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Abstract—This paper considers machine-to-machine (M2M)
communication for wireless-powered Internet-of-Things (IoT)
based networking systems. Motivated by the observation that
transmitting signals generally requires more energy than
receiving signals for most IoT-based systems, we study a special
wireless-powered M2M communication system in which the
receiver can send its surplus energy to the transmitter. We
propose a framework of wireless powered full-duplex M2M
communication (WP-FD-M2M) in which the energy transfer
from the receiver to the transmitter and the data transmission
from the transmitter to the receiver take place at the same time
over the same frequency. We establish a stochastic game-based
model, referred to as the M2M game, to characterize the
interaction between autonomous M2M transmitter and receiver.
We prove that, if the transmitter and receiver can sequentially
optimize their data transmission and energy transfer based on
the Markov strategy, it is possible to achieve the maximum
long-term performance for M2M communication without a
centralized controller or coordination between the transmitter
and receiver. Numerical results show that our proposed
approach can significantly improve the performance for M2M
communication under various situations.

Index Terms—Energy harvesting, wireless energy transfer,
machine-to-machine communication, full-duplex, game theory,
stochastic game.

I. INTRODUCTION

It is commonly believed that the next generation wireless

networks will be based on the concept of Internet-of-Things

(IoT) which is a new paradigm promised to bridge the gap

between the human and physical world by ubiquitously

connecting billions of “things” throughout the Internet. One

of the key enablers for IoT-based networks is

machine-to-machine (M2M) communication, which allows

mobile devices and machines to autonomously establish

wireless communication links with each other [1]. The IoT’s

vision of ubiquitous connectivity needs to be supported by

ubiquitous energy supply. Energy harvesting enables mobile

devices to power their services with energy harvested from

the surrounding environment, which provides a unique

opportunity to solve the energy problem for M2M

communication in IoT-based network systems.

Most existing works on wireless-powered communication

networks focus on the cases in which the wireless devices

can either harvest energy from the natural environment such

as the sunlight, wind, radio wave, and vibration, or receive

energy transferred from dedicated energy sources such as

power beacons [2], network access points, and cellular base

stations (BSs) [3], [4]. For example, it was recently

demonstrated that the energy harvested from ambient radio

frequency (RF) signals can support at least 1 kbps wireless

communication between two battery-free devices over a

distance of 2.5 feet [5]. One of the main challenges for

energy harvesting-based communication systems is that the

energy supply is generally unreliable due to the uncertainty

and unpredictability of the natural environment. Recent

development in wireless power transfer technology triggers

interest in wireless-powered communication systems

supported by dedicated energy sources. More specifically, a

hybrid communication system consisting of both cellular

mobile networks and dedicated wireless RF power transfer

infrastructure that can wirelessly charge nearby mobile

devices was studied in [2]–[4], [6], [7].

RF energy transfer has attracted significant interest due to

its ability to combine both data signal and wireless energy

signal together to achieve simultaneous wireless information

and power transfer (SWIPT) [8], [9]. It was shown that a

wireless powered full-duplex communication system has the

potential to further improve both the reliability of the energy

supply and spectrum utilization efficiency for many existing

network systems. Specifically, a wireless-powered relaying

system was studied in [10] where a full-duplex relay node

can simultaneously forward signals and receive RF energy

sent by the source. A full-duplex information and energy

transmission network was considered in [3] in which a

full-duplex cellular BS can simultaneously send an RF

energy signal and receive data packets to and from

half-duplex mobile devices, respectively. This result was

further extended into the cases that mobile devices can also

operate in full-duplex mode in [4].

In this paper, we focus on M2M communication for an

IoT system supported by energy harvesting. Different from

most existing works, which focus on centralized resource

allocation controlled by network infrastructure (e.g., cellular

BSs) and/or consist of dedicated energy sources deployed by

network operators or utility companies, we consider an M2M

communication link in which both transmitter and receiver

can harvest energy from external energy sources to support

autonomous wireless communication. Motivated by the

observation that, in many IoT systems, data transmission

causes higher energy consumption than that of data
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Fig. 1. System model for a wireless-powered full duplex M2M
communication link.

reception, we propose a novel framework referred to as

wireless-powered full-duplex M2M communication

(WP-FD-M2M) for IoT systems. In WP-FD-M2M, if an

M2M receiver harvests more energy than it can consume, it

can transfer the surplus harvested energy to the transmitter to

further improve the reliability of the energy supply for M2M

communication. The energy transfer from the receiver to the

transmitter, as well as the data transmission from the

transmitter to receiver, take place at the same time over the

same frequency. We focus on the distributed optimization for

WP-FD-M2M in which the transmitter can autonomously

schedule its energy use for data transmission and the receiver

can also decide by itself whether to transfer its surplus

energy to the transmitter in each time slot. Distributed

optimization problems for multiple agents with

energy-constraints in a time-varying environment are

notoriously difficult to solve. In this paper, we study the

WP-FD-M2M from a game theoretic perspective. We

establish a stochastic game-based model, referred to as the

M2M game, to characterize the interaction between the

transmitter and the receiver in a time-varying environment.

We prove that, if both transmitter and receiver can

sequentially optimize their data transmission and energy

transfer according to a Markov strategy, it is possible to

maximize the long-term performance of M2M

communication even when there is no centralized controller

to coordinate actions and energy/data transmission between

the transmitter and receiver. Numerical results show that our

proposed approach can significantly improve the

performance of M2M communication.

The remainder of this paper is organized as follows. In

Section II, we introduce the system model and problem

formulation. The distributed optimization approach is

proposed in Section III. We present numerical results to

compare our proposed approach with other existing results in

Section IV. We conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an M2M communication link consisting of an

M2M transmitter T and an M2M receiver R. Both T and R

are quipped with energy harvesters which can convert

external energy into electric power. We focus on a

wireless-powered system in which the M2M communication

from T to R is solely supported by harvested energy. We

assume that the M2M communication process is slotted and

the length of each time slot has been normalized into unity.

We can hence use the terms energy and power

interchangeably throughout this paper. Let êT,t and êR,t be

the amounts of energy that can be harvested during the tth
time slot by T and R, respectively. Motivated by the

observation that, in most wireless communication systems,

transmitters consume more energy than receivers, we assume

that if R harvests more energy than that it can consume, it

can wirelessly transfer its surplus energy to T as an RF

signal. We propose the WP-FD-M2M as illustrated in Figure

1, in which the data transmission from T to R and the

energy transfer from R to T take place at the same time over

the same frequency. To simplify our description, we assume

that both T and R are equipped with two antennas: one for

data transmission and receiving and the other for energy

transfer and receiving. Our results can be directly extended

into more general cases with more antennas installed at T
and R, as further discussed later in this paper. Let ht be the

channel gain between the data transmission and receiving

antennas of T and R. Let gt be the wireless energy transfer

efficiency between the energy transmit antenna of R and the

energy receiving antenna installed at T in time slot t.

The full-duplex transmission of energy and data signals in

WP-FD-M2M results in the following two types of

self-interference:

SI1) Self-interference at R: RF energy signal sent from R to

T will cause self-interference to the data reception at R.

To reduce this self-interference, various interference

cancellation techniques have been proposed [11].

Unfortunately, there is still no practical solution that can

perfectly cancel all the interference at the receiver. In

this paper, we assume that if R transfers wR,t amount

of energy to T , the residual self-interference power

received by R will be given by γtwR,t where γt is the

self-interference cancellation factor in time slot t for

0 ≤ γt < 1.

SI2) Self-energy recycling at T : an M2M data signal sent

from T to R will also be received by the RF energy

receiving antenna at T . We refer to this signal received

by T as the self-energy recycling signal. Different from

the self-interference observed at R, this self-energy

recycling signal is beneficial and can be obtained by T
as a part of its received energy. We assume that if the

transmit power of T is wT , the energy that can be

received by T from the self-energy recycling signal will

be given by ρtwT where ρt is the self-energy recycling

factor in time slot t for 0 ≤ ρt < 1.

We assume that the energy required by R to process and

decode the data signals sent by T can be regarded as a

constant τR. We can then write the surplus energy of R as

eR,t = (êR,t − τR)
+

where we denote (·)+ = max{0, ·}. We

assume that R cannot store its harvested energy but will



either discard its surplus energy or transfer all the surplus

energy to T during each time slot. Let δR,t be the decision

made by R about whether to send its energy to T , i.e., we

use δR,t = 1 (or δR,t = 0) to mean R will (or will not) send

its surplus energy to T in time slot t. We can write the

amount of energy transferred from R at the end of time slot

t as δR,teR,t. The total amount of energy that can be

received by T during time slot t is given by

w̄T,t = êT,t + uR,t + uT,t, (1)

where uR,t = δR,tgteR,t and uT,t = ρtwT,t. To simplify our

description, in this paper, we follow the same line as [10] and

ignore the energy converted from the additive noise received

by T .

We assume that there is a minimum unit of energy that

can be harvested, received and used by T to send each data

packet. Specifically, êT,t, wT,t, uR,t and uT,t can be regarded

as values that are taken from finite sets ET , WT , UR and

UT , respectively. We also refer to υt = 〈ht, γt, gt〉 as the

environmental state of WP-FD-M2M during time slot t. We

assume that both T and R can observe the environmental state

of the current time slot. Let et = 〈êT,t, eR,t〉 be the energy

harvesting states in time slot t. Let E and Υ be the sets of

possible values for et and υt, respectively. T has a battery that

can store up to ēT units of energy. We denote the set of battery

levels for T as B. We focus on WP-FD-M2M with causal

constraint and assume that the energy obtained by T during

the current time slot can only be used in the data transmission

in the following time slots. More specifically, we can write

the battery level of T at the beginning of time slot t as

bT,t = min{ēT , w̄T,t−1 + bT,t−1 − wT,t−1}, (2)

where we ignore the temporal energy storage loss and assume

that the energy stored in the battery of T will not decrease

with time. We assume that both T and R know the battery

level at the beginning of each time slot. This can be achieved

by allowing T to include its battery level information in the

M2M data packets sent to R. We will discuss how to relax

this assumption in Section V. The transmit power of T in time

slot t needs to satisfy the following constraint:

0 ≤ wT,t ≤ bT,t. (3)

B. Problem Formulation

At the beginning of each time slot, T can schedule its

transmit power, and R can also decide whether to send its

surplus energy to T during the rest of the time slot. We

assume that there is always data for T to transmit to R and

the main objective for both T and R is to maximize the

long-term discounted payoff, determined by the transmission

rate defined as

E

(
lim
t→∞

t∑
l=0

αl�l (wT,l, δR,l)

)
, (4)

where �t (wT,t, δR,t) is the transmission rate of the M2M

communication in time slot t given by

�t (wT,t, δR,t) = log

(
1 +

htwT,t

δR,tγtwR,t + σR,t

)
, (5)

and σR,t is the additive noise level at R. E(·) denotes the

expectation and α is the discount coefficient satisfying 0 ≤
α < 1.

III. DISTRIBUTED OPTIMIZATION FOR ENERGY USAGE

AND TRANSFER SCHEDULING FOR WP-FD-M2M

To maximize the long-term discounted payoff in (4), T
and R not only need to estimate the current battery level,

harvested energy, power transfer efficiency and M2M

communication channel gain, but should also take into

consideration the future evolution of these parameters in the

physical environment. However, the future change of the

physical environment can be affected by various factors,

most of which are unpredictable and uncontrollable by T or

R. Fortunately, it has been observed in that if the duration of

each time slot is short enough, it is reasonable to assume

that the evolution of the physical environment satisfies the

Markov property. That is, the environment in the current

time slot depends only on that of the previous time slot. In

this paper, we assume that the time-varying characteristics of

υt and et possess the Markov property and can be

characterized by transition functions Pr (υ′|υ) and Pr (e′|e),
respectively, where Pr (υ′|υ) is the probability distribution

of the current environmental state υ′ when the previous

environmental state is given by υ for υ,υ′ ∈ Υ and

Pr (e′|e) is the probability distribution of current harvested

and received energy e′ given that the harvested and received

energy in the previous time slot is given by e. We assume

that Pr (υ′|υ) and Pr (e′|e) are stationary and can be known

by both T and R. One way to achieve this is to allow T and

R to learn these probability distributions from their past

observations using reinforcement learning approaches

proposed in [12], [13].

The long-term payoff of the M2M communication link also

depends on the interaction between R and T . For example,

R should only send energy to T when it believes that the

battery level of T is or will soon be insufficient to support the

required M2M data transmission. However, how T ’s battery

level will change also depends on the future transmit power

decided by T , which is unknown to R. On the other hand, T
can increase the transmit power in the current time slot if it

believes that R will send its surplus energy in the next few

time slots. Similarly, it is generally difficult for T to perfectly

know the future actions of R.

To solve these problems, we formulate a stochastic

game-based model, which we refer to as the M2M game, to

investigate the interaction between T and R in a

time-varying environment. We have the following definition.

Definition 1: An M2M game is defined as a tuple

G = 〈P,A, S,T〉 where P is the set of players T and R, A

is the action space of T and R, S is the state space, and T is

the state transition function characterizing the probability



distribution of the transition between different states under

each possible action.

We give a detailed description of each of the above elements

for the M2M game as follows:

• State Space S = B×Υ: is a finite set of all the possible

battery levels and environmental states in each time slot.

We write the state of the transmitter in time slot t as

st ∈ S for all t ≥ 0.

• Action Space A = WT × ΔR: is a finite set of all the

possible combinations of actions for T and R. More

specifically, in WP-FD-M2M, the action of T is its

decision about the transmit power and the action of R
corresponds to its decision on whether to send its

surplus energy to T in each time slot. We write the

action decided by T and R in time slot t as

at = 〈wT,t, δR,t〉 ∈ A for all t.
• State transition function T : S × A × S → [0, 1]:

specifies the probability distribution that, starting at

state s and action a in the current time slot, the state

ends in s′ in the next time slot. T and R can estimate

the state transition function using their observed battery

level as well as the probability distribution of the future

changes of environment state. Specifically, suppose in

the current time slot, the environmental state and battery

level are given by υ and b, respectively, and the actions

of T and R are given by a = 〈wT , δR〉. We can

calculate the probability of having battery level b′ at the

beginning of next time slot as follows: If b′ < b̄, the

energy stored and newly obtained by T in the next time

slot will not exceed the maximum capacity of its

battery. We can hence write the probability of having

state s′ at the beginning of next time slot as

Pr (s′|s, a)
= Pr (〈b′, υ′〉|〈b, υ〉, 〈wT , δR〉)
= Pr (〈b′ = b+ w̄T − wT , υ

′〉|〈b, υ〉, 〈wT , δR〉)
=

∑
〈υ′,e′〉∈Φ

Pr (e′|e) Pr (υ′|υ) , (6)

where Φ = {〈υ′, e′〉 : b′ = b+ w̄T − wT , ∀υ′ ∈ Υ, e′ ∈
E}. If b′ = b̄, the energy that will be stored and obtained

by T in the time slot will exceed the maximum capacity

of T ’s battery. Following the same line as the previous

case, we can write the probability of the state transition

for this case as follows:

Pr (s′|s, a) =
∑

〈υ′,e′〉∈Φ′
Pr (e′|e) Pr (υ′|υ) , (7)

where Φ′ = {〈υ′, e′〉 : b+w̄T −wT ≥ ēT , ∀υ′ ∈ Υ, e′ ∈
E}.

The state transition probability can be fully specified by

combining equations (6) and (7).

It can be observed that the M2M game is a special stochastic

game, also called collaborative stochastic game [14], in which

all players try to optimize the same payoff function. The main

solution for the M2M game is the Nash equilibrium (NE),

which is an action profile for all the players such that no

player can further improve its expected discounted payoff by

unilaterally changing its action [14].

To maximize the long-term average payoff, T needs to

evaluate both the current and future payoffs that can be

obtained by each of its possible actions under each possible

action of R. We define the value function VT (st, wT,t|δR,t)
of T as the sum of the current and future expected payoffs

when the current states and actions of T and R are given by

st and at = 〈wT,t, δR,t〉, respectively. Suppose the current

state is given by st. We can write the current payoff �̄T,t

when T chooses action wT,t in the current time slot as

follows:

�̄T,t =
∑
st∈S

Pr (st|st−1, at−1)�t (wT,t, δR,t) , (8)

where �t (wT,t, δR,t) is defined in (5).

T should also be able to estimate the future expected

payoff using the state transition function. We can hence

write VT (st, wT,t|δR,t) as follows:

VT (st, wT,t|δR,t) = �̄t

+ α
∑

st+1∈S

Pr (st+1|st, at)V ∗(st+1, wT,t+1|δR,t+1).(9)

And we can write the optimal value function for T under state

st given action δR,t of R as follows:

V ∗
T (st|δR,t) = max

at∈A
VT (st, wT,t|δR,t). (10)

Note that the value function of T also depends on the action

of R. If T always chooses the action that maximizes the above

value function for each given action of R, the resulting strategy

can also be referred to as the best response for T . Since, in

the M2M game, both T and R can observe the same state and

also try to maximize the same payoff function, T can estimate

the optimal action that will be chosen by R. In particular, T
can estimate the best response of R for each of given action

of T . More specifically, T can choose its optimal action w∗
T,t

by

w∗
T,t = arg max

wT,t∈W
V (st, wT,t|δ̂∗R,t), (11)

where δ̂∗R,t is the optimal action of R estimated by T under

its action wT,t which can be calculated by T using δ̂∗R,t =
arg max

δR,t∈Δ
VT (st, wT,t|δR,t).

It can be observed that the optimal action w∗
T,t that T would

choose during time slot t depends only on current state st. This

strategy has been commonly referred to as the Markov strategy
[15].

Similarly, R can also estimate the optimal action of T and

decide its Markov strategy by

δ∗R,t = arg max
δR,t∈Δ

VR(st, δR,t|ŵ∗
T,t), (12)

where ŵ∗
R,t is the optimal action of T estimated by R under

its action δR,t, which can be calculated by R using ŵ∗
T,t =

arg max
wT,t∈W

VR(st, δR,t|wT,t).

From the above analysis, we can prove the following result.



0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

40

γ

D
is

co
un

te
d 

Pa
yo

ff
 (k

bp
s)

Joint Optimization for T and R
M2M Transmission Scheduling by T
Energy Transfer Scheduling by R

Fig. 2. Comparison of discounted payoff achieved by three optimization
methods under different self-interference cancellation efficiencies.

0.5 0.75 1.0 1.25 1.5
5

10

15

20

25

30

35

40

45

Distance between T and R (m)

D
is

co
un

te
d 

Pa
yo

ff
 (k

bp
s) Joint Optimization for T and R

M2M Transmission Scheduling by T
Energy Transfer Scheduling by R

Fig. 3. Comparison of discounted payoff achieved by three optimization
methods under different distances between T and R.

Theorem 1: If T and R always choose their Markov

strategies using (11) and (12) at the beginning of each time

slot, the resulting action profile in each time slot is an NE.

In addition, the resulting NE is unique and optimal for the

M2M game.

Proof: It can be observed that both T and R have finitely

many actions with a limited number of possible states. We

can hence claim that an NE always exits in our M2M game.

Since the payoff observed by T or R as well as their Markov

strategies are fully determined by the state of the system, we

can combine players T and R together and create a new player

with the combined action space A. In this way, the two-player

M2M game has been converted into a single-player stochastic

game and (11) and (12) are equivalent to the Bellman equation.

We can therefore follow the same line as [16] to prove that

(11) and (12) achieve the optimal policy for both T and R.

This concludes the proof.

IV. NUMERICAL RESULTS

In this section, we present numerical results to access the

performance of our proposed optimization approach for

WP-FD-M2M. We assume that the number of energy units

that can be harvested by T or R is a discrete uniformly

distributed random variable between 0 and 1 W. We ignore
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Fig. 4. Comparison of discounted payoff achieved by three optimization
methods under different maximum levels of harvested energy.

the energy consumed by R to receive and decode the M2M

data packets sent from T . We assume that the RF energy

transfer from R to T follows the Friis equation

gt =
GTGRν2

(4πd)2
where GT and GR are the antenna gains of T

and R, respectively, d is the distance between devices in the

M2M communication link, and ν is the wavelength [17]. The

battery installed at T can store up to 1 W of energy. We also

assume that the minimum energy that can be used and

received by T is 0.5 mW. The distributed optimization

method proposed in Section III allows T and R to

sequentially optimize their transmit power and energy

transfer decisions. Our proposed optimization method can be

regarded as a generalization of existing methods that only

focus on the optimization of either T or R. In this section,

we refer to our proposed method as the joint optimization

method. We compare our proposed method with two existing

optimization methods: M2M transmission scheduling and

energy transfer scheduling. In the first method, R cannot

transfer its surplus energy to T . However, T can schedule

the use of its harvested energy to further improve the

expected discounted payoff. This approach is also referred to

as the transmit power/energy scheduling studied in [6], [18].

In the second method, T cannot schedule its energy usage

but will always use the energy stored and obtained during

previous time slots to send its data packets. R can however

optimize its decision on whether to send its surplus energy

to T at the beginning of each time slot.

As mentioned previously, the efficiency of the

self-interference cancellation technology implemented by T
and R plays a vital role on the performance of the

full-duplex communication system. We hence compare the

payoff of three above mentioned optimization approaches

under different self-interference cancellation efficiencies at R
in Figure 2. It can be observed that if the self-interference

can be perfectly cancelled, the energy transfer from R to T
will not cause any performance degradation to the M2M data

transmission and R should always transfer its surplus energy

to T . In this case, both joint optimization and energy transfer

scheduling methods achieve significant payoff gains

compared to the M2M transmission scheduling method.



However, if the self-interference cannot be perfectly

cancelled, R should limit its energy transfer to avoid

intolerable interference for the M2M data transmission. With

the increase of the self-interference received by R, R should

not send its surplus energy to T for most of the time, and

hence the payoff achieved by the joint optimization method

will approach that achieved by M2M transmission

scheduling method.

It is known that both the transmission rate of M2M

communication as well as the wireless energy transfer

efficiencies suffer with the increase of transmission distance.

Therefore, in Figure 3, we investigate the effect of the

distance between T and R on the discounted payoff of

WP-FD-M2M. It can be observed that, compared to the

M2M transmission scheduling, the performance of energy

transfer scheduling decreases at a much faster rate with the

transmission distance. This is because, when wireless energy

transfer efficiency becomes low, RF energy sent by R can

only provide limited contribution to the reliability of energy

supply for M2M communication. In addition, the increase of

transmission distance also results in lower channel gain for

the M2M data transmission as well as relatively higher

performance degradation caused by the self-interference of

the energy transfer from R to T . If T has to mostly rely on

its energy harvested from the natural environment to support

M2M data transmission, optimizing the scheduling of energy

use according to the future energy availability becomes more

important to improve the long-term performance of M2M

communication, especially compared to the energy transfer

scheduling method.

The energy availability of the surrounding environment of

T and R also directly affects the performance of M2M

communication. We compare the discounted payoffs of

different optimization methods under different maximum

levels of harvested energy in Figure 4. We observe that, with

the increase of the harvested energy, the performance of

M2M transmission scheduling increases faster than that of

energy transfer scheduling by R. This is because although

the increase of harvested energy by R can result in a larger

amount of energy transferred from R to T , the larger amount

of energy transferred by R also increases the

self-interference to the M2M data receiving at R. We can

also observe that by jointly optimizing the data transmission

and energy transfer at T and R, the long-term discounted

payoff can be significantly improved for WP-FD-M2M.

V. CONCLUSION AND FUTURE WORK

In this paper, we have studied M2M communication for an

IoT system powered by energy harvesting and wireless energy

transfer. We have proposed a novel framework, referred to as

the WP-FD-M2M, in which the transmitter and receiver can

decide the energy scheduling for data transmission and the

energy transfer for improvement of the wireless energy supply

reliability. We have developed a stochastic game-based model,

referred to as the M2M game, to investigate the interaction

between an M2M transmitter and an M2M receiver. We have

proved that, if both M2M transmitter and receiver optimize

their decisions based on the Markov strategy, the maximum

long-term performance for the M2M communication link can

be achieved even without centralized control or coordination

between the transmitter and receiver. At the moment, both

M2M communication and wireless-powered IoT systems are

still in the early stage of developments. This paper can serve

as a step for future research on the next generation of wireless-

powered IoT-based communication networking systems.
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