] and C2
[l] such that

C1
[l] = {P1̃, P2̃, . . . , Pj̃}, C2

[l] = {P̃
j+i

, . . . , P ˜|C[l]|
} and i ≥ 2.

In this case, the PUs in C2
[l] cannot obtain any revenues but

increase the cost of cooperation in the coalition C[l] i.e., we
have RC2

[l]
= 0, RC[l]

= RC1
[l]

and∑
Pj∈C[l]

θPj (C[l]) >
∑

Pj∈C1
[l]
θPj (C1

[l]) +
∑

Pj∈C2
[l]
θPj (C2

[l]).
In other words, we can claim that if C[l] is not sequential,
there always exist at least two subsets C1

[l] and C2
[l] such that

v
(
C1
[l] ∪ C2

[l]

)
< v

(
C1
[l], C

2
[l]

)
. This concludes the proof.

From the above proposition, we only need to search for the
coalition C∗

[l] using (17) in Algorithm 1 for every sub-band
that satisfies sequential conditions. And the main function of
(17) and (18) in Algorithm 1 is to search for all the possible
subsets of coalition C[l] that is sequential to find the optimal
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one.
Let us consider the dynamic coalition updating step in

Algorithm 1. It is observed that, in each iteration of Step 3)
in Algorithm 1, the PUs form a sequential coalition game.
Note that the worth of coalition C[l] and the transmit power
of Sk are functions of uSk[l](β[l], C[l]), and dividing the
payoff among PUs is unrelated to v

(
C[l]
)
. In addition, as

observed in Proposition 1 and (12), both v
(
C[l]
)

and
ϖSk[l]

(
w∗

Sk[l]
,β[l]|C[l]

)
decrease with uSk[l]

(
β[l], C[l]

)
. The

main effect of Step 3) in Algorithm 1 is to distributedly
decrease the value of uSk[l] until w∗

Sk[l]
reaches its upper

bound (the interference level increases to reach the
interference limit of at least one PU in (2)). From
Proposition 1, the resulting (w∗

Sk[l]
,β∗

[l]) maximizes both the
payoff of SU Sk and the payoff sum of C[l]. It is observed
that the portions of the revenue charged by each PU to SUs
in different sub-bands are independent, and hence
maximizing the payoff of the SU Sk and the payoff sum of
its corresponding coalition C[l] in every sub-band is
equivalent to maximizing the payoffs of all SUs Sk ∈ K and
the overall payoff sum of all PUs. Therefore, we can claim
that if (13) is satisfied and C[l] ̸= ∅, ∀l ∈ M, Algorithm 1
achieves an SE of the hierarchical game with the given LS .
This concludes our proof.

G. Proof of Theorem 2

We can write the Nash bargaining solution in (19) as

max
βPj [l]

∑
Pj∈C[l]

log2

(
ϖPj [l]

(
w∗

S ,β[l]

)
−ϖmin

Pj [l]

)
(31)

s.t.
1

min
Pj∈C[l]

{
qPj

hjk[l]

}
+ 1

gSk[l]

≤ u
Sk[l]

(
β[l]

)

<
1

max
Pj∈C[l]

{ q
Pj

hjk[l]

}
+ 1

gSk

.

The above constraints come from the power constraints in (1)
and (2). The objective function in (31) is strictly concave and
the constraints are linear, and hence the KKT conditions are
necessary and sufficient for the optimal solution.

Hence, we can write the Lagrange multiplier as

LM =
∑

Pj∈C[l]

log2

(
ϖPj [l]

(
w∗

S , βPj [l]

)
−ϖmin

Pj [l]

)

−λ1

u
Sk

(
β[l]

)
− 1

min
Pj∈C[l]

{
qPj

hjk[l]

}
+ 1

gSk[l]



−λ2

 1

max
Pj∈C[l]

{ q
Pj

hjk[l]

}
+ 1

gSk[l]

− u
Sk[l]

(
β[l]

) .(32)

The first order necessary and sufficient conditions gives

∂LM

∂βPj [l]
=

hjk[l] min
Pj∈C[l]

{
qPj

/hjk[l]

}
βPj [l]hjk[l] min

Pj∈C[l]

{
qPj

/hjk[l]

}
− θ̂Pj [l]

− (λ1 − λ2)hjk[l] = 0

⇒ βPj [l]hjk[l] −
θ̂Pj [l]

min
Pj∈C[l]

{
qPj

/hjk[l]

} = (λ1 − λ2)
−1

,

∀Pj ∈ C[l] (33)

where θ̂Pj [l] = θPj [l] +ϖmin
Pj [l]

.

Solving (31), we have that the Nash bargaining solution for
βPj [l] should satisfy

βPi[l]hik[l] min
Pj∈C[l]

{
qPj

/hjk[l]

}
− θ̂Pi[l] (34)

=

uSk[l](β[l]) min
Pj∈C[l]

{
qPj

/hjk[l]

}
− θ̂C[l]

J
, ∀Pj ∈ C[l]

where θ̂C[l]
=

∑
Pj∈C[l]

θ̂Pj [l]

Substituting the above result into (31), we have that∑
Pj∈C[l]

log2 ϖPj [l]

(
w∗

S , βPj [l]

)
is maximized when

uSk[l](β[l], C[l]) is minimized which is a unique solution

given by u
Sk[l]

(
β[l]

)
= 1

min
Pj∈C[l]

{
qPj

hjk[l]

}
+ 1

gSk[l]

. Combining

(34) and u
Sk[l]

(
β[l]

)
, we can derive the result in (20). This

completes our proof.

H. Proof of Theorem 3

It can be shown that a sequential coalitional game is always
convex, and hence the Shapley value is always in the core.
In a sequential coalitional game, the PUs join the coalition
C[l] in an order decided by the power constraints of PUs and
the channel gains and hence the possible permutation of the
players to join the coalition in 1. Let us write the total payoff
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of each possible coalition Cl ⊆ C[l] as

v ({0}) = 0,

v
({

P1̃, P2̃, . . . , Pj̃−1

})
= 1−

uSk[l]

(
β[l]

)
gSk[l]

−
∑

i={1̃,2̃,...,̃j−1}

θPĩ[l]

({
P1̃, P2̃, . . . , Pj̃−1

})

=
q
Pj̃

gSk[l]

q
Pj̃

gSk[l] + hj̃k[l]

−
∑

i={1̃,2̃,...,̃j−1}

θPĩ[l]

({
P1̃, P2̃, . . . , Pj̃−1

})
,

∀j̃ − 1 < J,

v
(
C[l]
)
=

gSk[l] min
Pj∈C[l]

{
qPj

hjk[l]

}
gSk[l] min

Pj∈C[l]

{
qPj

hjk[l]

}
+ 1

−
∑

i={1̃,2̃,...,J̃}

θPĩ[l]

({
P1̃, P2̃, . . . , PJ̃

})
.

The marginal contribution of total payoff for each PU Pj

to enter the coalition is given by,

ϕPj̃
= v

({
P1̃, . . . , Pj̃

})
− v

({
P1̃, . . . , Pj̃−1

})
,

for 1 ≤ j ≤ J. (35)

Hence, βPj̃ [l]
in (22) is obtained by solving

ϕP
ĩ

ϕP
j̃

=
hĩk[l]βP

ĩ
[l]

hj̃k[l]βP
j̃
[l]

for v
(
C[l]
)
≥ 0. This concludes our proof.
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