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Abstract—This paper considers a cognitive radio network
where the licensed network, referred to as the primary user
(PU) network, consists of a hierarchical structure in which
multiple operators coexist in the same coverage area where
each of the operators controls an exclusive set of frequency
sub-bands. Unlicensed users, referred to as the secondary
users (SU), first send their requests to the operators, and
can only access the sub-bands controlled by the operators
that accept their requests. SUs are selfish and cannot
exchange private information with each other. We model the
dynamic spectrum access (DSA) problem of the SUs as a
Bayesian game, referred to as the DSA game. We model the
PU network as a forest where the roots represent the
operators and the leaves represent the operators’ sub-bands.
We propose a novel forest matching market to model the
interaction between the SUs and the PU network. In this
market, a set of SUs can be first matched to a set of
operators and the SUs matched to the same operator can
then be matched to the corresponding sub-bands. We
propose a distributed algorithm that results in a stable
forest matching structure which coincides with the optimal
Bayesian Nash equilibrium of the DSA game. We prove that
the Bayesian hierarchical mechanism associated with our
proposed algorithm incentivizes truth-telling by SUs. Our
algorithm does not require each SU to know the preference
and conflict-solving rule of the PU network or the payoffs
and actions of other SUs, and the complexity of each
iteration in the worst case is given by O(L2N2K) where L
is the number of operators, N is the maximum number of
sub-bands of each operator and K is the number of SUs.

Index Terms—Cognitive radio, stable matching, forest
matching, stable marriage, college admission, dynamic
spectrum access, hierarchical, game theory, mechanism
design, Bayesian game.

I. INTRODUCTION

Many of today’s networking systems operate according
to a hierarchical structure. For example, in
telecommunication networks, smart grids, cloud storage
systems, etc., multiple operators (e.g., telecommunication
operators, electricity companies, cloud storage providers,
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etc.) coexist in the same service area. Each operator has
been licensed exclusive use of a resource (e.g., frequency
bands, electrical grid, or cloud storage infrastructure)
which can be further divided into resource blocks. Each
resource block can then be used to provide an individual
service, such as voice/video call, electricity supply, data
storage, etc., for a user (e.g., mobile service subscriber,
electrical appliance, storage application, etc.), referred to
as the primary user (PU). If a set of unlicensed user
equipments, referred to as secondary users (SUs), can
intelligently access this resource without causing
intolerable performance degradation to the PUs, the
system will turn into a licensed resource sharing (LRS)
networking system. In this system, SUs cannot access any
resource block unless they obtain permission from the
corresponding operator.

In this paper, we focus on a cognitive radio (CR)
network in which the spectrum licensed to network
operators and their licensed subscribers (PUs) can be
dynamically accessed by the unlicensed subscribers (SUs)
according to different service requirements and
environments [1]. We refer to the licensed networking
system consisting of operators and their corresponding
sub-bands and subscribers as the PU network. We also
use the terms frequency band (or spectrum) and sub-band
to denote the resource licensed to each operator and the
resource block that can be allocated to each subscriber,
respectively.

We study the dynamic access of a set of SUs to the
spectrum licensed to a PU network with a hierarchical
structure consisting of multiple operators and their
corresponding sub-bands. The hierarchical structure of the
PU network makes it difficult for SUs to decide which
operators’ sub-bands they want to access. More
specifically, each SU needs to send a request to an
operator before accessing any sub-band. Once its request
has been accepted, the SU will stick to the operator that
accepts its request for a certain period of time. Each
operator only holds a license for a limited number of
sub-bands, and hence can only allow a limited number of
SUs to access its spectrum. If the number of SUs
requesting the resources of the same operator exceeds the
limit for this operator, a conflict happens. The operator
and sub-band finally allocated to each SU depend not
only on the preference of the SU over the operators and
sub-bands, but also on rules applied by the PU network to
solve conflicts and on the benefits each operator can
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obtain from the population of SUs. For example, suppose
one SU believes a sub-band controlled by an operator can
provide the maximum performance and sends its request
to this operator. However, the request of the SU can be
rejected by the operator. Or even if the SU’s request is
accepted, its request for the performance-maximizing
sub-band may be rejected because the operator allocates
this sub-band to another competing SU. In this case,
another sub-band of the operator will be allocated to the
SU, which may result in performance that is even worse
than that achieved by accessing sub-bands of other
operators. In other words, selecting the operator with the
performance-maximizing sub-band may not always the
best choice for the SUs. Furthermore, it has been
observed in [2]–[5] that there is no stable mechanism that
can prevent all SUs with a general domain of preferences
from obtaining higher benefits by misrepresenting their
true private information. Therefore, how to design a
truth-telling mechanism that can also result in the optimal
social choice for the SUs is a challenging and important
problem.

It can be observed that the interaction among SUs and
that between SUs and PUs play a dominant role in
determining the performance of SUs and the PU network
[6]–[8]. This motivates us to apply game theory to
analyze the dynamic spectrum access problem. However,
one of the most important solution concepts in game
theory, the Nash equilibrium, is generally not unique or
optimal [9]. For example, it has been shown in [10] that
if we model the spectrum access problem as a one-stage
non-cooperative game, any sub-band allocation scheme is
a Nash equilibrium. Furthermore, achieving the optimal
Nash equilibrium is not always possible, or if possible, it
may be an NP-hard problem [9], [11].

We consider the distributed optimization of the
dynamic spectrum access (DSA) problem for SUs in a
CR network. In this problem, SUs can access the
spectrum licensed to multiple operators that coexist in the
area of interest. To maximize their payoffs, the SUs will
first decide their preferred operators, and then compete for
the limited number of sub-bands of each operator. Each
SU cannot know the preference and the conflict-solving
rule of operators, or observe the private information such
as preferences and payoffs of other SUs. This motivates
us to model the DSA problem as a Bayesian
non-cooperative game, referred to as the DSA game. We
seek a self-enforcing truth-telling mechanism design that
can incentivize all SUs to decide their actions based on
their true preference and can eventually result in a unique
and optimal Bayesian Nash equilibrium. It is observed
that the mechanism design not only includes developing
rules for the operators to solve the conflicts when the
number of requesting SUs exceeds the limit but also
requires establishing policies for strategic SUs to
distributedly compete for the limited number of operators
and sub-bands. To solve the above problem, we model the
PU network as a forest structure [12] and propose a novel
forest matching market to model the interaction between

the SUs and the PU network. The DSA problem of SUs
can then be modeled as a matching problem between a
set of SUs and a forest consisting of a set of roots
(operators) and their corresponding leaves (sub-bands).
We develop a distributed Bayesian hierarchical algorithm
that, despite the private information and selfish behavior
of SUs, can result in a unique and stable forest matching
structure which coincides with the optimal Bayesian Nash
equilibrium of the DSA game. Our proposed solution
contains two separate algorithms for SUs to choose their
operators and sub-bands and a Bayesian belief updating
algorithm. We also prove that the associated Bayesian
hierarchical mechanism incentivizes all SUs to select the
operators and sub-bands based on their true private
information.

Let us briefly summarize the main contributions of the
paper as follows:

1) We formulate a Bayesian non-cooperative game-based
framework to model the DSA problem of SUs in a CR
network.

2) We introduce a novel Bayesian hierarchical
mechanism design framework to approach the unique
and optimal Bayesian Nash equilibrium of our DSA
game.

3) We propose a novel stable forest matching algorithm
to achieve a stable matching between a set of SUs
and a hierarchical PU network which coincides with
the optimal Bayesian Nash equilibrium of our DSA
game.

4) We present numerical results to assess the performance
of the proposed methods under different situations.

The rest of this paper is organized as follows. The
background and related work are reviewed in Section II.
The network model is introduced in Section III. We
establish the DSA game in Section IV. We introduce the
forest matching market and the Bayesian hierarchical
mechanism in Section V. Extensions and future works are
discussed in Section VI. The numerical results are
presented in Section VII, and the paper is concluded in
Section VIII.

II. BACKGROUND AND RELATED WORK

Game theory has been widely applied to analyze the
performance of CR networks. More specifically, in [6],
[8], [13], [14], the sub-band allocation problem for CR
networks has been modeled as a non-cooperative game to
study the interaction among the competing SUs.
Coalitional game theoretic models have been applied to
study the interaction among the cooperative users in CR
networks in [15], [16]. A detailed survey of applications
of game theory to CR networks has been presented in
[17]–[20].

Although game theory has been shown to be an
effective tool to study and analyze the interaction among
individual players, it is known that its outcomes such as
the Nash equilibrium solution, are generally not unique or
optimal. This motivates mechanism design, whose main
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objective is to lead the institutions governing the
interactions of a game to implement a socially desirable
solution [21]. In [22], [23], an auction mechanism has
been applied to CR networks where cheating between
wireless devices has been avoided by allowing payments
received by each wireless device to be freely transferred.
However, in many practical wireless systems,
payment/money transferring between SUs is unrealistic
[24]–[26]. In this paper, we focus on designing a
mechanism without monetary exchange where each SU
only cares about its own private payoff and there is no
information exchange among SUs. To the best of our
knowledge, this is the first work to consider mechanism
design without monetary exchange for CR networks.

We propose a novel forest matching market which can
be regarded as a generalization of the traditional
two-sided matching market (also called stable marriage
market [27], bipartite matching market [28], [29]). The
two-sided stable matching problem has been widely
studied from both theoretical and practical perspectives
[27], [28], [30]–[32]. In this problem, each agent
belonging to one side of the market has a preference over
the agents of the other side, and tries to find a matching
that can optimize its performance. Many extensions of
these problems have been studied in the literature. More
specifically, the case of some agents on one side with
preferences over a sub-set of the agents on the other side
has been studied in [33]. The case that the agents from
one side can have equal preference over multiple agents
of the other side, also called stable marriage with tie, has
been studied in [34]. Empirical studies of the different
variations of the two-sided matching problem have been
reported in [31], [35]. A survey of the stable marriage
market and its variants has been presented in [36].

Different from the existing works, we consider the case
in which a set of agents from one side consists of a forest
structure. We focus on the matching problem between the
set of agents of one side and the roots and leaves in a forest
of the other side. To the best of our knowledge, this is the
first work to study the matching problem between a set of
agents and a forest.

III. NETWORK MODEL

We consider a CR network in which a set of K SUs D =
{D1, D2, . . . , DK} share the spectrum held by a set of L
co-located network operators O = {1, 2, . . . , L} as shown
in Figure 1. Each operator i has been licensed an exclusive
set of sub-bands, labeled as Si = {S1

i , S
2
i , . . . , S

Ni
i } where

Ni is the number of sub-bands licensed to operator i and
Si ∩ Sj = ∅ for i ̸= j and i, j ∈ O. We also denote
S =

∪L
i=1 Si. We label the PU currently occupying sub-

band Sl
i as P l

i for P l
i ̸= 0. If there is no PU using sub-band

Sl
i , we have P l

i = 0. Let Pi be the set of all PUs in operator
i, i.e., Pi = {P l

i : P l
i ̸= 0,∀ l ∈ {1, 2, . . . , Ni}}. We list

the main notation adopted in this paper in Table I.
We assume that each sub-band (either occupied or

unoccupied by a PU) can be accessed by at most one SU.

BS of Operator 1

BS of Operator 3

BS of Operator 2

Primary Users

Secondary Users

Base Stations (BS) of Operators

Operator 1

Operator 2
Operator 3

BS of Operator 3

BS of Operator 2

BS of Operator 3

...

Spectrum of Operator 1

...

Spectrum of Operator 3

Fig. 1. A CR network with 3 operators, 7 SUs and 6 PUs.

This assumption is reasonable because imposing the limit
of one SU to share each sub-band allows the operator to
evaluate and control the interference caused by SUs. For
example, if either the PU or SU, or both, observes
higher-than-tolerable interference, the operator can simply
remove the SU from the sub-band. If two or more SUs
share the same sub-band, it will be difficult to evaluate
which SU causes the highest interference to the PU
network, or which SU has to be removed, and it is
generally inefficient to simultaneously remove all SUs
from the sub-band whenever an operator observes high
interference. Our model can be extended to the case with
more than one SU sharing each sub-band. We will
provide a more detailed discussion in Section VI.

We consider the following power constraints in each sub-
band Sl

i of operator i,

hP l
iDk

wDk
≤ Q̄l

i, if P l
i ̸= 0, (1)

where hP l
iDk

is the channel gain between PU P l
i and SU

Dk in sub-band Sl
i , wDk

is the transmit power of Dk and
Q̄l

i is the maximum tolerable interference level for sub-band
Sl
i . If an SU Dk cannot satisfy the above constraint, it will

be excluded from sub-band Sl
i .

Let the payoff obtained by each SU Dk in sub-band Sl
i

be ϖDk
[Sl

i] for Sl
i ∈ Si. We consider a general model and

the payoff of each SU can be any performance measure or
function generated from its received signal to interference
plus noise ratio (SINR). For example, if the SU wants to
maximize its transmit rate per bandwidth price, the payoff
function of SU Dk when it accesses sub-band Sl

i can be
written as

ϖDk
[Sl

i] =
ρli

e
(
ρli
) log (1 + SINRDk

[Sl
i]
)
, (2)
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TABLE I
LIST OF NOTATIONS

Symbol Definition
L Number of network operators
K Number of SUs
D Set of SUs
O Set of operators
Si Set of available sub-bands for operator i
Pi Set of PUs in operator i
Ro

Dk
Preference of SU Dk over the operators

Rb
Dk

Preference of SU Dk over the sub-bands of its
chosen operator

RDk
Preference of SU Dk

Ri Preference of operator i over the SUs
ĩDk

The ith most preferred operator for SU Dk

S̃n
Dk

The nth most preferred sub-band for SU Dk

controlled by its chosen operator
Ni Number of sub-bands of operator i
Dk The kth SU
Sl
i The lth sub-band of operator i

P l
i The PU of operator i occupying sub-band Sl

i
Ui Set of SUs accepted by operator i
qi Maximum number of SUs that can be accepted

by operator i
Γo Conflict-solving rule of the operators
Γb Conflict-solving rule of each sub-band of the

operators
bDk

Belief function of SU Dk about actions of other
SUs

H Forest structure of the PU network
ϖDk

[Sl
i] Payoff of SU Dk when it accesses sub-band Sl

i
of operator i

ϖ̄Dk

(
aDk

, bDk

)
Average payoff of SU Dk with action aDk

and
belief function bDk

c (y) Social choice function with the given type y of
SUs

where ρli is the bandwidth of sub-band Sl
i and e

(
ρli
)

is the
price of bandwidth paid to the operator i and SINRDk

[
Sl
i

]
is the signal to noise ratio received at SU Dk in sub-band
Sl
i , given by

SINRDk
[Sl

i] =


h
Dk[Sl

i
]
wDk

σ
Dk[Sl

i
]
+h

Pl
i
Dk

w
Pl
i

, if P l
i ̸= 0,

h
Dk[Sl

i
]
wDk

σ
Dk[Sl

i
]

, if P l
i = 0,

(3)

where hDk[Sl
i]

is the channel gain between the source and
destination of SU Dk in sub-band Sl

i , σDk[Sl
i]

is the additive
noise received by SU Dk in sub-band Sl

i , and wP l
i

is the
transmit power of P l

i . We have ϖDk
[Sl

i] ̸= ϖDk
[Sn

m] for
Sl
i ̸= Sn

m and Sl
i, S

n
m ∈ S.

The revenue ηSl
i
[Dk] obtained by operator i by allowing

SU Dk to access sub-band Sl
i can be a function of the

resulting interference. For example, if the revenue ηSl
i
[Dk]

is a linear function of the received interference at PU P l
i

when P l
i ̸= 0 or the SINR of Dk when P l

i = 0, we have1

ηSl
i
[Dk] =

 βihDkP l
i
wDk

, If P l
i ̸= 0,

βi
h
Dk[Sl

i
]
wDk

σ
Dk[Sl

i
]

, If P l
i = 0,

(4)

where βi is the pricing coefficient of operator i. If it is
clear from the context that Dk obtains a sub-band from
operator i, we use ηi[Dk] to denote the revenue of operator
i obtained from SU Dk.

As mentioned previously, each operator i has a limited
number of sub-bands, and hence can only provide
services to a limited number of SUs. We refer the
maximum number of SUs an operator i can accept as its
quota, denoted as qi. Note that qi ≤ Ni needs to be
satisfied when each sub-band can be occupied by at most
one SU. However, if we allow multiple SUs to share each
sub-band, we will have qi > Ni. We will discuss this case
in detail at Section VI. In this paper, we set qi = Ni for
i ∈ O. When the number of SUs requesting permission to
access the spectrum of operator i exceeds qi, a conflict
will happen. In this case, only qi SUs will be accepted
and the remaining SUs will be rejected and excluded
from the spectrum of operator i. These rejected SUs will
then send their requests to other operators. The process
will continue until all SUs have been allocated operators.
Similarly, if a set of SUs, labeled as Ui, has been
accepted by operator i, these SUs will then compete for
the set Si of sub-bands of operator i. If at least two SUs
in Ui choose the same sub-band, only one of them will be
allowed to access this sub-band. The rest of the
requesting SUs will have to compete for the remainder of
sub-bands in Si. We assume SUs are selfish and always
try to maximize their payoff. Each SU can establish and
maintain a preference, a ranked list, over the operators
and their corresponding sub-bands. Let the preference of
each SU Dk over the operators and sub-bands be Ro

Dk

and Rb
Dk

, respectively. Note that Ro
Dk

and Rb
Dk

are
closely related to each other. For example, consider a CR
network with two operators 1 and 2. If an SU Dk

believes that the sub-band it can obtain from operator 2
can provide a higher payoff than that from operator 1, the
preference of SU Dk over operators is given by
Ro

Dk
= ⟨2, 1⟩. If we use ĩDk

to denote the ith most
preferred operator for SU Dk, we can rank the operators
from the most to the least preferred ones for SU Dk and
write its preference as Ro

Dk
= ⟨1̃Dk

, 2̃Dk
⟩ where 1̃Dk

= 2

and 2̃Dk
= 1 in this example. Similarly, if we use S̃n

Dk
to

denote the nth most preferred sub-band for SU Dk of its
chosen operator i, we can write the preference of
Dk ∈ Ui over the set Si of sub-bands as
Rb

Dk
= ⟨S̃1

Dk
, S̃2

Dk
, . . . , S̃Ni

Dk
⟩. We can also write the

1Applying a linear function of the resulting interference as the pricing
function of the operators has been adopted in [6], [8], [37], [38]. Applying
a linear function of SINR for each SU as the pricing function is motivated
by the fact that many existing telecommunication mobile systems charge
according to their communication data rates, which are monotonically
increasing functions of SINR. Note that, in these pricing functions, the
operator can control the interference of SUs to the PU network by
adjusting the value of pricing coefficient βi [6].
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preference of each SU Dk as RDk
= ⟨Ro

Dk
,Rb

Dk
⟩. We

denote Ro = {Ro
Dk

}Dk∈D, Rb = {Rb
Dk

}Dk∈D and
R = {RDk

}Dk∈D. We assume that each operator i will
only release sub-band information to the SUs that have
been given permission to access its spectrum. In other
words, an SU Dk can only establish the preference Rb

Dk

over the sub-bands of operator i if the request sent by SU
Dk has been accepted by operator i.

The operator and sub-band finally allocated to each SU
Dk not only depend on the preference of SU Dk but also
relate to the conflict-solving rules employed by the
operators and the payoffs and preferences of other SUs.
Therefore, establishing a proper rule for the operators to
accept or reject the requests of SUs is very important. We
consider distributed optimization for the DSA problem in
a CR network and assume SUs cannot exchange
information with each other or know the preference or
conflict-solving rules of PUs.

Since each SU will send its request signal to the
operators before accessing any sub-band, each operator
can use the received request signal to evaluate the
resulting revenues and establish its preference over the
requesting SUs. In our model, different operators can
belong to different network systems and hence cannot
communicate or exchange information such as the
preference and the revenues with each other. Note that
each operator needs to first decide whether to grant
permission to access its spectrum to SUs before knowing
which specific sub-bands will be requested by each SU.
In this paper, we mainly focus on the dynamic spectrum
access (DSA) of SUs, and assume the preference Ri of
each operator i over the SUs has been established based
on a predefined criterion unrelated to the final sub-band
allocated to each SU2. For example, if the operators try to
maintain a guaranteed worst case revenue from SUs, the
preference of each operator j will be a list of SUs in the
order of the guaranteed minimum revenue obtained when
each SU accesses the sub-band providing the minimum
revenue, i.e., the preference of operator i over SUs is
given by Ri = {D̃1

i , D̃
2
i , . . . , D̃

K
i } where D̃k

i is the kth
most preferred SU of operator i and, for any two SUs
D̃n

i , D̃
k
i ∈ D, n < k if ηmin

i [Dn] > ηmin
i [Dk], where

ηmin
i [Dk] = min

Sl
i∈Si

{
ηSl

i
[Dk]

}
, ∀Dk ∈ D.

After a set of SUs obtains permission to access sub-bands
of operator i, they will compete with each other for the set
of sub-bands Si. In this case, operator i can also establish
a preference RSl

i
for each of its sub-band Sl

i over all the

2This setting has already been applied in many practical systems. For
example, in college admission systems, many universities have general
admission requirements, such as SAT score and high school transcripts,
for accepting students [39]. These requirements are unrelated to which
departments or programmes the students finally choose.

accepted SUs3, i.e., the preference for sub-band Sl
i , denoted

by RSl
i
= {D̃1

Sl
i
, D̃2

Sl
i
, . . . , D̃

|Ui|
Sl
i

}, should satisfy that, for

any two SUs D̃n
Sl
i
, D̃k

Sl
i
∈ Ui, n < k means ηSl

i
[Dn] >

ηSl
i
[Dk].

In a CR network, each SU needs to request permission
from an operator before accessing its sub-bands. In many
practical systems, once the request has been accepted, an
agreement (e.g., a contract) between the SUs and the
operators that accept their requests will be enforced to
avoid SUs changing their decisions within a short period
of time and also to prevent the operators from retracting
the allocated sub-bands from SUs within the agreed time
period. For example, in a telecommunication system, a
mobile service subscriber needs to sign a fixed-term
contract with a telecommunication operator and cannot
switch to another operator within the contract period. In
this paper, we assume the communication time can be
divided into time slots. At the beginning of each time
slot, all SUs decide which operators and sub-bands to
send their request to. The SUs cannot change their
decisions during the rest of each time slot, but can switch
to different operators and sub-bands in different time
slots. In the rest of this paper, we focus on designing a
mechanism that can incentivize SUs to make decisions
based on their true preference and eventually approach a
socially desirable outcome. It is generally unrealistic to
assume each SU can predict the type information of other
SUs instantaneously before it makes decisions at the
beginning of each time slot. It is however possible for
each SU to eavesdrop on the past decisions of other SUs.
Therefore, we assume each SU can observe the decisions
of other SUs in the previous time slots. Note that the
belief and the decision of each SU in the current time slot
are private information that is nnot be known by other
SUs.

IV. A BAYESIAN GAME FRAMEWORK AND
MECHANISM DESIGN FOR DSA PROBLEM

A. A Bayesian Game Framework

We model the DSA problem of SUs as a Bayesian game,
referred to as the DSA game, which is formally defined as
follows:

Definition 1: The DSA game is defined by a tuple
G = ⟨D,A,T ,B, ϖ̄⟩ where D is the set of players (i.e.,
SUs), A = {ADk

}Dk∈D is the action space of SUs,
T = {TDk

}Dk∈D is the type space of SUs,
B = {BDk

}Dk∈D is the belief function of SUs about
types of others, and ϖ̄ is the payoff of SUs.

In DSA game, action aDk
= ⟨aoDk

, abDk
⟩ of each SU

Dk can be divided into two parts: operator selection

3As observed in Section III, to maintain the QoS of the existing PUs,
the sub-band sharing between SUs and PUs needs to be strictly controlled
by the operators. Therefore, the preference of each sub-band over the SUs
has to be established and maintained by the operators. To simplify our
discussion, in this paper, we use the term “preference of sub-band” to
denote the preference of the operator over the access by the SUs to each
of its sub-bands.
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action aoDk
∈ O ∪ {∅} specifies which operator SU Dk

will send its request to, and sub-band selection action
abDk

∈ S ∪ {∅} specifies which sub-band SU Dk will
request after being granted permission to access the
spectrum of an operator. We can write set ADk

of the
possible actions of each SU Dk as
ADk

= O ∪ {∅} × S ∪ {∅}. For example, aoDk
= i means

SU Dk decides to send request to operator i. If aoDk
= ∅,

it means Dk does not send a request to any operator. We
also use abDk

= Sl
i to mean that Dk will send a request

for sub-band Sl
i after being accepted by operator i.

Similarly, we use abDk
= ∅ to mean Dk does not send a

request for any sub-band. We denote ao = {aoDk
}Dk∈D,

ab = {abDk
}Dk∈D and a = {aDk

}Dk∈D. The request sent
by each SU to the operators for sub-bands can be rejected
according to the operator’s conflict-solving rules. We
define the conflict-solving rule of operators as a function
Γo such that Γo (Dk,a

o) = i means that operator i
accepts the request sent by SU Dk. If Dk cannot obtain
permission to access the spectrum of any operator, we
write Γo(Dk,a

o) = Dk. Similarly, we define the
conflict-solving rule of sub-bands4 as a function Γb such
that Γb(Dk,a

b) = Sl
i means that Dk has been given

permission to access sub-band Sl
i of operator i. We use

Γb(Dk,a
b) = Dk to mean that Dk cannot access any

sub-band of its operator. We denote the final operator and
sub-band allocation structure as Γ = ⟨Γo,Γb⟩, i.e.,
Γ(Dk,a) = ⟨i, Sl

i⟩ means Dk has been assigned to
operator i and sub-band Sl

i . The type yDk
∈ TDk

of each
SU Dk which includes its preference over the possible
actions is private information and can only be known by
itself. Each SU cannot know the types of other SUs but
can establish a belief function about actions of other SUs
using its previous observations. Since each SU decides its
action using its type, we can define a strategy function
fDk

for each SU Dk to map its type into an action, i.e.,
fDk

: TDk
→ ADk

. In this way, we can convert the belief
BDk

(
y−Dk

)
of each SU Dk about the types of their SUs

into the belief about the actions of other SUs, denoted as
bDk

(a−Dk
). From the previous discussion, it can be

observed that the final operator and sub-band allocation
structure can be determined by the action profile of all
SUs and the conflict-solving rules of operators and
sub-bands. We can hence write the expected payoff of
each SU Dk achieved by its action aDk

and belief
bDk

(a−Dk
) for the given conflict-solving rules of

operators and sub-bands as

ϖ̄Dk
(aDk

, bDk
(a−Dk

)) (5)

=
∑

a−Dk
∈A−Dk

bDk
(a−Dk

)ϖDk

[
Γb

(
Dk,a

b
)]

,

where −Dk denotes all SUs except Dk and
ϖDk

[
Γb

(
Dk,a

b
)]

is the payoff obtained by Dk when

4In most existing wireless networking systems, the operator controls the
sub-band usage. Therefore, in this paper, we use the term “conflict-solving
rule of sub-band” to mean the acceptance and rejection decision of the
operator about the request sent by SUs for each of its sub-bands.

..
.

A Set of Agents A Forest

SUs Operators Sub-bands PUs

(Roots) (Leaves)

Fig. 2. A forest matching structure for the CR network
given in Figure 1.

accessing sub-band Γb
(
Dk,a

b
)

defined in (2). Note that
Γb

(
Dk,a

b
)

is the result of the action profile of all SUs
as well as the conflict-solving rules of both operators and
sub-bands.

We consider a (finitely) repeated game setting in which
each SU can learn from the resulting payoffs and the
observations of the previous time slots and update its
belief function at the end of each time slot. Each SU will
then use the updated belief function to decide its
preference and action for the next time slot.

The main solution concept in our proposed DSA game is
the Bayesian Nash equilibrium, which is formally defined
as follows:

Definition 2: A Bayesian Nash equilibrium of the DSA
game is an action profile a∗ = ⟨a∗Dk

⟩Dk∈D such that

ϖ̄Dk

(
a∗Dk

, bDk

(
a∗
−Dk

))
≥ ϖ̄Dk

(
aDk

, bDk

(
a∗
−Dk

))
,

∀aDk
∈ ADk

and Dk ∈ D. (6)

A Bayesian Nash equilibrium a∗ is said to be (Pareto)
optimal if there is no other Bayesian Nash equilibrium a′

such that ϖ̄Dk

(
a∗Dk

, bDk

(
a∗
−Dk

))
≤

ϖ̄Dk

(
a′Dk

, bDk

(
a′
−Dk

))
∀Dk ∈ D where the inequality

holds strictly for at least one SU.

B. Bayesian Mechanism Design

It has been observed [11], [30] that for an unrestricted
domain of the action profiles of SUs, at least one SU can
always improve its performance by misrepresenting its
true type, assuming other SUs tell the truth. We hence
also seek a mechanism that prevents SUs from obtaining
benefits by “cheating” on their strategies. We define a set
Λ of alternatives (candidates) as the set of all possible
operator and sub-band allocations of SUs. As mentioned
previously, for a given conflict-solving rule, each action
profile of SUs will result in a sub-band allocation scheme
for SUs, i.e., we use λ ∈ Λ to denote an operator and
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sub-band allocation scheme. Let us define the social
choice function as follows:

Definition 3: A social choice function c : T → Λ is a
mapping from the type of all SUs to a single candidate of
the social choice.

The social choice function specifies the possible resulting
outcome of our DSA game with each type profile y of SUs.
Let us define the Bayesian mechanism as follows:

Definition 4: [11, Chapter 9.3.2] [21, Chapter 4.1] A
Bayesian (direct revelation) mechanism for the DSA game
is given by the type space T , belief function b, action
space A defined in Definition 1, an alternative set Λ,
payoff ϖ̄Dk

for each SU Dk and an outcome function
u : A → Λ. A Bayesian mechanism implements a social
choice function c if for some Bayesian Nash equilibrium
a∗ of DSA game, we have c (y) = u (a∗) for all y ∈ T .
A Bayesian mechanism is said to be incentive compatible
(also called strategy-proof or truthful) if the social choice
function c (y) = λ satisfies the following condition for all
SUs,

ϖ̄Dk

(
a∗Dk

, bDk
(a−Dk

)
)
≥ ϖ̄Dk

(aDK , bDk
(a−Dk

)) ,

∀Dk ∈ D, a∗Dk
, aDk

∈ ADk
, and a−Dk

∈ A−Dk
.

In this paper, we seek a mechanism that plays the role
of an invisible hand, that is, when SUs interact through the
mechanism, despite the private information, self-interested
and autonomous behavior of the SUs, they will have an
incentive to make their decisions based on their true type
information, which eventually leads to the optimal Bayesian
Nash equilibrium of the DSA game.

V. BAYESIAN HIERARCHICAL MECHANISM DESIGN
USING A FOREST MATCHING ALGORITHM

To design a mechanism for CR networks, we need to
develop the conflict-solving rule for operators and
sub-bands and, for the SUs, we should establish the
competition policies that can lead to the optimal Bayesian
Nash equilibrium. This motivates us to model the
interaction between the SUs and the PU network as a
two-sided matching market. In the rest of this section, we
propose a distributed algorithm that approaches a unique
and stable matching structure which coincides with the
optimal Bayesian Nash equilibrium of the DSA game. We
then introduce a Bayesian hierarchical mechanism that
can incentivize truth-telling by all SUs.

We first model the PU network as a two-layer forest as
follows. The PU network consists of a forest structure
with L trees, each of which corresponds to an operator
and its sub-bands. More specifically, the roots of the
forest represent the operators, and the leaves represent the
operators’ sub-bands and associated ability to share their
sub-bands with SUs (i.e., payoffs and channel gains
associated with sub-band sharing). We introduce a forest
matching market, in which the set of SUs will be first
partitioned into L sub-sets, each of which corresponds to
a set of SUs matched to the same operator (root). Each
SU can then request a sub-band (leaf) of its matched

Operator Selection Algorithm B
elief

U
p
d
ate

K SUs

SUs matched

with Operator 1

SUs matched

with Operator 2

SUs matched

with Operator L
...

Sub-band Selection

Algorithm

Sub-band Selection

Algorithm

Sub-band Selection

Algorithm

Fig. 3. The relationship between different algorithms for our stable forest
matching market.

operator (root). Let the forest be H = ⟨V, E⟩ where
V = S ∪ O is the set of vertices consisting of both roots
and leaves and E is the set of edges connecting different
vertices. In the PU network, only each root (e.g., operator
i) and its corresponding leaves (e.g., sub-bands in Si) are
connected with edges. We illustrate the forest matching
market for the CR network of Figure 1 in Figure 2. Let
us formally define the forest matching market as follows:

Definition 5: We define a forest matching market as F =
⟨D,H,≻⟩ where D is a set of agents, H is a forest structure,
and ≻ is the preference.

We mainly focus on a (two-sided) forest matching market
with a two-layer forest structure in one side of the market.
In this market, the preference of each agent over a forest
consists of two preference lists: the preference over the
roots and the preference over the leaves. Similarly, each
root or leaf can also have a preference over the agents.
Our model can be extended into more general cases that
contain a forest with more than two layers by introducing
the preferences for agents (and each element in each layer)
over elements in each layer (and agents), which will be
discussed in Section VI. In the rest of this paper, we abuse
the notation and use j and Si

j to denote the jth root and
the ith leaf in root j, respectively.

The above definition can be regarded as a generalization
of the traditional two-sided stable matching markets [4],
[11], [30] into a forest structure. Note that if there are no
roots in the forest structure (called a zero-connection or
zero-order forest [12]), the forest matching market becomes
equivalent to the two-sided matching market.

Each agent Dk ∈ D can only obtain its payoff after being
matched to a specific leaf belonging to a specific root. Let
us define the matching between the agents and a forest as
follows:

Definition 6: We define a (2-layer forest) matching as
M = ⟨Mo,M b⟩ where

1) Mo is a function from the set D ∪ O into the set
of unordered families of elements of D ∪O such that
|Mo(Dk)| = 1 for every agent Dk and Mo(Dk) = Dk

if Mo(Dk) /∈ O, |Mo(i)| ≤ qi for every i ∈ O, and
Mo(Dk) = i if and only if Dk ∈ Mo(i),

2) M b is a function from the set D ∪ S onto itself such
that if M b(Dk) ̸= Dk, then M b(Dk) ∈ S and if
M b(Sk

j ) ̸= Sk
j then M b(Sk

j ) ∈ D, and
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M b(Dk) = Sk
j ⇔ M b(Sk

j ) = Dk ∀Dk ∈ Mo(j).
In our model, not all SUs will be accepted by the

operators. We use Mo(Dk) = Dk or M b(Dk) = Dk to
mean that SU Dk cannot be matched with any operator or
sub-band. Note that in the forest matching market, for
each agent Dk, being matched with a root i cannot
guarantee that it will also be matched with a leaf in Si,
i.e., even if Dk satisfies Mo(Dk) ̸= Dk, it can still have
M b(Dk) = Dk.

Let us define the dynamic spectrum access of SUs in a
CR network as a forest matching market FDSA = ⟨D,H,≻
⟩ in which the agents are the SUs. H is the forest structure
of the PU network, where the operators are the roots and
the sub-bands licensed to the operators are the leaves.

Our main objective is to develop an algorithm that can
achieve a stable matching between the SUs and the PU
network. We introduce the concept of stability for the forest
matching market as follows:

Definition 7: A (forest) matching M is said to be stable
if every agent believes that matching M cannot be strictly
improved upon by any agent, agent-and-root, or agent-and-
leaf pair.

Finding the optimal action profile of SUs requires us to
jointly optimize two sub-problems, the operator and
sub-band selection sub-problems, and the belief function
of SUs. In the remainder of this section, we first model
the operator selection sub-problem as a two-sided
many-to-one matching market with private belief (to be
discussed in Section V-A) in which the SUs will be
matched to L operators. We then model the sub-band
selection sub-problem as a two-sided one-to-one matching
market with private belief (to be discussed in Section
V-B). At the end of each time slot, each SU obtains its
payoff and updates its belief using a Bayesian belief
updating algorithm (to be discussed in Section V-C). We
illustrate the relationship between different markets and
corresponding algorithms in Figure 3.

A. Operator Selection Sub-market
In this and next subsections, we assume that each SU

Dk has a fixed private belief function bDk
(a−Dk

). We
will relax this assumption and discuss the Bayesian belief
updating algorithm in Section V-C.

Each SU Dk tries to be matched with an operator which
is believed to be able to provide the sub-band that can
maximize the payoff of Dk. We model this problem as a
two-sided many-to-one matching market with private belief,
which is defined as follows:

Definition 8: A (two-sided many-to-one) matching
market with private belief is a market
GM1 = ⟨D,O, b,≻⟩ where D and O are two finite and
disjoint sets of agents, b is the vector of the given belief
functions, and ≻ is the preference of each agent.

We define the operator selection sub-problem as a (two-
sided many-to-one) matching market with private belief,
referred to as the operator selection sub-market, in which
D is the set of SUs, O is the set of operators and b is the
belief of SUs.

In the operator selection sub-market, each SU Dk will
first send a request to the operator which, according to the
belief function of Dk, will allocate the payoff-maximizing
sub-band to Dk. However, the final sub-band that will be
allocated by each operator to SU Dk is not only related to
action aDk

of Dk but also depends on the types and belief
functions of other SUs which are unknown to SU Dk. Each
SU Dk needs to estimate the expected payoff obtained from
each operator i using its belief function, i.e., for the given
belief function bDk

(a−Dk
) of SU Dk, the expected payoff

of Dk when Dk chooses action aoDk
= i is given by

ϖ̂Dk

(
aoDk

= i, bDk
(a−Dk

)
)

(7)

= max
ab
Dk

∈Si∪{∅}

∑
a−Dk

∈A−Dk

bDk
(a−Dk

)ϖDk

[
M b (Dk)

]
,

where ϖDk

[
M b (Dk)

]
is given in (2). Each SU Dk can

then establish the preference list Ro
Dk

about the operators
by ranking the above expected payoffs obtained from each
operator in (7) from the highest to the lowest.

We use Dk≻iDn to denote that operator i prefers SU
Dk to SU Dn, i.e., ηmin

i [Dk] > ηmin
i [Dn], and use

i≻Dk
m to denote that SU Dk prefers accessing the

spectrum of operator i to that of operator m for i ̸= m
and i,m ∈ O, i.e., ϖ̂Dk

(
aoDk

= i, bDk
(a−Dk

)
)

>
ϖ̂Dk

(
aoDk

= m, bDk
(a−Dk

)
)
.

In the operator selection sub-market, we seek a matching
Mo between SUs and operators that is optimal for SUs, that
is, there is no stable matching M ′o such that M ′o(Dk) ≻Dk

Mo(Dk) or M ′o(Dk) = Mo(Dk) for all Dk ∈ D with
M ′o(Dn) ≻Dn Mo(Dn) for at least one Dn ∈ D.

Note that the operator selection sub-market is
equivalent to the traditional two-sided many-to-one
matching market [30], also called the college admission
market (or the hospitals and residents market), except
that, in the latter market, there is no belief function for
each SU. This makes it possible for us to apply the
deferred-acceptance algorithm [5], [11] to achieve a
unique and stable matching between SUs and operators.

Before we present the detailed algorithm, let us briefly
discuss the timing structure of CR networks. At the
beginning of each time slot, the SUs send a request signal
to their preferred operators and wait for confirmation. If
an SU receives the confirmation of acceptance from the
requested operator, it will then compete with the other
accepted SUs for the sub-bands of the operator. We will
provide a more detailed discussion about the sub-band
selection sub-problem in the next subsection. Let us now
present the detailed operator selection algorithm as
follows:

Algorithm 1: An Operator Selection Algorithm
Input: Each SU Dk establish a preference Ro

Dk
using (7). Every

operator i establishes a preference Ri.
Output: a matching Mo.

1) Initilization: Every SU Dk sends a request signal to its most
preferred operator aoDk

= 1̃Dk
,

2) WHILE every SU is on the waiting list of an operator and no
operator will reject any SU
i) Each SU Dk that receives a rejection message from

operator i removes operator i from its preference Ro
Dk

,
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and then sends a request signal to the most preferred
operator in the updated Ro

Dk
.

ii) Each operator i establishes a waiting list and keeps up to
qi most preferred SUs that send requesting signals to it into
its waiting list and rejects the remaining requesting SUs.

ENDWHILE
3) Every operator sends accepting message to the set of SUs in

its waiting list.

The above algorithm is a direct application of the
modified deferred-acceptance algorithm for the two-sided
matching market introduced in [30]. Note that if an SU
has been rejected by all operators at the end of the above
algorithm, it cannot access any sub-band of the operators.

From Algorithm 1, we can write the conflict-solving
rule for the operator as follows: if the number of SUs who
send request to operator i exceeds qi, operator i will send
rejection messages to all the SUs except for the qi most
preferred SUs that have send requests to operator i so far.

We can prove the following result about Algorithm 1.
Proposition 1: Algorithm 1 terminates in a unique and

stable matching and the resulting matching Mo between
operators and SUs is optimal for SUs.

Proof: See Appendix A.
We have the following result about the complexity of

Algorithm 1.
Proposition 2: The complexity of Algorithm 1 is

O(LK) in the worst case where L is the number of
operators and K is the number of SUs5.

Proof: See Appendix B.

B. Sub-band Selection Sub-market

After all SUs have been matched to the operators, each
SU can then decide which specific sub-band it can access.
To solve this problem, we can model this problem as a
two-sided one-to-one matching market with private belief,
which is defined as follows:

Definition 9: Let us define the two-sided one-to-one
matching game with private belief as
GM2 = ⟨Ui,Si, b,≻⟩, which consists of two sets of finite
and disjoint sets of agents Ui and Si, a vector of beliefs
and the preference ≻.

We model the sub-band selection sub-problem as a
two-sided one-to-one matching market with private belief,
referred to as the sub-band selection sub-market, in which
Ui = Mo(i) is the set of SUs matched to operator i by
Algorithm 1 and Si is the set of the existing sub-bands
controlled by operator i. The belief function is defined in
Section IV. In the sub-band selection sub-market, the SUs
accepted by the same operator (e.g., operator i) compete
for set Si of sub-bands. Each SU can also establish an
estimated version of its expected payoff obtained from
each of its sub-band selection action as follows:
supposing Dk has been accepted by operator i, we define
the estimated payoff of SU Dk when Dk sends a request

5We use Bachmann-Landau notation: f = O(g) if lim
n→∞

f(n)
g(n)

< +∞.

for sub-band Sl
i as

ϖ̂Dk

(
abDk

= Sl
i, bDk

(a−Dk
)
)

(8)

=
∑

a−Dk
∈A−Dk

bDk
(a−Dk

)ϖDk

[
M b (Dk)

]
.

Each SU Dk accepted by operator i can then establish its
preference Rb

Dk
over sub-bands in Si by ranking the

estimated payoff in each sub-band of operator i in (8)
from the highest to the lowest values. Operator i can also
evaluate the preference Rb

Sl
i

of each sub-band Sl
i over the

accepted SUs using its received request signals sent by
the SUs. We abuse the notation and use Sl

i≻Dk
Sm
i to

denote that SU Dk prefers sub-band Sl
i over sub-band

Sm
i , i.e., ϖ̂Dk

(
abDk

= Sl
i, bDk

(a−Dk
)
)

>
ϖ̂Dk

(
abDk

= Sm
i , bDk

(a−Dk
)
)
. Similarly, Dk≻Sl

i
Dn

means sub-band Sl
i prefers SU Dk over SU Dn, i.e.,

ηSl
i
[Dk] > ηSl

i
[Dn] for Dk, Dn ∈ Mo(i).

Similar to the operator selection sub-market, we seek a
matching M b between SUs and sub-bands of their
matched operator that is optimal for SUs, that is, there is
no stable matching M ′b between the set Mo(i) of SUs
and set Si of sub-bands such that M ′b(Dk) ≻Dk

M b(Dk)
or M ′b(Dk) = M b(Dk) for all Dk ∈ Mo(i) with
M ′b(Dn) ≻Dn M b(Dn) for at least one Dn ∈ Mo(i).

Similarly, we can observe that the above matching
market is equivalent to the traditional two-sided
one-to-one matching market [30], also called the stable
marriage market, with the exception that set Ui and the
preference of each SU depend on its belief. We can again
apply the deferred-acceptance algorithm to achieve a
unique, optimal and stable matching. We refer to this
algorithm as Algorithm 2: sub-band selection
algorithm. This algorithm is similar to the operator
selection algorithm described in Algorithm 1 with the
difference that the quota for each sub-band is 1. Similarly,
we can write the conflict-solving rule for the sub-band as
follows: if there are two or more SUs who send request
for sub-band Sl

i , operator i will send rejection messages
to all the SUs except for the most preferred SU that sends
request for sub-band Sl

i so far. We omit the detailed
description of the algorithm due to space limitations.

We have the following results.
Proposition 3: Algorithm 2 terminates in a unique and

stable matching and the resulting matching M b between
SUs and sub-bands is optimal for SUs .

The proof of the above proposition follows the same line
as that of Proposition 1. We omit the detailed derivation due
to the space limitations.

We have the following result about the complexity of
Algorithm 2.

Proposition 4: The complexity of Algorithm 2 for every
operator i in the worst case is O (Ni · |Ui|).

The proof of the above proposition follows the same line
as that of Proposition 2. We omit the details.

C. Bayesian Hierarchical Mechanism
In this subsection, we introduce a Bayesian belief

updating algorithm for all SUs to iteratively update their
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beliefs. We use [t] to denote the parameters in the tth
time slot. From Proposition 1 in Section III, it can be
observed that for each action profile a, belief function
and preference of SUs, the resulting matching Mo

between SUs and operators is also determined. From
Proposition 3, we can observe that for every matching
Mo achieved by Algorithm 1, the preference of each SU
Dk over sub-bands of its matched operator is also fixed.
Combining these two observations, we can claim that, for
every given preference profile R which is calculated by
the beliefs of SUs, the resulting matchings in both
operator and sub-band selection sub-markets using
Algorithms 1 and 2 are fixed. To optimize the matching
for the operator selection and sub-band selection
sub-markets, SUs only need to determine their belief
function. Following the same line as Section III, each
SU’s belief regarding the resulting matchings and the
preferences of other SUs follow from an unknown
stationary distribution [9], and hence each SU can use the
following equation to calculate the belief about the
operator selection action profile of other SUs at the
beginning of each time slot t,

bDk
(a−Dk

[t]) =
θDk

(a−Dk
[t− 1])

t− 1
(9)

where θDk
(a−Dk

[t− 1]) =
∑

u∈{1,...,t−1}
Dir (a−Dk

[u]

= a−Dk
[t− 1]) is the number of times that SU Dk

observes actions a−Dk
[t − 1] of other SUs during the

previous t − 1 time slots and Dir(·) is the Dirac delta
function. After updating its belief using (9), each SU
updates its preference over operators and sub-bands using
(7) and (8), respectively. The main idea of the above
belief updating rules is that each SU estimates the
resulting matching using the frequency with which each
matching has been observed in the previous history.

Since each SU cannot have any observation history
before the start of the spectrum access process, it is
necessary for each SU to set a prior distribution
bDk

(a−Dk
[0]) at the beginning of the process. This prior

can be obtained by allowing all SUs to go through a
training process. More specifically, all SUs can randomly
choose their operators to establish a prior distribution
during the training period. Note that the prior distribution
obtained by each SU does not affect the long-term
learning process of SUs because as each SU receives
more and more observations over time, the effects of this
prior distribution will be outweighed [9].

Let us present the Bayesian hierarchical algorithm as
follows:

Algorithm 3: A Bayesian Hierarchical Algorithm

Initialization: Each SU Dk has a prior belief bDk

(
a−Dk

[0]
)
,

WHILE the matching of the forest matching market is not stable,
1) SUs enter the operator selection sub-market and apply

Algorithm 1 to find the stable matching Mo,
2) After being matched to the operators, SUs enter the sub-band

selection sub-market and apply Algorithm 2 to find the stable
matching Mb,

3) After all SUs are matched to the operators and sub-bands,
they use equation (9) to update their beliefs and then apply

equations (7) and (8) to update their preferences about the
operators and sub-bands at the beginning of the next time slot.

ENDWHILE

Theorem 1: We have the following results about
Algorithm 3:

1) For the resulting beliefs of SUs, Algorithm 3
terminates in a unique and stable matching M∗, and
the Bayesian hierarchical mechanism associated with
Algorithm 3 is incentive compatible for SUs.

2) Suppose the belief of each SU converges to a stable
probability distribution before time slot t and matching
M [t] satisfies M [t] = M∗ where M∗ is the stable
matching with the resulting belief. Then M [τ ] = M∗

for all τ > t using Algorithm 3.
3) The action profile a∗ achieved by Algorithm 3 is the

unique and optimal Bayesian Nash equilibrium of the
DSA game with the resulting beliefs.
Proof: See Appendix C.

In the rest of this sub-section, we derive the worst case
complexity of Algorithm 3 in each iteration.

Proposition 5: The complexity of Algorithm 3 in each
iteration in the worst case is given by O(L2N2K) for N =
max
i=O

{Ni}.
Proof: See Appendix D.

Note that, in practice, the number of operators in each
specific local area is always limited, e.g., most countries
only have three or four major telecommunication operators
(e.g., there are 4 major mobile telecommunication operators
that provide services to cover most of the population in in
the United States.). Therefore, if we can regard L as a small
fixed integer, the complexity of each iteration of Algorithm
3 in the worst case can be rewritten as O(N2K).

VI. EXTENSIONS AND FUTURE WORKS

Our proposed Bayesian hierarchical mechanism design
and stable forest matching framework can be extended to
more complex network systems. In this section, we describe
how to extend our proposed framework into the case with
PU networks consisting of more than two layers (to be
discussed in Section VI-A) and the case with multiple PUs
and SUs sharing the same sub-band (to be discussed in
Section VI-B). We will also discuss the possible directions
of our future work in Section VI-C.

A. Bayesian Hierarchical Mechanism Design for Systems
with More Than Two Layers

Some practical networks can consist of a hierarchical
structure with more than two layers. For example, the PU
network can be a heterogenous network in which each
operator possesses multiple co-located macro-cells,
micro-cells, and/or femto-cells. Each cell consists of a
base station that controls the sub-band allocation. In this
case, if each SU tries to access a sub-band, it needs to
first send the request to an operator and, once its request
is accepted, send the request to a base station. The SUs
can only access the sub-bands after being accepted by
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(CC) selection algorithm.

both the requesting operator and base station. Since the
SUs cannot exchange information with each other, we can
again define the interactions of competing SUs as a
Bayesian game. To design a distributed mechanism that
can approach the optimal Bayesian Nash equilibrium, we
can model the interaction between the SUs and the PU
network as a forest matching market. Specifically, we can
model the PU network as a 3-layer forest with operators
as roots and each base station and its corresponding
sub-bands as a branch. A unique and stable matching
between the SUs and each layer of the forest structure
can be achieved by the same two-sided matching
algorithms as discussed in Sections V-A and V-B. Each
SU will update its belief function after being matched
with a sub-band. We illustrate the relationship between
different matching algorithms for a 3-layer forest
matching mechanism in Figure 4. Similarly, we can apply
our Bayesian hierarchial mechanism design framework to
optimize the system with a forest structure consisting of
more layers.

B. Allowing Multiple SUs to Share the Same Sub-band

It can be observed that the spectrum utilization
efficiency can be further improved by allowing multiple
SUs to share the same sub-band. As mentioned
previously, allowing multiple SUs to access the same
sub-band requires careful design of the interference

control rule for both SUs and PUs because even one SU
with high transmit power can cause intolerable
interference to all other SUs and PUs sharing the same
sub-band. One way to support multi-SU sub-band sharing
in a CR network is to impose a centralized interference
control mechanism by the operators. More specifically,
each operator i can allow more SUs to access its
sub-bands, i.e., qi ≥ Ni, and keep monitoring the
interference level for each of the sub-band sharing PUs
and SUs. We define the set of sub-band sharing structures
in each operator i as the set of all allocation schemes of
qi SUs to sub-bands in Si. Each operator will need to first
evaluate the resulting revenues for all Ni

qi possible
sub-band sharing structures and then choose the structure
that can maximize its revenue. We can replace the
conflict-solving rule defined in Section V with the above
revenue-maximizing sub-band sharing rules for each
operator. We can then apply the same belief updating
methods in (9) for each SU to update its belief function
after being matched with a sub-band and use equations
(7) and (8) to decide its preferences over operators and
sub-bands at the beginning of the next time slot.

Another way is to introduce a distributed coalition
formation algorithm for the SUs to form different groups,
each of which corresponds to a set of SUs sharing the
same sub-band. More specifically, each SU after being
accepted by operator i will not just establish a preference
over all sub-bands in Si but should establish a preference
over all the possible sub-band sharing structures. SUs can
then form different coalitions according to their
preferences using distributed coalition formation
algorithms [17], [40], [41]. Note that, different from
Algorithm 2, in order for each SU to establish a
preference over all the sub-band sharing structures, the
SUs being matched with the same operator will need to
coordinate and exchange information before accessing any
sub-bands of the operator.

Our previously proposed hierarchical matching
framework [42] can also be applied to enforce multiple
SUs to share the same sub-band. To apply this
framework, each operator will further divide each
sub-band into multiple units, referred to as component
carriers (CC). Each SU will be first allocated a CC using
the same sub-band selection algorithm described in
Algorithm 2 (sub-band in Algorithm 2 should be replaced
by CC). After being allocated a CC, each SU can then
decide whether to aggregate its allocated CC with the
CCs of other SUs to further improve its performance. If
multiple SUs agree to form a sub-band sharing pair, they
will aggregate their CCs into a sub-band and share the
sub-band with each other. We can then model the
sub-band sharing problem as a roommate market where
all SUs can be partitioned into groups using the stable
partition/matching algorithm proposed in [43], [44]. We
describe the relationship of different markets and
corresponding algorithms of this method in Figure 5.
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C. Future Works

From the previous discussion, it can be observed that our
proposed stable forest matching algorithm is general and
can be applied to more complex systems. Our results also
point towards some new directions for future research. For
example, in our model, we mainly focus on the distributed
optimization of SUs and assume the conflict-solving rules
of the operators are fixed. It has already been proved in [30],
[45], for a two-sided matching market that, if all operators
can know each other’s preference as well as preferences
of the SUs, they can adjust their conflict-solving rules to
further improve their performance. Therefore, one future
direction of our research is to study whether it is possible
for the operators to also establish and maintain a belief
function to further improve their expected revenues in a
distributed fashion. Another potential direction for future
work is to study the effect of allowing partial monetary
transfers between PUs or SUs on the performance of CR
networks [46], [47].

VII. NUMERICAL RESULTS

In this section, we present numerical results to assess
the performance of our algorithms and mechanisms. Our
proposed Bayesian hierarchical algorithm is general in the
sense that each separate algorithm proposed for each of
the sub-problems, i.e., the operator and sub-band selection
sub-problems, can be individually applied to optimize CR
networks under different conditions. More specifically, if
SUs cannot establish a preference over the operators but
are randomly matched to the available operators, they can
still use the sub-band selection algorithm and the
associated mechanism introduced in Section V-B to
optimize their performance.

We consider a CR network in Figure 6 to simulate the
interaction between the SUs and the PU network with a
hierarchical structure. We model each SU as a
transmission link (denoted as blue lines in Figure 6) from
a source (denoted as a blue circle in Figure 6) to a
destination (denoted as a green circle in Figure 6), and
the PU network as a cellular system with a number of
operators randomly located around the center of the
coverage area (denoted as black rectangles in Figure 6)
each of which consists of a fixed number of sub-bands
and PUs (denoted as red triangles in Figure 6). In a
practical system, a communication link between the
source and destination should only be enabled when the
source and destination are close enough. We hence
assume the sources of the SUs are uniformly randomly
located in the coverage area and each destination is
uniformly randomly located within a fixed radius of its
corresponding source. We also assume all PUs are
uniformly randomly located in the coverage area. We
focus on the uplink transmission for the PU network and
each PU corresponds to a transmission link from the PU
to the corresponding operator. We consider the payoff and
revenue functions defined in (2) and (4) in Sections III
and IV. Let the channel gain between the source and
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Fig. 6. Simulation setup: we simulate the PU network as a cellular
network with multiple operators and the corresponding sub-bands. Each
SU is a communication link from a transmitter to a receiver. We use �
to denote operators, ♢ to denote PUs and green colored and blue colored
◦ to denote the transmitter and receiver of each SU, respectively.
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Fig. 7. The payoff sum of SUs for different sized networks with 50 SUs
and 5 operators, each of which controls 10 sub-bands. Every sub-band
contains a PU which is randomly located in the coverage area.

destination of SU Dk in sub-band Sl
i be

hDk[Sl
i]

=
h̃
Dk[Sl

i]√
dξ

Dk[Sl
i]

where h̃Dk[Sl
i]

is a fixed channel

fading coefficient, dDk
is the distance between the source

and destination of SU Dk and ξ is the pathloss exponent.
We also consider the channel gain between SU Dk and

PU P l
i to be hDkP l

i
=

h̃
DkPl

i√
dξ

DkPl
i

where h̃DkP l
i

is the

channel fading coefficient and dξ
DkP l

i

is the distance
between Dk and P l

i . In the remainder of this section, we
present numerical results to illustrate the performance of
our proposed algorithm under different conditions. We
mainly compare the following four algorithms:

1) Random Selection: SUs are randomly matched to the
operators and sub-bands.

2) Operator Selection: SUs are first matched to the
operators using Algorithm 1 discussed in Section
V-A. The SUs are then randomly matched to the
sub-bands of their operators. This corresponds to the
situation that each operator refuses to release all of
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Fig. 8. The number of spectrum sharing pairs formed between SUs
and PUs for different sized networks with 50 SUs and 5 operators, each
of which controls 10 sub-bands. Every sub-band contains a PU which is
randomly located in the coverage area.
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Fig. 9. The payoff sum of SUs under different numbers of SUs where
the system consists of 5 operators, each of which controls 10 sub-bands.
Every sub-band contains a PU which is randomly located in the coverage
area.

its sub-band information to SUs. In this case, each
operator pre-selects a sub-band for each of the
requesting SUs and only allows each SU to evaluate
its payoff in its designated sub-band. Knowing the
sub-band and the payoff that can obtain from the
operators, each SU can then establish a preference
over operators and then use Algorithm 1 to select its
operator.

3) Sub-band Selection: SUs are first randomly matched
to the operators. All SUs that are matched to the
same operator will then try to be matched to the
sub-bands using Algorithm 2 introduced in Section
V-B. This may correspond to the case that the SUs
cannot remember/store any previous observations
about the sub-bands of the operators, i.e., a
memoryless system.

4) Hierarchical Mechanism: SUs are matched to the
operators and sub-bands by using the Bayesian
hierarchical algorithm proposed in Section V-C.

Note that, as we have shown in Section V-C, if the SUs
can update their belief functions using (9), the action
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Fig. 10. The payoff sum of SUs under different numbers of operators.
We consider a system with 120 PUs and 120 SUs, and each operator has
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Fig. 11. The number of iterations required for all SUs to converge to
the optimal Bayesian Nash equilibrium.

profiles of SUs can always converge to the Bayesian Nash
equilibrium for the resulting beliefs. In the rest of this
section, we mainly focus on the case that SUs have
already obtained their belief functions.

In Figure 7, we fix the number of operators and
compare the payoff sum of SUs under different lengths of
the square-shaped coverage area, with a range from 200
to 2000 meters. Our considered coverage area covers the
femtocell, pico-cell (< 200 meters), micro-cell (> 200
meters) and macro-cell (> 1000 meters) systems [48]. We
observe that the random selection achieves the worst
payoff among all mechanisms. We find that only limited
payoff improvement can be achieved if each SU only
applies the operator selection algorithm. This is because,
in our simulation, the number of operators is limited and
is much smaller than the number of sub-bands. Hence, the
payoffs obtained by randomly selecting sub-bands in
different operators are similar. However, if we apply
sub-band selection algorithm for SUs to find their
matchings, the payoff can be significantly improved. In
other words, also optimizing the sub-band selection
sub-problem among SUs provides much higher payoff
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improvement than just optimizing the operator selection
sub-problem. We can also observe that further
performance improvement can be achieved by applying
Bayesian hierarchical mechanism proposed in Section
V-C.

In Figure 8, we consider the same setting as that of Figure
7 and assume that a spectrum sharing pair can only be
formed between an SU and a PU if both of their payoffs and
revenues exceed a fixed threshold. Again, we observe that,
comparing to the random selection, the sub-band selection
allows more spectrum sharing pairs to be formed between
SUs and PUs.

In Figure 9, we compare the payoff of SUs for different
numbers of SUs. We observe that if the number of SUs is
small, allowing SUs to use our proposed hierarchical
mechanism cannot provide much payoff improvement
compared to the random selection. However, continuously
increasing the number of SUs increases the competition
among SUs for operators and sub-bands, and hence
allowing SUs to use our proposed algorithm to optimize
their sub-bands, or operators, or both can significantly
improve their payoffs.

In Figure 10, we fix the number of SUs and PUs and
compare the payoff sum of SUs under different numbers
of operators. We observe that, by applying the operator
selection algorithm, the payoff sum of SUs increases with
the number of operators. However, the payoff sum
achieved by sub-band selection decreases with the number
of operators.

To study the convergence performance of our proposed
hierarchical mechanism, we present the number of
required iterations for SUs to approach the optimal
Bayesian Nash equilibrium in Figure 11. We observe that
the convergence performance of our proposed algorithms
in many practical systems can be much better than the
worst case convergence performance discussed in Section
V-C. In many practical CR networks, different SUs have
different relative distances to PUs and hence always result
in different payoffs when accessing different sub-bands
and operators. Only a limited number of SUs may choose
the same preferred sub-band, and the chance of more than
qi SUs choosing the same operator i is also low, even
when the number of SUs grows large. Therefore, our
proposed mechanism has the potential to significantly
improve the performance with a fast convergence rate in
some practical systems.

VIII. CONCLUSION

In this paper, we study CR networks in which the PU
network has a hierarchical structure consisting of a set of
operators, each of which has been licensed a set of
sub-bands. We model the dynamic spectrum access of
SUs in this CR network as a Bayesian non-cooperative
game, called DSA game. To develop a distributed
mechanism for our proposed game, we propose a novel
forest matching market to model the interaction between
the SUs and the PU network. We divide the dynamic

spectrum access problem for SUs into two sub-problems:
the operator and sub-band selection sub-problems, and
then propose operator and sub-band selection algorithms
to optimize these sub-problems. We combine these
algorithms with a Bayesian belief updating algorithm and
propose a Bayesian hierarchical algorithm that can result
in a unique and stable matching that coincides with the
optimal Bayesian Nash equilibrium of our proposed DSA
game. We prove that the Bayesian hierarchical mechanism
associated with our proposed algorithm can incentivize
true-telling by all SUs.

APPENDIX

A. Proof of Proposition 1

The proof of the above Proposition follows the same
line as that in [30]. We provide a brief description of the
proof for completeness. From Step 2) in Algorithm 1, we
can easily show that if an SU Dk has been rejected by
an operator i, there must exist at least qi other SUs which
are strictly preferred by operator i over SU Dk, and hence
any matching between SU Dk and operator i must not be
stable. Using this observation, we can also establish that if
an SU Dk has been rejected by operator i, all the SUs that
are less preferable to operator i than SU Dk will also be
rejected by operator i.

Combining the above two observations, if qi SUs and
an operator i are matched at the end of Algorithm 1, we
can claim that there is no other SU that is more preferred
by operator i than the qi SUs in the resulting matching
structure. This is from the fact that if such an SU, say
Dn, exists, at least one of the SUs in the final set of qi
SUs matched to operator i will be rejected by operator i in
Algorithm 1. And, similarly, each SU matched to operator i
cannot find another operator j that is more preferable than
operator i in the resulting matching structure, because if
such an operator j exists these SUs will not send a request
message to operator i.

B. Proof of Proposition 2

In Algorithm 1, the worst case happens when all SUs
can only choose the least preferred operator after
receiving (L − 1) rejections from the operators. In this
worst case, every SU will first send requests to (L − 1)
most preferred operators and then receive rejections from
all of them. In this case, the number of requests sent by
K SUs is K (L− 1), which results in complexity of
O(KL).

C. Proof of Theorem 1

First, let us consider the first part of result 1). Combining
Propositions 1 and 3, we can claim that for the given beliefs
at SUs, the matchings resulted from both operator and sub-
band selection algorithms are unique and stable. Since Step
1-2) in Algorithm 3 is equivalent to Algorithms 1 and 2,
the matching achieved by Algorithm 3 is also unique and
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stable for the resulting beliefs of SUs. We will present the
proof of the second part of result 1) at the end of this proof.

We now consider result 2). If M [t] = M∗ = ⟨Mo∗,M b∗⟩
in time slot t, we then have ϖ̄Dk

(
a∗Dk

, bDk

(
a∗
−Dk

))
>

ϖ̄Dk

(
a′Dk

, bDk
(a−Dk

)
)

in time slot t. Let us show that in
the next time slot t + 1, each SU will stick with M∗ and
will not change to other actions. In time slot t+1, SU Dk

will update its belief as follows:

bDk
(a−Dk

[t+ 1]) = αbDk
(a−Dk

[t]) (10)
+(1− α)Dir (a−Dk

[t+ 1]),

where α = t
t+1 . We can then rewrite the updated payoff

function of Dk as

ϖ̄Dk
(aDk

[t+ 1], bDk
(a−Dk

[t+ 1]))

= αϖ̄Dk
(aDk

[t], bDk
(a−Dk

[t])) +

(1− α)ϖ̄Dk
(aDk

[t+ 1], bDk
(a−Dk

[t+ 1])) ,

which is a linear combination of ϖ̄Dk
[t] and ϖ̄Dk

[t + 1].
It can be easily observed that choosing
aDk

[t + 1] = aDk
[t] = a∗Dk

maximizes both payoff
functions of SU Dk. This process is repeated in the
following time slots.

Let us consider result 3). First, from the definition of
stable matching in Definition 7, we can claim that for a
given stable matching Mo or M b, no SU has the
intention to deviate from Mo or M b by choosing another
operator or sub-band. In addition, according to the
definition of stable matching, if Mo is stable, there is no
other matching M ′o such that Dk and Dn are matched to
i and j, respectively, and also satisfies j ≻Dk

i and
Dk ≻j Dn. In other words, if two SUs can switch their
selected operators or sub-bands to improve their payoffs,
they are not in a stable matching. However, they may still
be in the Bayesian Nash equilibrium [10]. We hence can
claim that, for both operator and sub-band selection
sub-markets, the payoff sum of SUs achieved by the
action profile of SUs in a stable matching equals or is
greater than that achieved by the action profile in a
Bayesian Nash equilibrium but not a stable matching.

We can also observe that Algorithms 1 and 2 are
equivalent to a specific deferred-acceptance algorithm in
which SUs send their requests for the operators and
sub-bands first. This specific algorithm is also called a
deferred-acceptance algorithm with SU proposing, which
has the following property.

Proposition 6: If Mo and M b are the resulting
matchings of the deferred-acceptance algorithm with SU
proposing for operator and sub-band selection
sub-markets, then we have the following results: 1) For
the operator selection sub-market, there is no other
matching M ′o such that Mo(Dk) ≽Dk

M ′o(Dk) with
Mo(Dn) ≻Dn M ′o(Dn) for at least one Dn ∈ D, 2) For
the sub-band selection sub-market, there is no other
matching M ′b such that M b(Dk) ≽Dk

M ′b(Dk) with
M b(Dn) ≻Dn M ′b(Dn) for at least one Dn ∈ Ui where
i = Mo(Dn).

From the above results, we can claim that the matching
achieved by Algorithms 1 and 2 obtains the optimal
Bayesian Nash equilibria.

Let us consider the second part of result 1). Using the
above results, we can show that if each belief profile of SUs
corresponds to a unique action profile, we can use the same
method as in Proposition 1 to prove that there is no other
action profile for SUs that will provide higher payoffs for
SUs. In other words, misrepresenting the action for each
SU cannot provide any improvement for its payoff. This
concludes the proof.

D. Proof of Proposition 5

In each time slot, all SUs needs to go through Steps 1)
to 3) in Algorithm 3, which contains Algorithm 1 with a
complexity of O(KL) and Algorithm 2 with a complexity
of

∑
i∈O

O (Ni|Ui|). Using the fact that Ni < N and |Ui| ≤

Ni, we can claim that each iteration of Algorithm 3 has a
complexity of O(KLLN2).
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