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Abstract—This paper studies carrier aggregation between
multiple mobile network operators (MNO), referred to as
inter-operator carrier aggregation (IO-CA). In IO-CA, each
MNO can transmit on its own licensed spectrum and
aggregate the spectrum licensed to other MNOs. We focus
on the case that MNOs are distributedly partitioned into
small groups, called IO-CA pairs, each of which consists of
two MNOs that mutually agree to share their spectrum with
each other. We model the IO-CA pairing problem between
MNOs as a stable roommate market and derive a condition
for which a stable matching structure among all MNOs
exists. We propose an algorithm that achieves a stable
matching if it exists. Otherwise, the algorithm results in a
stable partition. For each IO-CA pair, we derive the optimal
transmit power for each spectrum aggregator and establish
a Stackelberg game model to analyze the interaction
between the licensed subscribers and aggregators in the
spectrum of each MNO. We derive the Stackelberg
equilibrium of our proposed game and then develop a joint
optimization algorithm that achieves the stable matching
structure among MNOs as well as the optimal transmit
powers for the aggregators and prices for the subscribers of
each MNO.

Index Terms—Carrier aggregation, cellular network,
cognitive radio, stable roommate, stable marriage, matching,
graph, game theory.

I. INTRODUCTION

With the fast growing demand for mobile data service,
it becomes more and more difficult to allocate a wide and
contiguous frequency band to support high speed data
communication for each user equipment (UE). A new
technology proposed in LTE-Advanced (LTE-A) [2],
referred to as carrier aggregation (CA), allows network
operators to support high data rates over large bandwidths
by aggregating frequency resources that lie in different
frequency bands or which may not be contiguous. The
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next generation of mobile technology will rely on CA to
achieve its promised peak data rates. In a typical network,
a mobile network operator (MNO) may aggregate
frequency resource blocks contiguously or
non-contiguously within a single frequency band, i.e.
intra-band CA, or it may aggregate resources which are
located in separate frequency bands. While much of the
current work on CA investigates the aggregation of
exclusive blocks of spectrum from the perspective of
typical macrocell topologies [3]–[5], we study carrier
aggregation (CA) for cellular networks from a cognitive
radio (CR) network perspective.

In this paper, we investigate a framework that allows
multiple MNOs to access and aggregate each other’s
licensed spectrum for the purpose of providing more
spectrum for the low power elements of their network
topology. As such, we propose a system that allows for
the dynamic aggregation of spectrum resources over both
the MNO’s own spectrum holdings and the spectrum
holdings of other MNOs. In this scenario, an MNO may
operate high power macrocells in its own exclusively
licensed spectrum and may dynamically aggregate
additional sub-bands, for lower power use, in another
network’s licensed spectrum. We refer to this type of
carrier aggregation as inter-operator CA (IO-CA), i.e. a
heterogeneous mix of users, having different rights and
employing different transmit powers, exploits the same
frequencies over the same area.

From a CR network perspective [6]–[8], each MNO
and its corresponding subscriber UEs, who are spectrum
license holders, are also referred to as the primary users
(PU). The subscriber UEs of each MNO have priority to
use their own licensed spectrum, but they can also tolerate
a certain interference increase caused by subscriber UEs
from other MNOs. These subscriber UEs from other
MNOs, also referred to as secondary users (SU), can
access the spectrum licensed to the MNO as long as the
resulting interference is lower than the tolerable level of
the spectrum license holders, i.e. the PUs. We propose
two IO-CA approaches: a direct extension of the
traditional CA in LTE Advanced into the inter-operator
scenario, called regular IO-CA, and a spatial spectrum
sharing-based IO-CA framework for multi-operator
cellular networks, called sharing IO-CA. In both
approaches, each MNO and its subscriber UEs are
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regarded as PUs in its own spectrum. Some UEs from
each MNO can also access and aggregate the spectrum of
other MNOs, where they will be regarded as the SUs and
should always control their access to keep the resulting
interference under a given tolerable level.

There are several challenges to enable IO-CA between
MNOs. Specifically, in the traditional CA within the
spectrum of one MNO, the MNO’s infrastructure (e.g.,
eNB in LTE Advanced) controls and manages the
spectrum aggregation behavior of its UEs in a centralized
fashion. In cellular networks with multiple MNOs,
however, there is no central controller and, because of
privacy and business reasons, each MNO cannot disclose
its private information (such as the payoffs and preference
of its UEs and the performance improvement brought by
IO-CA) to other MNOs. In addition, since each MNO has
already been licensed an exclusive spectrum band and
does not have to always rely on IO-CA to achieve the
basic quality-of-service (QoS) for its subscriber UEs, each
MNO will only allow its spectrum to be aggregated by
others when it has an incentive to do so.

One approach that has been proposed in the existing
literature is for all the operators to merge their licensed
spectrum to form a common spectrum pool [9]–[12].
However, the spectrum pooling system generally requires
all operators to give up their exclusive use of spectrum. In
addition, the coordination and competition for the
spectrum usage among all the operators and their
corresponding UEs does not always lead to an efficient
solution, especially when the size of the coverage area
and the number of operators and UEs becomes large [12].
A tradeoff between spectrum pooling and intra-operator
CA can be achieved by partitioning all MNOs into small
groups, each of which consisting of a limited number of
MNOs that are willing to coordinate and share their
spectrum with each other. However, as observed in [8],
there may not always exist a stable coalition formation
structure in a distributed multi-agent system and even if it
exists, there is still a lack of an effective algorithm to
allow all MNOs to distributedly negotiate and form this
structure. That is, finding a coalition formation structure
in a distributed multi-agent system has been proved to be
NP-hard [13], [14].

In this paper, we study the joint optimization for an IO-
CA-based cellular network with multiple MNOs. We focus
on solving four optimization problems:

1) IO-CA Pairing Problem: in this problem, we focus
on the case that all MNOs can be partitioned into
different groups, called IO-CA pairs, each of which
consists of two MNOs. In our model, all MNOs can
establish a preference over each other and an IO-CA
pair can only be established when two MNOs
mutually agree to share spectrum with each other.
We model this problem as a stable roommate market
and seek a stable matching structure among all
MNOs such that no MNO or a pair of MNOs has the
intention to unilaterally deviate. We allow each MNO
to dynamically join or leave an IO-CA pair and

introduce two operations: deletion and addition, for
cellular networks. Specifically, if an MNO observes
increasing traffic demands in its network and would
like to seek extra network capacity by forming an
IO-CA pair with others, it will join the roommate
market by using the addition operation to decide its
IO-CA pairing partner and still maintain the stability
of the existing partitions. Similarly, if the service
demand for an MNO in an IO-CA pair decreases to
a level that can be satisfied without using IO-CA, the
delete operation will be applied to remove this MNO
from the existing IO-CA pair. We observe that a
stable matching structure may not always exist. We
derive a condition for which a stable matching
structure exists and propose an algorithm that can
detect whether this condition is satisfied and, if it is,
achieves this matching structure.

2) Price Adjustment Problem: in this problem, each
MNO charges a price to the subscriber UEs from
other MNOs that aggregate its spectrum. We observe
that for each MNO, charging a high price to the
aggregators will deter the potential MNOs that are
willing to form an IO-CA pair. On the other hand,
charging a low price will decrease the profit and
increase possible interference between pairing
MNOs. We hence propose a Stackelberg game-based
hierarchical framework to investigate the case where
one MNO and its subscriber UEs are the leaders in
their own licensed spectrum, with the ability to set
prices for secondary use of the spectrum, and
subscriber UEs, also called the aggregators, of other
MNOs are the followers who can optimize their
performance under the prices imposed by the leaders.

3) Power Control Problem: in this problem, each
subscriber UE using sharing IO-CA can optimize its
transmit power to further improve its performance
without causing intolerably high interference to the
subscriber UEs of the primary operator.

4) Joint Optimization problem: we consider the joint
optimization of the above three problems and
develop a distributed algorithm to jointly optimize
the resulting decisions.

To the best of our knowledge, this is the first work that
studies the optimization of IO-CA in cellular networks,
adopting a framework that combines the stable roommate
market problem and a Stackelberg game.

We observe that not all network systems can support
the optimization of all the above problems at the same
time. Therefore, in addition to presenting numerical
results for our joint optimization algorithm, we also
compare the performance improvement brought by each
individual solution in our proposed optimization
framework.

The remainder of this paper is organized as follows.
The background and related works are presented in
Section II. The network model and problem formulation
are established in Section III. The game theoretic analysis
is presented in Section IV. We provide numerical results
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and discussions in Section V and conclude the paper in
Section VI.

II. BACKGROUND AND RELATED WORKS

Most existing works in inter-operator spectrum sharing
focus on cases in which multiple operators share or
compete for a common pool of spectrum resources. For
example, the authors in [15] have studied power
allocation problem for multiple competitive operators
coexisting at the same time in the same spectrum. The
authors in [16] have applied the two-player non-zero-sum
games to study the spectrum allocation problem for
multiple operators that share a common spectrum. In [17],
the authors have focused on the spectrum allocation
problem by assuming all the operators are centrally
coordinated and studied a multi-carrier wave-form based
inter-operator spectrum sharing concept. In [12], spectrum
pooling has been modeled as a hierarchical game and a
joint optimization framework has been proposed. Different
from these existing works, in our paper, each operator has
been licensed an exclusive portion of the spectrum and
can autonomously decide whether to share its licensed
spectrum with others.

We study the joint optimization problem for cellular
networks with multiple MNOs from the game theoretic
perspective. Game theory has been widely applied to
study distributed optimization problems for spectrum
sharing-based CR networks. More specifically, the authors
in [18], [19] have introduced a non-cooperative game
theoretic model to study the sub-band competition among
SUs in a CR network. Stackelberg game-based models
have been proposed in [8], [12], [20], [21] to study the
interaction between SUs and PUs. In [22], [23], the
authors have applied a coalitional game theoretic model to
analyze the possible cooperations among different users
who share the same spectrum. A detailed survey of game
theory and its application into CR networks has been
presented in [24]–[26].

We model the pairing problem among MNOs as a
stable roommate market. The roommate market and its
variations have been extensively studied from both
theoretical and practical perspectives [27]–[31]. More
specifically, the stable roommate market with ties and
incomplete lists has been analyzed in [27]. In [29], the
stable roommates market with parallel edges and multiple
partners has been considered. A detailed survey for
different variants of the stable marriage problem and
stable roommate problem has been presented in [30].

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

Consider a cellular network consisting of a set of
closely located MNOs, labeled as K = {M1, M2, . . . ,
MK} as shown in Figure 1. Each MNO Mi is licensed an
exclusive frequency band consisting of a set of
component carriers (CCs) each of which can be allocated
to support the MNO’s UEs. Note that the term “UE” may
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Fig. 1. Network model for an IO-CA-based cellular network with 4
MNOs.

have different meanings in different systems. For
example, if each MNO corresponds to a cellular
telecommunication network operator, a UE is equivalent
to a cellular UE and the corresponding communication
channel connecting itself and the infrastructure (e.g., base
station). If each MNO corresponds to a device-to-device
communication network, each UE then becomes the
communication channel between a pair of
device-to-device source and destination. Let the set of all
UEs currently using the service of MNO Mi be Si. It has
been recently proposed in [32] that each UE should be
able to access more than one CC to support high data rate
transmission. In this paper, we use the term “sub-band” to
denote the subset of CCs that can be allocated to each
UE. Let the set of all sub-bands of MNO Mi be Bi. The
list of notation used in this paper is provided in Table I.

We consider an inter-operator carrier aggregation
(IO-CA) system in which a subset of sub-bands of each
MNO Mi, denoted as Li for Li ⊆ Bi, is aggregated by
subscriber UEs from other MNOs and, in exchange, a
subset Ni ⊆ Si of UEs from MNO Mi can aggregate the
sub-bands licensed to other MNOs. We refer to the UEs
that subscribe to each MNO as the subscribers and those
UEs from other MNOs aggregating the spectrum of an
MNO as the aggregators. Let Sk

i be the subscriber
occupying the kth sub-band of MNO Mi. Let Ŝl

ij be an
aggregator of MNO Mi that accesses the lth sub-band of
MNO Mj for i ̸= j and l ∈ Lj . Each MNO needs to first
obtain permission from other MNOs before aggregating
their spectrum. In most existing network systems, each
MNO controls the usage of its sub-bands through its
infrastructure (e.g., eNB in LTE systems). Once an MNO
Mj agrees to allow other MNOs (e.g., MNO Mi) to
aggregate its spectrum, it will allocate each aggregator a
specific sub-band, i.e., there is a function mapping each
aggregator Ŝk

ij to sub-band k of MNO Mj . This function
can be centrally decided by the pairing MNOs or it can
be the result of sub-band competition between aggregators
inside an IO-CA pair [33], [34]. The detailed analysis of
the sub-band cooperation or competition among
aggregators is outside the scope of this paper. Interested
readers can see [8], [18], [19], [33]–[35] for the details.

In this paper, we consider the following two IO-CA
approaches:
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1) Regular IO-CA: This approach directly extends the
CA in existing LTE-Advanced into the multiple
MNOs case where each MNO assigns each
aggregator a vacant sub-band that is unoccupied by
its subscribers.

2) Sharing IO-CA: In this approach, each MNO Mi

allocates each aggregator to a sub-band that is
currently occupied by a subscriber. To maintain the
quality of service of the subscriber, Mi should be
able to limit the resulting interference caused by
each aggregator from other MNOs using a pricing
mechanism which will be described in detail in
Section IV-B.

In regular IO-CA, the transmission of each aggregator
cannot affect the performance of subscribers to the primary
MNO, and hence the transmit power of each aggregator Ŝk

ij

does not need to consider interference constraints. The main
shortcoming of regular IO-CA is that the maximum number
of aggregators cannot exceed the number of vacant sub-
bands. Sharing IO-CA, on the other hand, allows sub-band
sharing between aggregators and subscribers and hence can
provide further performance improvement even when there
are no vacant sub-bands available. The main challenge for
sharing IO-CA is that the cross-interference will adversely
affect the performance of both sub-band sharing aggregator
and subscriber. Therefore, one of the most important issues
for sharing IO-CA is interference control [6], [7], [12]. That
is, each aggregator Ŝk

ij should always maintain its resulting
interference to the sub-band sharing subscriber Sk

j below a
tolerable level denoted as qj .

We assume that each IO-CA group can only be formed
by two MNOs and refer to a group of MNOs that allow
each other to aggregate their sub-bands as an IO-CA pair.
This assumption is reasonable in practical
implementations to make it easy for each MNO to
manage interference of the aggregators in its licensed
spectrum. More specifically, whenever an MNO detects
intolerable interference caused by an aggregator in its
sub-band, it will inform the other paired MNO that it
should perform interference control or even stop
aggregating the sub-band in question. We also assume
each sub-band (occupied or unoccupied by a subscriber)
can be aggregated by at most one aggregator.

Let the channel gain between source and destination of
aggregator Ŝk

ij be hk
ij for i ̸= j and k ∈ Lj . Let Rij be the

set of sub-bands of MNO Mj that aggregators from MNO
Mi will access using regular IO-CA, with Rij ⊆ Lj . We
consider the following power constraint of each sub-band
k for k ∈ Rij :

0 ≤ ŵk
ij ≤ q̃kij , (1)

where q̃kij is the maximum transmit power that can be
supported by aggregator Ŝk

ij . ŵk
ij is the transmit power of

aggregator Ŝk
ij in the kth sub-band of MNO Mj . Suppose

the rest of the sub-bands in Lj are aggregated by
aggregators from another MNO Mi using sharing IO-CA.
We can write the power constraints of sub-band

TABLE I
LIST OF NOTATION

Symbol Definition
K Set of MNOs
Mi ith MNO
Si Set of UEs for MNO Mi

Bi Set of sub-bands licensed to MNO Mi

Li Subset of sub-bands of MNO Mi allowing
aggregation from other MNOs

Ni Subset of UEs of MNO Mi that can aggregate the
spectrum of other MNOs

Sk
i Subscriber occupying the kth sub-band of MNO Mi

Ŝk
ij Aggregator from MNO Mi aggregating the kth sub-

band of MNO Mj

Dk
i Corresponding destination of Sk

i
Bk

i Bandwidth of the kth subscriber of Mi

hk
ij Ratio of the channel gain between aggregator Ŝk

ij

and subscriber Sk
j to the additive noise received by

Sk
j

wk
i Transmit power of subscriber Sk

i

ŵk
ij Transmit power of aggregator Ŝk

ij
qj Maximum tolerable interference in each sub-band

of MNO j
βk
i Pricing coefficient charged to the aggregators in the

kth sub-band of MNO Mi

ϖi(j) Part of the payoff of MNO Mi obtained by allowing
its spectrum aggregated by aggregators from MNO
Mj

ϖ(i)j Part of the payoff of MNO Mi obtained by
aggregating the spectrum of MNO Mj

ϖij Total payoff of MNO Mi obtained from an IO-CA
pair between Mi and Mj

k′ ∈ Lj\Rij :

0 ≤ ŵk′

ij ≤ qj
hk′
ij

, (2)

where qj is the maximum tolerable interference of MNO
Mj .

In a regular IO-CA system, each aggregator Ŝk
ij can

transmit at the maximum power ŵk
ij = qki in its assigned

sub-band k and we assume the price paid by Ŝk
ij to MNO

Mj is a linear function of its transmit power denoted by
ζk(i)j = βk

j ŵ
k
ij

1. We can hence write the payoff of Mi

obtained from regular IO-CA as

ϖR
ij =

∑
k∈Rij

[
Bk

j log

(
1 +

hk
iiŵ

k
ij

ϱki

)
− ζk(i)j

]
, (3)

where Bk
i is the bandwidth of the kth sub-band of MNO

Mi and ϱki is the additive noise received by Ŝk
ij in sub-

band k. Note that, in regular IO-CA, each aggregator can
only access the vacant sub-band and hence there is no cross
interference between the aggregators and subscribers.

In a sharing IO-CA system, the subscribers always have
priority to access the sub-bands of their MNOs. More
specifically, a subscriber Sk

i in sub-band k ∈ Li can
choose its transmit power wk

i without considering the
settings or parameters of the potential aggregators in its

1The linear pricing function is motivated by the fact that many
existing telecommunication mobile systems charge UEs according to their
communication data rates, which are monotonically increasing functions
of their transmit powers.
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sub-band. The price charged by each MNO to aggregators
from other MNOs can be in real currency, such as the
spectrum rental fee charged by an MNO [36], or it can be
in a virtual currency used by each MNO to manage or
regulate the interference and accessibility of the
aggregators [7], [37].

We assume that each MNO can only control the price
of its own sub-bands and should always follow the prices
decided by other MNOs when it aggregates their spectrum.
In this way, the utility function of each MNO contains two
parts:

1) The first part consists of the payoff obtained from its
own spectrum. We assume each MNO tries to
maximize its transmission rates and follow the
widely adopted revenue function [8], [12], [35], [38]
to define the revenue of MNO Mi obtained from its
subscriber Sk

i which shares sub-band k ∈ Li with an
aggregator Ŝk

ji as

πk
i(j)

(
wk

i , ŵ
k
ji

)
= αiB

k
i log

(
1 +

hk
iiw

k
i

ϱki + hk
jiŵ

k
ji

)
. (4)

where αi is the unit price charged by MNO Mi from
its subscriber for sending each bit per second of data.
Each MNO can also obtain revenue by charging the
aggregator in each of its sub-bands. Let the revenue
of MNO Mi obtained by charging aggregator Ŝk

ji for
causing interference to its subscriber Sk

i in sub-band
k be π̂k

i(j)

(
βk
i , ŵ

k
ji

)
= βk

i h
k
jiŵ

k
ji where βk

i is the
pricing coefficient of MNO Mi for the aggregator in
the kth sub-band for causing each unit of
interference on subscriber Sk

i .
We hence can write the first part of the payoff function
of MNO Mi in a sharing IO-CA pair formed by Mi

and Mj for Mi ̸= Mj as follows:

ϖ′
i(j) (βi,wi, ŵji)

=
∑

k∈Li\Rji

ϖk
i(j)

(
wk

i , ŵ
k
ji, β

k
i

)
, (5)

where ϖk
i(j)

(
wk

i , ŵ
k
ji, β

k
i

)
=

πk
i(j)

(
wk

i , ŵ
k
ji

)
+ π̂k

i(j)

(
βk
i , ŵ

k
ji

)
, βi =

{
βk
i

}
k∈Li

,
wi =

{
wk

i

}
k∈Li

and ŵji =
{
ŵk

ji

}
k∈Li

. Note that if
there is no aggregator sharing sub-band k which is
currently occupied by subscriber Sk

i , we can write
the payoff of MNO Mi obtained from its subscriber
in the kth sub-band as ϖk

i(j)

(
wk

i , ŵ
k
ji = 0, βk

i

)
.

2) The second part of the payoff function of MNO Mi

consists of the payoff obtained by aggregating sub-
bands of others. We can write the revenue of MNO
Mi obtained from aggregator Ŝm

ij using the mth sub-
band of Mj as

π̂m
(i)j

(
wm

j , ŵm
ij

)
= α′

iB
m
j log

(
1 +

hm
ii ŵ

m
ij

ϱmj + hm
jiw

m
j

)
, (6)

where α′
i is the price charged by Mi to its subscriber

for aggregating sub-band m of MNO Mj .

Each MNO Mi also needs to pay a price when its
aggregators access the sub-bands of other MNOs. We
hence define the cost of each aggregator Ŝm

ij ∈ Ni of
MNO Mi accessing the mth sub-band of MNO Mj as
ζm(i)j

(
βm
j , ŵm

ij

)
= βm

j hm
ij ŵ

m
ij .

The second part of the payoff function of MNO Mi

in a sharing IO-CA pair can then be written as

ϖ′
(i)j

(
βj ,wj , ŵij

)
=

∑
Sm
i ∈Ni,m∈Lj\Rij

ϖm
(i)j

(
βm
j , wm

j , ŵm
ij

)
, (7)

where ϖm
(i)j

(
βm
j , wm

j , ŵm
ij

)
=

π̂m
(i)j

(
wm

j , ŵm
ij

)
− ζm(i)j

(
βm
j , ŵm

ij

)
.

Note that if there is no subscriber currently occupying
sub-band k, i.e., wk

i = 0 and hk
ij = 1, the resulting

payoff ϖm
(i)j

(
βm
j , wm

j , ŵm
ij

)
will become equivalent to

the payoff of regular IO-CA in (3), i.e., we can also
write ϖR

ij =
∑

k∈Rij

ϖm
(i)j

(
βm
j , wm

j = 0, ŵm
ij

)
.

By combining (5) and (7), we can write the total payoff
of MNO Mi when it forms an IO-CA pair with MNO Mj

as

ϖij

(
βi,βj ,wi, ŵji,wj , ŵij

)
= ϖi(j) (βi,wi, ŵji) +ϖ(i)j

(
βj ,wj , ŵij

)
. (8)

where
ϖi(j) (βi,wi, ŵji) =

∑
k∈Rij

ϖk
i(j)

(
wk

i , ŵ
k
ji = 0, βk

i

)
+∑

k∈Lij\Rij
ϖk

i(j)

(
wk

i , ŵ
k
ji ̸= 0, βk

i

)
and

ϖ(i)j

(
βj ,wj , ŵij

)
=∑

Sm
i ∈Ni,m∈Rij

ϖm
(i)j

(
βm
j , wm

j = 0, hm
ij = 1, ŵm

ij

)
+∑

Sm
i ∈Ni,m∈Lj\Rij

ϖm
(i)j

(
βm
j , wm

j , ŵm
ij

)
.

Note that if an MNO Mi decides to use neither regular
nor sharing IO-CA, the resulting payoff is only related to
the transmit power of each subscriber, i.e., we have

ϖii (ϖi) = ϖij (wi, ŵji = 0,wj = 0, ŵij = 0) . (9)

It can be observed that sharing IO-CA is particularly
useful in heterogeneous networks with multi-tiers in
which the network of each MNO consists of both
macro-cells with high-power infrastructure and low
powered operator- or user-deployed small-cells or
femto-cells. In this case, allowing the high-power
infrastructure of an MNO to share the same spectrum as
the small-cell infrastructure of the same MNO will have
the potential to cause large interference to both the
macro-cell and small-cell users. On the other hand,
allowing the low power infrastructure of one MNO to
aggregate the spectrum used by the high power
infrastructures of another MNO can alleviate the cross-tier
interference. We will provide a more detailed discussion
of this scenario using simulation results in Section V.

B. Problem Formulation

In cellular network systems, different MNOs have
different infrastructure and spectrum resources and always
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have the incentive to maximize their performance by
taking full advantage of the aggregated spectrum of other
MNOs. This makes it natural to study the IO-CA from
the game theoretic perspective. In this paper, we assume
each MNO is selfish and can strategically decide its
parameters to optimize its performance and will only seek
cooperation with other MNOs when this cooperation can
provide mutual benefits. In this paper, we focus on the
following problems,

1) Pairing Problem: In an IO-CA-based cellular
network, each MNO is selfish and can always make
autonomous decisions about its IO-CA partner. More
specifically, each MNO Mi needs to send a request
to another MNO (e.g., Mj) and an IO-CA pair
between Mi and Mj can only be established when
the request is accepted by Mj . To attract other
MNOs to aggregate its spectrum, each MNO should
also reveal some information such as the set of
sub-bands allowed for aggregation and the prices
charged to each aggregator, for other MNOs to
evaluate the achievable performance in an IO-CA
pair. If MNO Mj in an IO-CA pair can further
improve its payoff by pairing with a different MNO
(e.g., Mk for k ̸= i, j) which will also accept the
request from Mi, the IO-CA pair between Mi and
Mj will not be stable. Therefore, it is important to
decide a stable IO-CA pairing structure in which
every MNO sticks to its IO-CA pairing partner and
has no intention to unilaterally deviate. Note that the
pairing request signals sent by each MNO only need
to include the identity information of each MNO and
therefore, the communication overhead caused by
sending and responding to the pairing request
between two pairing MNOs can be regarded as a
small constant which is neglected in this paper.

2) Pricing Adjustment Problem for Each MNO in Its
Licensed Spectrum: Each MNO can control the price
charged to the spectrum aggregators in its licensed
spectrum. Therefore, the pricing adjustment problem
for each MNO Mi in an IO-CA pair formed between
Mi and Mj can be written as

max
βi

ϖij

(
βi,β

∗
j ,wi, ŵji,wj , ŵij

)
. (10)

where β∗
j is the optimal price of MNO Mj .

3) Power Control Problem for Each MNO in the
Spectrum of Others: When accessing the spectrum of
other MNOs, each MNO can use power control
methods to further improve its performance given the
prices imposed by the spectrum license holders. The
power optimization problem for each aggregator of
an MNO Mi can be formulated as

max
ŵij

ϖij

(
βi,βj ,wi, ŵ

∗
ji,wj , ŵij

)
. (11)

where w∗
ji are the optimal transmit powers of the

aggregators from MNO Mj .
4) Joint Optimization Problem: In this paper, we

consider the joint optimization of the above three

Pairing Problem

IO-CA Pairs

Pricing Adjustment Problem

for Subscribers

Power Control Problem

for Aggregators

A Stackelberg Game

β w

(w
*
, β

*
)

Γ

A Joint Optimization Framework

KMNOs

A Stable Roommate Market

Fig. 2. Relationship among different problems and game models in an
IO-CA-base cellular network.

problems. More specifically, we model the pairing
problem as a stable roommate market and seek a
stable matching structure among all the MNOs. We
then establish a Stackelberg game-based hierarchical
framework [8] within each IO-CA pair in which, in
the licensed spectrum of each MNO Mi, Mi and its
corresponding subscribers are the leaders (or primary
user, seller, etc.) and the aggregators from the other
pairing MNO Mj for j ̸= i are the followers (also
called secondary user, buyer, etc.). Using this
framework, we propose an algorithm to jointly
optimize the transmit power, prices, and pairing
partner of each MNO and its corresponding
subscribers and aggregators.

IV. A JOINT OPTIMIZATION FRAMEWORK FOR AN
IO-CA SYSTEM

In this section, we discuss the solutions of the problems
described at the end of Section III. We first study the power
control problem for an IO-CA pair in Section IV-A. We
then discuss Stackelberg game modeling and the joint price
and transmit power optimization problem in Section IV-B.
Finally, we establish a stable roommate market to study the
IO-CA pairing problem for a network with three or more
MNOs in Section IV-C. The relationship between different
models in our joint optimization framework is illustrated in
Figure 2.

A. Optimal Power Control for each MNO

Once an IO-CA pair has been established and a sub-band
has been aggregated by an aggregator, it is important for
each aggregator to maintain the resulting interference below
the tolerable levels defined in (1) and (2). In this subsection,
we assume an IO-CA pair has already been formed between
MNOs Mi and Mj for i ̸= j and Mi,Mj ∈ K and pricing
coefficients βi and βj for both MNOs are constants. Let
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us consider the power control of an aggregator Ŝk
ij from

MNO Mi aggregating the kth sub-band of MNO Mj . The
optimization of the pricing coefficients and pairing partners
for MNOs will be discussed in the next two subsections.
Following the same line as Section III, we can rewrite the
optimization of the power control problem for MNO Mi as
follows:

max
ŵij

ϖij

(
βi,βj ,wi, ŵ

∗
ji,wj , ŵij

)
s.t. hk

ijŵ
k
ij ≤ qj , h

l
jiŵ

l∗
ji ≤ qi, ŵ

k
ij ≤ q̃kj

and ŵk
ji ≤ q̃ki ∀k ∈ Lj , l ∈ Li

wl
i, w

k
j , ŵ

k
ij , ŵ

l∗
ji ≥ 0,

∀k ∈ Lj , l ∈ Li, S
l
i ∈ Ni, S

k
j ∈ Nj . (12)

As the transmissions in different sub-bands are
independent with each other and the payoff function
ϖk

(i)j

(
wk

j , ŵ
k
ij , β

k
j

)
of aggregator Ŝk

ij from MNO Mi is
concave in ŵk

ij for a given βk
j and wk

j , we can then derive
the following optimal transmit power ŵk∗

ij of each

aggregator Ŝk
ij of MNO Mi by setting

∂ϖk
(i)j(w

k
j ,ŵ

k
ij)

∂ŵk
ij

= 0

where ŵk∗
ij is given by,

ŵk∗
ij = (13)(

min

{(
Bk

j

βk
j h

k
ij

−
ϱki + hk

jiw
k
j

hk
ii

)
, q̃kj ,

qj
hk
ij

})+

,

where (·)+ = max{0, ·}. We can write the optimal transmit
power of all aggregators of MNO Mi as ŵ∗

ij =
{
ŵk∗

ij

}
k∈Lj

where ŵk∗
ij is given in (13).

It can be observed that aggregator Ŝk
ij can only

calculate the optimal transmit power by knowing the
pricing coefficient βk

j , the channel gain and transmit
power wk

j . In a practical system, each MNO Mi will rely
on the other paired MNO Mj to provide this information.
If Mj refuses to disclose such information to Mi, Ŝk

ij

cannot determine the optimal transmit power but has to
send signals using a pre-defined fixed power. In Section
V, we compare the performance of an IO-CA-based
cellular network with and without using optimal power
control.

Another observation from (13) is that the optimal
transmit power ŵk∗

ij of aggregator Ŝk
ij decreases with the

pricing coefficient βk
j . In other words, each MNO Mj can

control the interference level of the aggregator Ŝk
ij in each

of its sub-bands by adjusting the corresponding pricing
coefficient βk

j . We will provide a more detailed discussion
on how each MNO decides the optimal pricing coefficient
in the next subsection.

We can prove the following result:
Proposition 1: If ∃k ∈ Lj , ŵk∗

ij > 0, then ϖ(i)j > 0.
Proof: See Appendix A.

The above proposition says that if the optimal transmit
power of at least one of aggregators from MNO Mi is
positive, MNO Mi can always obtain benefits by
aggregating the kth sub-band of MNO Mj . Note that if

wk∗
ij = 0, it means that Ŝk

ij cannot aggregate the kth
sub-band of MNO Mj .

B. Optimal Price and Stackelberg Game for each MNO

Let us consider the joint optimization of the transmit
powers and pricing coefficients for an IO-CA pair formed
between MNOs Mi and Mj for Mi ̸= Mj and
Mi,Mj ∈ K. By substituting the optimal transmit powers
ŵ∗

ij and ŵ∗
ji in (13) into ϖij

(
wi,wj ,βi,βj , ŵ

∗
ij , ŵ

∗
ji

)
,

we can observe that the payoff of each MNO depends on
the pricing coefficients of both paired MNOs. This means
that the pricing optimization problems for both MNOs are
correlated. Specifically, the optimal β∗

i decided by Mi

affects the optimal transmit powers of the aggregators
from MNO Mj , which also determines the pricing
coefficients and the incentive of Mj to form an IO-CA
pair with MNO Mi. However, each MNO can only
control the price of its own spectrum. Recall from Section
III, the payoff of each MNO Mi consists of two parts:
ϖi(j) (βi,wi, ŵji) and ϖ(i)j

(
βj ,wj , ŵij

)
. The pricing

coefficient βi decided by Mi can only affect the first part
ϖi(j) (βi,wi, ŵji), and the second part
ϖ(i)j

(
βj ,wj , ŵij

)
depends on the pricing coefficient βj

controlled by Mj .
As each MNO has the autonomy to decide and manage

the spectrum usage in its own sub-bands, it can determine
the price charged to each aggregator in each of its
sub-bands considering that all aggregators will use the
optimal transmit powers discussed in Section IV-A. The
interactions between users that must decide what actions
to take in a sequential manner make it natural to model
the above pricing and transmit power optimization
problem as a Stackelberg game as follows: in its own
licensed spectrum, each MNO is a leader and its action is
to select the pricing coefficient when the strategic
aggregators access its spectrum. Each aggregator is a
follower and its action is to optimize the transmit power
according to the prices imposed by the MNOs. We seek a
Stackelberg equilibrium solution for our proposed game
which is formally defined as follows.

Definition 1: [39, Definition 3.26-3.28] Suppose MNOs
Mi and Mj form an IO-CA pair. In the spectrum of MNO
Mi, Mi is the leader and aggregators from MNO Mj are
the followers. An action pair

(
β∗
i , ŵ

∗
ji

)
is a Stackelberg

equilibrium if ŵ∗
ji satisfies

ϖij

(
β∗
i ,β

∗
j , ŵ

∗
ji, ŵ

∗
ij ,wi,wj

)
(14)

≥ ϖij

(
β∗
i ,β

∗
j , ŵji, ŵ

∗
ij ,wi,wj

)
, ∀ŵji ∈ R|Li|,

where β∗
i satisfies

β∗
i = arg max

βi∈R|Lj |
ϖij

(
βi,β

∗
j , ŵ

∗
ji, ŵ

∗
ij ,wi,wj

)
.

We can prove the following results about the Stackelberg
equilibrium for our proposed game.

Theorem 1: For each IO-CA pair formed by MNOs
Mi and Mj ,

(
β∗
i , ŵ

∗
ji

)
is a Stackelberg equilibrium in the

licensed spectrum of Mi where ŵk∗
ji is given in (13) and

β∗
i =

{
βk∗
i

}
k∈Li

for βk∗
i is given as follows: If
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(
2− 2ρki + θki

)2
< θki

(
θki − ρki

)
, βk∗

i = βk−
i where βk−

i

is given by

βk−
i =

hk
iiB

k
i

hk
iiqi + hk

ii + hk
ji

2
ŵk∗

ji

. (15)

and ρki =
hk
ji(1+hk

ijw
k
i )

hk
jj

, θki = hk
iiw

k
i . If

(
2− 2ρki + θki

)2 ≥
θki
(
θki − ρki

)
, then

βk∗
i = arg max

βk∗
i ∈{βk1∗

i ,βk2∗
i ,βk−

i ,βk+
i }

β∗
i ∈[β

k−
i ,βk+

i ]

{
ϖk

i

(
βk∗
i , ŵk∗

ji

)}
, (16)

where βk+
i =

Bk
i

ρk
i

and βk1∗
i is given by

βk1∗
i =

Bk
i

√
ρki θ

k
i

((
2− 2ρki + θki

)2
+ θki

(
ρki − θki

))
2ρki

(
ρki − 1

) (
ρki − 1− θki

)
−

Bk
i ρ

k
i

(
2− 2ρki + θki

)
2ρki

(
ρki − 1

) (
ρki − 1− θki

) , (17)

βk2∗
i =

Bk
i ρ

k
i

(
2− 2ρki + θki

)
2ρki

(
1− ρki

) (
ρki − 1− θki

) (18)

−
Bk

i

√
ρki θ

k
i

((
2− 2ρki + θki

)2
+ θki

(
ρki − θki

))
2ρki

(
ρki − 1

) (
ρki − 1− θki

) .

Proof: See Appendix B.
Similarly, we can also observe that

(
β∗
j , ŵ

∗
ij

)
is the

Stackelberg equilibrium solution in the spectrum licensed
to MNO Mj where β∗

j and ŵ∗
ij can be obtained by

swapping i and j in Theorem 1 and equation (13).
Note that the optimal pricing coefficients Theorem 1

are calculated by assuming all aggregators use the optimal
power control methods derived in (13). If the aggregators
use constant power to send signals, both MNOs should
charge the highest prices they can in each of their
sub-bands to maximize their revenue, i.e., βk

i → βk+
i

∀k ∈ Li.
The optimal pricing coefficient pair

(
β∗
i ,β

∗
j

)
for both

paired MNOs Mi and Mj derived in the above theorem
also corresponds to the Bertrand equilibrium solution if we
model the price competition between the pairing MNOs
as an oligopoly market where two market dominant firms
compete with each other with different prices [38], [40],
[41].

C. A Stable Roommate Market for the IO-CA Pairing
Problem

Let us consider the pairing problem for a cellular
network with three or more MNOs. In our model, an
IO-CA pair can only be formed when two MNOs
mutually agree to share their spectrum with each other.
This makes it natural to model the interaction among
MNOs as a roommate market, also known as one-sided
matching market [42] or non-bipartite matching market

[43], in which K students (or, in our model, MNOs) will
try to be assigned into ⌈K

2 ⌉ rooms (or, in our model,
IO-CA pairs) each of which accommodates two students.
Let us first define the roommate market as follows.

Definition 2: [44, Chapter 4.1] A roommate market is
specified by a set K of K students and a preference list Pk

for each student k for k ∈ K. A preference relation for the
roommate market is a tuple R = ⟨K,P ⟩ where P is the
preference table of all students defined as P = ⟨Pk⟩k∈K.

We define the IO-CA pairing problem for a cellular
network as a stable roommate market, referred to as the
IO-CA market, in which the students are modeled as
MNOs and each MNO Mn has a preference over all the
other MNOs that can improve its payoff by forming a
IO-CA pair, i.e., we use Pn (Mi) to denote the rank of
MNO Mi in the preference list of Mn and
Pn(Mi) < Pn(Mj) means
ϖni (wn,wi,β

∗
n,β

∗
i , ŵ

∗
ni, ŵ

∗
in) >

ϖnj

(
wn,wj ,β

∗
n,β

∗
j , ŵ

∗
nj , ŵ

∗
jn

)
for Mi,Mn,Mj ∈ K.

Note that IO-CA cannot always improve the payoff for
both paired MNOs and, if an MNO Mi cannot improve
its payoff by forming IO-CA with any MNOs in the
market, it will not share its spectrum with others but only
use its own exclusive spectrum to support services for its
subscribers, i.e., if Mn occupies the lth position in the
preference list of itself, it means that
ϖni (wn,wi,β

∗
n,β

∗
i , ŵ

∗
ni, ŵ

∗
in) > ϖnn (wn) for all

Mi ∈ K satisfying 0 < Pn(Mi) < l.
Different MNOs generally have different peak hours.

We hence can assume, in a cellular network, MNOs
sequentially join or leave the IO-CA market2. If an MNO
Mi decides to join the market, it will send a message to
inform all the MNOs in the current IO-CA market that
the spectrum of Mi will be available to share. MNOs in
the market can use the message sent by Mi to evaluate
the performance of Mi and insert Mi into the proper
positions in their preference lists. All MNOs will also
feedback a confirmation message to Mi which can be
used by Mi to establish the preference list over all the
MNOs. Let Pi be the preference of Mi. Let M̃k

i be the
kth most preferred MNO in the preference list of MNO
Mi.

One of the main solution concepts for the roommate
market is the matching which is defined as follows.

Definition 3: [44, Chapter 4.1] A (one-sided) matching
Γ for a roommate market is a function from sets K to K
such that Γ (Mi) ∈ K, Γ (Mj) ∈ K, and Γ (Mi) = Mj ⇔
Γ (Mj) = Mi for every Mi,Mj ∈ K.

Note that Γ (Mi) = Mi means that Mi cannot form an
IO-CA pair with any of the other MNOs. It can be observed

that there are
K/2∏
i=1

(
K−2i

2

)
/K

2 ! number of possible matchings

where
(
m
n

)
is the number of m combinations from a set of

2If multiple MNOs decide to join the market simultaneously, a random
duration of delay can be introduced for these MNOs. That is, if an MNO
Mi decides to join the IO-CA market, it will delay for ηi amount of time
before sending the joining request where ηi is a bounded random variable.
We have included this random delay in Algorithm 1.
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of n elements. In this paper, we seek a matching structure
that is stable which is defined as follows.

Definition 4: A stable matching is a partition of set K
into ⌈K

2 ⌉ disjoint IO-CA pairs such that no two MNOs who
are not in the same IO-CA pair but each of whom prefers
the other to its partner in the matching.

It has already been observed in [44] that a stable
matching for the stable roommate market may not always
exist. This is because the preference of each MNO over
each other may form a cyclic sequence. For example, it
can be easily shown that if the preferences of four MNOs
M1, M2, M3 and M4 are given by P1 = ⟨M2,M3,M4⟩,
P2 = ⟨M3,M1,M4⟩, P3 = ⟨M1,M2,M4⟩, and
P4 = ⟨M1,M2,M3⟩, respectively, it is impossible for find
a stable matching, e.g., any MNO, for instance Mi, that is
matched with M4 will be able to find another more
preferable MNO which also prefers Mi to its current
matching MNO.

Another concept called stable partition, which can be
regarded as a generalization of the stable matching, was
first proposed in [45], [46]. It has already been proved in
[45] that a stable partition always exists in any instance of
the roommate market. Let us present the formal definitions
as follows.

Definition 5: [46, Section 2] A stable partition P for
a roommate market is a permutation Π of the set K such
that (i) for every Mi ∈ K, either Π(Mi) = Π−1(Mi) or
Mi prefers Π(Mi) to Π−1(Mi), (ii) if Mi prefers Mj to
Π−1(Mi) then Mj prefers Π−1(Mj) to Mi. We refer to
Π(Mi) and Π−1(Mi) as the successor and predecessor of
Mi, respectively, relative to Π. We refer to a cycle in Π of
odd (or even) length as an odd (or even) party.

Note that the stable partition is in fact a permutation
instead of a matching structure that is stable [47], [48].

In the rest of this paper, we will first establish the
condition for which a stable matching exists in our
IO-CA market. We will then develop an algorithm that
achieves a stable matching structure if it exists.
Otherwise, the proposed algorithm results in a stable
partition among MNOs.

As mentioned previously, in practical systems, each
MNO can decide to join or leave the IO-CA market under
different situations. If an MNO that is not in the current
IO-CA market applies to join the market due to the
increasing of the traffic in its network, it needs to go
through a procedure, referred to as addition operation, to
decide its potential IO-CA pairing partner before it starts
to share the spectrum.

Let us present the detailed operation as follows.

Operation 1: Addition

Suppose an MNO Mi /∈ K tries to join the IO-CA market.
i) Mi broadcasts the pairing request and price information to

MNOs in K. Each MNO Mj ∈ K then evaluates the
resulting payoff when forming an IO-CA pair with Mi. Each
Mj ∈ K inserts Mi into its own preference list and then
feedbacks a confirmation message to Mi. Mi can use this
received feedback message to evaluate the performance and
establish its preference over all MNOs in K. All MNOs
update K = K ∪ {Mi}.

ii) Mi then sends the IO-CA pairing request to its most preferred
MNO in K. If the request sent by Mi is rejected, Mi sends a
request to the next most preferred MNO in its preference list.
This process is repeated until Mi has been matched with an
MNO Mj ∈ K or been rejected by all MNOs in K. There are
four possible results of the above process:
a) If the request sent by Mi has been rejected by all MNOs,

then Mi will not form any matching pair with MNOs in
K,

b) If the request sent by Mi has been accepted by an MNO
Mj and Mj has not sent the IO-CA pairing request to
another MNO before, it will have the following two results:

b-i) Mj is currently not matched with any other MNO, then
Mi and Mj will form a matching pair with each other,

b-ii) If the request sent by Mi has been accepted by an MNO
Mj that is currently matched with another MNO Mk ,
then Mi and Mj will form a matching pair with each
other. Mk will repeat the same Step ii) as Mi,

c) If the request sent by Mi has been accepted by an MNO
Mj who has sent an IO-CA pairing request to another
MNO before, it means that both Mi and Mj belong to a
cycle sequence and there is no stable matching for these
two MNOs.

Let us consider the case that the MNOs sequentially
join the IO-CA market using the above operation. More
specifically, at the beginning of the IO-CA market, there
is only one MNO (e.g., Mi) in the market. When the
second MNO Mj joins the market for Mj ̸= Mi, its
preference list only consists of two elements Mi and Mj

and if Pj(Mi) < Pj(Mj), Mj will send an IO-CA
request to MNO Mi and a stable matching pair can only
be formed when Mi also observes Pi(Mj) < Pi(Mi). If a
third MNO Mk tries to join the market for
Mk /∈ {Mi,Mj}, it will sequentially send pairing requests
to the MNOs in its preference list. If Mi is the first MNO
that accepts the request of Mk, it means that Mk is more
preferred by Mi than Mj , i.e.,
Pi(Mk) < Pi(Mj) < Pi(Mi). Since MNO Mk sends
requests to MNOs according to its preference list, Mi is
also the most preferred MNO that accepts the request of
Mk. In this case, Mi and Mk will be paired with each
other and Mj will be left without any IO-CA pairing
partner. When a fourth MNO Ml tries to join the market
for Ml /∈ {Mi,Mj ,Mk}, Ml will send a pairing request
according its preference list which will result in the
following possible cases: 1) if the request of Ml has been
rejected by all three MNOs in the market, Ml will not be
paired with any MNO, 2) if MNO Mj is the first MNO
that accepts the request of Ml, then an IO-CA pair will be
formed by Ml and Mj , 3) if MNO Mi (or Mk) accepts
its request, an IO-CA pair will be formed by Ml and Mi

(or Mk) and Mk (or Mi) will again restart the requesting
process by sending an IO-CA request to its next preferred
MNO. If during the requesting process of Mk, Mj is the
first MNO to accept the request, then the resulting IO-CA
market will consist of two stable matching pairs ⟨Ml,Mi⟩
and ⟨Mj ,Mk⟩. However, it is also possible that Ml will
be the first MNO that accepts the request of Mk (For
example, during the previous requesting process of Ml,
Ml prefers Mk to Mi. However, Mk rejects the request
sent by Ml because Mk prefers Mi to Ml.). This means
that Ml,Mk and Mi form a cyclic sequence and the
requesting process will be infinitely repeated among
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MNOs Ml,Mk and Mi. In this case, no stable matching
exists. We therefore can have the following results.

Proposition 2: Suppose all MNOs sequentially join the
IO-CA market following the procedure described in the
addition operation. The resulting structure is a stable
matching if the IO-CA market consists of a stable
matching. Otherwise, the resulting structure will be a
stable partition.

Proof: See Appendix C.
We can prove the following complexity results about the

addition operation.
Proposition 3: The complexity of the addition operation

is O(K2) in the worst case, where K is the number of
MNOs3.

Proof: See Appendix D.
Similarly, if an MNO that is currently in the market

decides to retrieve its exclusive spectrum and quit the
IO-CA market due to the decrease of the traffic in its
exclusive spectrum, it also needs to inform all other
MNOs that its spectrum will no longer be available. Let
us present the deletion operation as follows.

Operation 2: Deletion
Suppose an MNO Mi ∈ K decides to leave the IO-CA market.
Then we have

i) Mi broadcasts a leaving message to MNOs in K\{Mi} and
then each MNO Mj ∈ K\{Mi} will remove Mi from its
preference list and update K = K\{Mi}.

ii) If Mi is currently in an IO-CA pair with Mj = Γ(Mi) and
Mi ̸= Mj , Mj will send requests to the remainder of the
MNOs in K following the exactly the same line as steps ii) in
the addition operation.

Following the same line as Proposition 2, we can prove
the following results.

Proposition 4: Suppose an MNOs has been deleted
from the IO-CA market following the procedure described
in deletion operation. The resulting structure is a stable
partition.

Proof: See Appendix E.
Let us now present the following algorithm that can

jointly optimize the transmit powers, pricing coefficients
and pairing of MNOs.

Algorithm 1: A Joint Optimization Algorithm
Initialization: Let Pi be the preference list of Mi and Ri be the
domain of Pi.
Phase I — Price Adjustment and Power Control
WHILE ∃Mi ∈ K, |Ri| ≤ K − 1,

1) Each MNO Mi randomly chooses another MNO Mj /∈ Ri

to form an IO-CA pair.
2) Once an IO-CA has been formed, the pairing MNOs inform

each other regarding their sets of sub-bands allowing
aggregation. Each MNO also sends a short training signal in
each of these sub-bands for the other pairing MNO to
estimate the channel gain between the licensed subscribers
and aggregators as well as the transmit powers of the
subscribers in each of these sub-bands.

3) Both of the pairing MNOs inform each other of their optimal
pricing coefficients calculated by Theorem 1 and each
aggregator transmits using the transmit power calculated by
(13).

4) Each MNO Mi obtains the resulting payoff ϖij and updates
Ri = Ri ∪ {Mj}. Mi also updates the preference list by

3In this paper, we follow Bachmann-Landau notations: f = O(g) if
lim

n→∞
f(n)
g(n)

< +∞.

ranking all MNOs in the updated Ri from the highest to the
lowest payoffs.

ENDWHILE
Phase II — IO-CA Pairing
WHILE ∃Mi ∈ K who did not receive any pairing request or did
not send any pairing request to other MNOs,

5) Each MNO Mi ∈ K waits for a bounded random amount of
time before using the addition operation to join the IO-CA
market.

6) Whenever an MNO Ml wishes to join or leave the market,
it uses the addition or deletion operation to join or leave the
market.

Proposition 5: Algorithm 1 either reports no stable
matching exists and achieves a stable partition or
generates a stable matching for the IO-CA system. For
any IO-CA pair between MNOs Mi and Mj for
Mi ̸= Mj , the transmit power of each aggregator achieves
the optimal transmit power derived in Section IV-A. The
pricing coefficient βi and the transmit power ŵji in the
spectrum of each MNO Mi achieve the Stackelberg
equilibrium.

Proof: The second part of the above theorem directly
comes from (13) and the results of Theorem 1. In the
Phase II of Algorithm 1, each MNO enters or leaves the
IO-CA market by using the addition and deletion
operators introduced in Operations 1 and 2, respectively.
Following the results in Propositions 2 and 4, the first
part of Proposition 5 can be proved.

From the above proposition, if Algorithm 1 reports a
stable matching structure, we can claim the existence of
at least one stable matching structure. However, if a stable
matching does not exist, then Algorithm 1 will result in a
stable partition. Note that a stable partition is actually a
permutation and is not necessarily stable because of the
existence of odd parties. It has been proved in [49] that
for each odd party, if an MNO can be removed from this
odd party, the rest of the MNOs can form a stable
matching with each other. In other words, a possible
solution to reach a stable structure among MNOs can be
obtained by choosing an MNO from each odd party and
forcing it to quit the market. However, which MNO
should quit and how to design a distributed mechanism to
incentivize the quitting process of these MNOs is out of
the scope of the current paper.

It can be observed from Algorithm 1 that the resulting
matching structure among MNOs is closely related to the
preference relation of each MNO, which also depends on
the resulting payoff, by forming different IO-CA pairs
with each other. In addition, from the discussion of
Section IV-A, we can observe that the resulting payoffs as
well as the preference list of each MNO, are directly
determined by their transmit powers and pricing
coefficients. By using the optimal transmit power in (13)
and optimal pricing coefficients derived in Theorem 1,
each MNO can obtain the highest payoff when forming an
IO-CA with another MNO in the market and hence each
MNO cannot further improve its payoff by unilaterally
changing its price, transmit power or pairing partner.
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V. DISCUSSIONS AND NUMERICAL RESULTS

Before presenting the simulation results of our
proposed joint optimization framework, let us first verify
the performance improvement measured by transmission
rate brought by the IO-CA in a two-tier heterogeneous
network with two closely located MNOs M1 and M2, i.e.,
we apply the utility function given in (8) with αk

j = 1 and
βk
j = 0 ∀k ∈ {1, 2, . . . ,K} and j ∈ L. We assume the

network of each MNO consists of a macro-cell overlaid
with a small-cell, and that the macro-cells and small-cells
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Fig. 14. Number of IO-CA pairs with different lengths of the side of
coverage area.

associated with the same MNO operate in different
spectrum. We consider the downlink transmission and
assume only the macro-cell of each MNO can share the
spectrum licensed to the small-cell of the other MNO.
With sight abuse of notation, we denote the macro-cell
BS and small-cell BS for each MNO Mi by Mi and M ′

i ,
respectively for i ∈ {1, 2}. We assume the locations of the
macro-cell BSs and small-cell BSs for the two MNOs are
symmetric as shown in Figure 3. We assume each (macro-
or small-) BS has been associated with the same number
of subscribers which are uniformly randomly distributed
within the circular coverage area of its BS with radius of
2 km and 200 m for macro- and small-cell, respectively.
We set the maximum transmit powers for macro-cell BS
and micro-cell BS as 40 and 20 dBm, respectively [50],
and assume each BS can adjust its optimal transmit power
using (13) when possible.

We first present the average transmission rates of each
subscriber achieved by regular IO-CA and sharing IO-CA
and compare it with the system without IO-CA in Figure
4. It can be observed that if all the sub-bands in the
small-cell are vacant, sharing IO-CA and regular IO-CA
will result in the same performance. However, if all the
sub-bands are fully occupied by small-cell subscribers,
regular IO-CA cannot provide any performance
improvement compared to the system without IO-CA. We
can also observe that the sharing IO-CA can always
improve the transmission rate of the subscribers even
when there is no vacant small-cell sub-band available. In
Figure 5, we compare the average transmission rate of the
subscriber for each MNO with and without sharing
IO-CA under different distances dMiM ′

j
. It can be easily

observed that when dMiM ′
j

approaches zero, our sharing
IO-CA can be regarded as special case of the traditional
carrier aggregation between a small-cell and macro-cell of
the same MNO sharing the same spectrum. We can
observe from Figure 5 that if dMiM ′

j
is close to zero,

IO-CA cannot improve the transmission rate for its
subscriber compared to the case without IO-CA. This is
because the high-power macro-cell subscribers and the
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low-power small-cell subscribers can cause large
cross-interference when they are closely located within
the same macro-cell. However, with the increasing of the
distance between the macro-cell BS of one MNO and
small-cell BS of the other MNO, the transmission rate for
each subscriber can be significantly improved. This
confirms our previous observation that IO-CA has the
potential to significantly improve the performance of
cellular networks compared to carrier aggregation within a
single MNO’s network. In sharing IO-CA, the aggregators
from one MNO should always control their transmit
powers to avoid intolerable interference to the subscribers
in the small cell of the other MNO. Therefore, in Figure
6, we assume the small cell subscribers have the same
maximum tolerable interference levels and each
macro-cell subscriber adapts its transmit power to the
maximum tolerable interference level of its sub-band
sharing small-cell subscriber. We compare the average
transmission rate for our simulated network system under
different tolerable interference levels. We can observe that
the transmission rates of the small-cell subscribers
decrease with the maximum tolerable levels. On the other
hand, the increasing of the transmission rate for the
aggregators from the other MNO can compensate the
performance degradation of the small-cell subscribers and
the total average transmission rate for each subscriber can
increase with the maximum tolerable interference level.

In Figures 4-6, we assume all subscribers are uniformly
randomly located within a fixed coverage area and
compare the performance of cellular networks with and
without IO-CA. The performance of each subscriber is
also closely related to its relative distance to the
corresponding BS. We will provide a more detailed
discussion about this in examining Figures 13 and 14 at
the end of this section.

In this paper, we consider the joint optimization of
three problems: pairing problem, pricing adjustment
problem and power control problem. We derive solutions
for each of these problems and propose a joint
optimization algorithm that simultaneously achieves all
these solutions. Our algorithm is general in the sense that
each separate part of our algorithm can be individually
applied to optimize IO-CA-based cellular networks under
different situations. For example, if each aggregator
cannot keep track of the channel gains between itself and
the subscribers, it will fix its transmit power. However,
MNOs can still use Phase-II of Algorithm 1 to decide
their IO-CA pairing partners. In the rest of section, we
present numerical results to access the performance of our
proposed optimization algorithms. We mainly compare the
following approaches for our IO-CA-based cellular
networks,

1) Random pairing: all K MNOs are randomly
partitioned into ⌈K

2 ⌉ groups each of which consists
of two MNOs. If both of MNOs in a group can
improve their payoffs using IO-CA with predefined
fixed powers and prices, they will form an IO-CA
pair. Otherwise, both MNOs will only use their own

licensed spectrum to transmit signals without
aggregating the spectrum of each other.

2) IO-CA: each MNO fixes the powers and pricing
coefficient and only uses Phase-II of Algorithm 1 to
decide its IO-CA pairing partner.

3) IO-CA with power control: each MNO uses the
optimal transmit power calculated from (13) and
Phase-II of Algorithm 1 to decide its IO-CA pairing
partner.

4) IO-CA with power control and optimal price: each
MNO uses Algorithm 1 to decide its transmit power,
pricing coefficient and the pairing partner.

From the discussion in Section III, we can observe that
in regular IO-CA, there is no incentive for each MNO to
control the transmit powers of the aggregators by
optimizing its price. In addition, regular IO-CA can be
regarded as a special case for sharing IO-CA when the
interference caused by the sub-band sharing aggregator is
lower than the maximum tolerable interference of the
subscriber even when the aggregator uses its maximum
transmit power, i.e., q̃kij ≤ qj

hk
ij

. Therefore, in this section,
we mainly focus on the sharing IO-CA. We first simulate
IO-CA-based cellular network with two MNOs, each of
which corresponds to a cellular network with a base
station located at the center of the coverage area. Each
MNO also contains a set of subscribers and a set of
aggregators uniformly and randomly located in the
overlapped coverage area of both MNOs as is shown at
the top of Figure 3. Each subscriber or aggregator
corresponds to the uplink communication channel from
each UE to the base station. Assume that the channel gain
hk
ij is given by hk

ij =
ĥk
ij

dk
ij

ξ for i, j ∈ {1, 2} where ĥk
ij is

the average channel fading coefficient, dkij is the distance
between aggregator Ŝk

ij and the base station of Mj and ξ
is the fading exponent. We also use dM1M2 to denote the
distances between base stations of M1 and M2. Let us
focus on the performance of both source-to-destination
pairs with different values of dM1M2 .

We first consider the effects of the changing pricing
coefficients on the payoff of the MNOs. In Figure 7, we
assume each MNO applies the same pricing coefficient to
all of its sub-bands. We then fix the pricing coefficient of
one MNO and compare the payoffs of MNOs when the
other MNO changes its pricing coefficient. It is observed
that the payoff of both MNOs will be affected even when
the price of only one MNO changes. This is because in
our model each MNO can use the price to control the
payoff obtained from its own spectrum as well as that
obtained from aggregating the spectrum of the other
MNO. Another observation is that the IO-CA with power
control significantly increases the payoff of both MNOs,
and more importantly, it also reduces the payoff
difference between the MNOs caused by the price change.

The payoffs of both MNOs with different optimization
algorithms under different values of dM1M2 are compared
in Figure 8. It is observed that the payoffs of both MNOs
decrease with the distance dM1M2 . This is because when
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the distance between MNOs becomes large, each MNO
will decrease its pricing coefficient to attract more
aggregators from the other MNO which also reduces the
revenue obtained from the other MNO. We can also
observe that the payoff improvement brought by IO-CA
with power control and/or optimal price is larger than
those brought by other two approaches.

To study the payoff obtained by MNOs from each
subscriber, we present the optimal pricing coefficient of
each MNO in one of its sub-bands occupied by
subscribers S2

1 and S1
2 under different dM1M2 in Figure 9.

We observe that the optimal pricing coefficients charged
in both sub-bands of MNOs M1 and M2 decrease with
the distance dM1M2 . This is because when two MNOs are
further away, each MNO will need to provide more
incentive such as reducing its price to attract the other
MNO to aggregate its spectrum.

In Figure 10, we compare the optimal transmit powers
of two aggregators randomly chosen for both MNOs
under different distances between the base stations. We
can observe that with the increasing of dM1M2 , the
aggregator should always increase its transmit power to
further improve the payoff of its corresponding MNO
because the cross-interference for each sub-band sharing
subscriber and aggregator decreases with dM1M2 . Note
that the price decreasing process illustrated in Figure 9
affects the revenue for MNOs at a much faster rate, which
eventually lowers the payoffs of the MNOs as observed in
Figure 8.

We now simulate an IO-CA-based cellular network
with more than two MNOs by considering a
square-shaped coverage area in which each MNO has a
fixed number of subscribers and aggregators uniformly
randomly located in the coverage area. We follow the
same settings as the two MNO case introduced in the
beginning of this section.

In Figure 11, we fix the size of the coverage area and
compare the average payoff obtained by all MNOs under
different total numbers of MNOs. We can observe that
random pairing cannot provide any payoff improvement to
MNOs because the chance for each MNO to pick up a
high cross interfering pairing partner (e.g., another MNO
that is close-by) increases with the density of the MNOs
in the coverage area. However, the average payoff of
MNOs increases with the number of MNOs when IO-CA
is allowed. This is because all MNOs are randomly
located in the area and with the increasing of the number
of MNOs, each MNO will have more choice of its IO-CA
pairing partner using the Phase II of Algorithm 1. We can
also observe that as the coverage area becomes more and
more crowded, the payoff improvement brought by our
proposed IO-CA with power control and optimal price
becomes more significant. In other words, our proposed
joint optimization algorithm is more useful in a high
population/MNO density area such as city center or
during the peak hours of the data service demand. Note
that, in our model, we assume MNOs are selfish and we
focus on the distributed optimization for cellular networks

with multiple MNOs. In our setting, an IO-CA pair can
only be formed if both pairing MNOs can further improve
their performance by allowing their spectrum to be
aggregated by each other. This condition is referred to as
individual rationality in game theory. It can be observed
that the payoff sum of the MNOs can be further increased
if some MNOs sacrifice their performance and allow other
MNOs to aggregate their spectrum at a low price. We
refer to the solution that can maximize the total payoff
sum of all MNOs without the constraint of individual
rationality as the global optimal solution which is also
presented in Figure 12. As can be observed from Figure
11, although the global optimal solution is significantly
better than our proposed distributed optimization
approach, it cannot guarantee stableness and the
performance for each individual MNO, and hence cannot
always incentivize IO-CA among MNOs.

In Figure 12, we compare the numbers of IO-CA pairs
formed under different number of MNOs. It can be
observed that the number of IO-CA pairs between MNOs
achieved by random pairing does not vary much as the
number of MNOs increases. However, if the power
control and/or optimal prices have been applied, the
chance for each MNO to find another MNO to form an
IO-CA pair will increase with the number of MNOs. In
addition, when the number of MNOs is large enough
(e.g., exceeds 16 in Figure 12), IO-CA with power control
can achieve the maximum number of IO-CA pairs among
MNOs. In other words, if the main objective for each
MNO that adopt IO-CA is to maximize the total number
of spectrum sharing pairs, IO-CA with power control and
IO-CA with power control and optimal price achieve the
same results if the density of MNOs in the coverage area
exceeds a certain threshold.

In Figure 13, we compare the payoffs of the MNOs
under different sized coverage areas. We observe that the
average payoff of MNOs decreases when the size of the
coverage area becomes large. This verifies our previous
observation that our proposed optimization algorithm can
provide high performance improvement when the density
of the MNOs is high. We also observe that the average
payoff obtained only by IO-CA approaches that obtained
by random pairing when the length of the coverage area
becomes large. However, IO-CA with optimal price
and/or power control can still provide significant payoff
improvement compared to the random pairing.

In Figure 14, we compare the number of IO-CA pairs
between MNOs under different sizes of the coverage area.
We observe that if the size of the network is small, there
are always some MNOs that cannot find a pairing partner
to form an IO-CA pair. However, when applying IO-CA
with optimal price and power control, the number of IO-
CA pairs between MNOs will reach the maximum number
K
2 when the size of the network becomes large.

VI. CONCLUSION

This paper considers CA between MNOs in a cellular
network. In this network, an MNO can not only access its
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own licensed spectrum, but can also aggregate the
spectrum licensed to other MNOs by paying a certain
price. We establish a stable roommate market to study the
pairing problem among the MNOs. We derive a condition
for which a stable matching structure exists. We propose
an algorithm to approach a stable matching structure if it
exists. Otherwise, the algorithm results in a stable
partition. We then establish a Stackelberg game-based
model to study the interaction between the subscribers
and aggregators in the spectrum of each MNO. We derive
the optimal transmit power for each aggregator and the
Stackelberg equilibrium for each MNO. We propose a
joint optimization algorithm that can achieve a stable
matching structure among MNOs if it exists as well as the
optimal transmit powers and prices for each MNO. We
present numerical results to verify the performance
improvement brought by each of these optimization
methods under different situations.

APPENDIX A
PROOF OF PROPOSITION 1

Let us consider the payoff of subscriber Ŝk
ij of MNO Mi

obtained by aggregating the kth sub-band of MNO Mj as
follows,

ϖk
(i)j = Bk

j log

(
1 +

hk
iiŵ

k
ij

1 + hk
jiw

k
j

)
− βk

j h
k
ijŵ

k
ij . (19)

It is observed that ŵk
ij increases (or decreases) with ϖk

(i)j

when ŵk
ij < ŵk∗

ij (or ŵk
ij ≥ ŵk∗

ij ) where wk∗
ij is the optimal

solution of ϖk
(i)j given in (13). Because ϖk

(i)j = 0 if ŵk
ij =

0, we hence have ϖk
(i)j ≥ 0 when ŵk∗

ij ≥ 0.

APPENDIX B
PROOF OF THEOREM 1

Let us consider the optimization of the pricing
coefficients for the MNOs. Before the derivation of the
optimal price, we first need to calculate the range of βk

i .
It is observed that the value of βk

i is limited by two
constraints. The first one is the power constraints in (2).
The other one is the fact that the transmit power of each
aggregator should be a positive value. Otherwise Mi

cannot obtain any benefits by optimizing βk
i in the kth

sub-band, i.e., ŵk∗
ji > 0. Substituting ŵk∗

ji in (13) into (2),
we can obtain the lower bound βk−

i for βk
i which is given

in (15). Similarly, applying ŵk∗
ji > 0, we can calculate the

upper bound βk+
i of βk

i which is presented in the results
of Theorem 1. In other words, if the value of βk∗

i is less
than that of βk−

i , the transmit power of aggregator Ŝk
ji

will exceed the maximum tolerable interference level of
Mi. While if βk∗

i is greater than βk+
i , Ŝk

ji will not
aggregate the kth sub-band of Mi by transmitting with a
positive power and hence MNO Mi cannot obtain any
revenue from the kth sub-band of MNO Mj .

If we substitute ŵk∗
ij in (13) into the payoff function of

(8), we can find that ϖk
i(j)

(
wk

i , ŵ
k∗
ji , β

k
i

)
(or

ϖk
(i)j

(
wk

j , ŵ
k∗
ij , β

k
j

)
) is only related to ŵk∗

ji (or ŵk∗
ij )

which is controlled by βk
i (or βk

j ). Since MNO Mi can
only decide the value of βk

i , we assume βk
j has already

been chosen by MNO Mj and hence MNO Mi only
needs to focus on the optimization of βk∗

i to maximize

ϖk
i(j)

(
wk

i , ŵ
k∗
ji , β

k
i

)
. Let us denote ρki =

hk
ji(1+hk

ijw
k
i )

hk
jj

and

θki = hk
iiw

k
i . Substituting ŵk∗

ij and ŵk∗
ji in (13) into (8),

we have

ϖk
i(j)

(
wk

i , ŵ
k∗
ji , β

k
i

)
= Bk

i log

(
1 +

βk
i θ

k
i

Bk
i + βk

i

(
1− ρki

))
+
(
Bk

i − βk
i ρ

k
i

)+
(20)

To find the optimal value of βk
i that can maximize ϖk

i(j),
we have

∂ϖk
i(j)

(
wk

i , ŵ
k∗
ji , β

k
i

)
∂βk

i

= 0

⇒
Bk

i

(
1 + θki − ρki

)
Bk

i + βk
i

(
1 + θki − ρki

)
− 1− ρki
Bk

i + βk
i

(
1− ρki

) − ρki = 0

⇒
βk
i B

k
i ρ

k
i

(
2− 2ρki + θki

)(
Bi + βk

i

(
1 + θki − ρki

)) (
Bk

i + βk
i

(
1− ρki

))
+
Bk

i
2 (

θki − ρki
)
− βk

i
2
ρki
(
1− ρki

) (
1 + θki − ρki

)(
Bk

i + βk
i

(
1 + θki − ρki

)) (
Bk

i + βk
i

(
1− ρki

))
= 0.

(21)

From the above equation, it is observed that if(
2− 2ρki + θki

)2
< θki

(
θki − ρki

)
, there is no solution for

∂ϖk
i(j)(w

k
i ,ŵ

k∗
ji ,βk

i )
∂βk

i

= 0. In this case,
∂ϖk

i(j)(w
k
i ,ŵ

k∗
ji ,βk

i )
∂βk

i

< 0

which means that ϖk
i(j)

(
wk

i , ŵ
k∗
ji , β

k
i

)
always decreases

with βk
i . Therefore, MNO Mi should choose the lowest

value of βk
i in the kth sub-band to maximize the payoff

ϖk
i(j)

(
wk

i , ŵ
k∗
ji , β

k
i

)
, i.e., βk∗

i = βk−
i . However, if(

2− 2ρki + θki
)2 ≥ θki

(
θki − ρki

)
, there exist two solutions

for the equation (21) which are given in (17) and (18),
respectively. These solutions can be the value of βk

i that
either maximizes or minimizes ϖk

i(j)

(
wk

i , ŵ
k∗
ji , β

k
i

)
. Note

that in (16), we also consider the boundary values of βk
i .

This is because the solution βk∗
i that maximizes the value

of ϖk
i(j)

(
wk

i , ŵ
k∗
ji , β

k
i

)
may not always within the range

of βk
i . In this case, we need to choose the lowest or the

highest value of βk
i to improve the payoff of MNO Mi in

the kth sub-band.
Note that the pricing coefficients of MNOs control the

optimal transmit powers of MNOs. We hence can claim that
the optimal pricing coefficient βk∗

i and the corresponding
transmit powers ŵk∗

ji achieve an Stackelberg equilibrium
for the Stackelberg game of the leader (subscribers) and
the follower (aggregators). This concludes our proof.
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APPENDIX C
PROOF OF PROPOSITION 2

The proof of the above proposition follows directly from
the results proved in [27], [45]–[47], [51], [52]. We list
these results as follows:
R1) [45, Theorem 6.6] For any stable roommate market,

there exists at least one stable partition and any two
stable partitions have the same odd parties.

R2) [45], [46, Theorem 6.7] There is no stable matching
available for a roommate market if and only if there
exists a stable partition with a set that has an odd party,

R3) Each even party can be broken into pairs of mutually
agreed MNOs preserving stability [45],

R4) If a stable roommate market contains at least one
stable matching structure, the set of all stable
partitions and the set of all the stable matching
coincide [47].

Let us briefly describe how to prove Proposition 2 using
the above results. From Step ii) in the addition operation,
we can observe that if a new MNO Mi sequentially sends
pairing requests to other MNOs in the market from the most
preferred MNO to the least preferred one, we can claim that
for each MNO Mj that rejects the request of Mi, there must
exist another MNO Mk that is strictly preferred by Mj .
In addition, any other MNO Ml which is more preferred
by Mi than Mj (e.g., satisfying Pi(Ml) < Pi(Mj)) has
already rejected the requests of Mi. The sequential requests
of Mi will have the following possible results:

1) If Mi has been rejected by all the MNOs in the
market that are more preferred by Mi than matching
with itself, it means that either MNO cannot find any
MNO that can improve its payoff by forming an
IO-CA pair, or every MNO that can provide
performance improvement for Mi by forming an
IO-CA pair has already been matched with another
MNO that is more preferred than Mi. In this case,
there is no stable matching for the IO-CA market
and Mi will not form an IO-CA pair with any other
MNO in the market. This results in the cases in Step
ii-a).

2) If there is one MNO Mj accepting the request of Mi

for Mj ̸= Mi and Pi(Mj) < Pi(Mi), it means that
Mj prefers Mi to its current matching partner Ml

and all the other MNOs that are more preferred by
Mi than Mj prefer their current matching partner to
Mi. Therefore, both Mi and Mj have the incentive
to form an IO-CA pair. Once an IO-CA pair has
been formed between Mi and Mj , Ml will start the
sequential requesting process as Mi. The same
results as described in 1) and 2) will also apply for
Mi. It is possible for Ml to also find anther MNO
Mm that accepts its request and form a matching
pair with Ml by separating from its current IO-CA
pairing partner. If this process continues, it will result
in a sequence of matching, separating and sequential
requesting processes of a set of MNOs. There are
two possible results. If this sequence of processes

will result in a new stable matching structure in
which all MNOs have found their new IO-CA
pairing partners, it means that the final matching is
stable. This results in the cases in Step ii-b). If an
MNO Mn accepting the request of another MNO has
previously sent a request, it means that there is a
cycle sequence and the MNOs involved in the
sequence of processes will repeatedly send requests
to each other, forming a pair and separating from
their matching partner and it is easy to verify that
the sequence of MNOs in the sequence of processes
forms an odd party. This results in the cases in Step
ii-c). Using the result R2), we can claim that there
will be no stable matching for the MNOs in the
sequence of processes. Also using result R1), we can
claim that the addition operation always results in the
same odd parties. Finally, using result R4), we can
claim that if there is no odd parity, the final result of
the addition operation is always a stable matching.

Based on the above analysis, we hence can claim that if
at least one stable matching exists, the addition operation
will achieve it. If no stable matching exists for the IO-
CA market, the addition operation will result in a stable
partition. This concludes the proof.

APPENDIX D
PROOF OF PROPOSITION 3

As can be easily observed from the addition operation,
the worst case happens when the new MNO Mi joins the
IO-CA market and finds a pairing partner (e.g., MNO Mj)
which is in an transposition with another MNO Mn. In
this case, MNO Mn will repeat steps ii) again. If the same
situation happened repeatedly for each of the other MNOs
in K, this will cause all K MNOs to send requests to each
of the other K−1 MNOs and hence results in a complexity
of O(K2) in the worst case.

APPENDIX E
PROOF OF PROPOSITION 4

Let us use the following result and Proposition 2 to prove
Proposition E.
R5) Suppose Π is a stable partition in a stable roommate

market and C = ⟨ai1 , ai2 , . . . , ai2k+1
⟩ is an odd party

in Π for k ≥ 1. Then
Π′ = (Π\C) ∪ ⟨ai1 , ai2⟩⟨ai3 , ai4 , . . . , ⟨ai2k−1

, ai2k⟩⟩
is a stable partition of Π\⟨ai2k+1

⟩ [45], [49].
From the above result, we can claim that if MNO Mi has

been deleted from the IO-CA market and Mi belongs to an
odd party, each of the remaining MNOs in the same odd
party as Mi will be able to find its IO-CA pairing partner
and form a stable matching pair.

If Mi has already been matched to another MNO Mj

for Mj ̸= Mi, then Mj will separate with Mi and find its
parting partner using the same procedure as the addition
operation. Therefore, we can use Proposition C to prove
that the resulting matching will be a stable partition. This
concludes the proof.
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exchange,” Journal of Economic Theory, vol. 125, no. 2, pp. 151–
188, Dec. 2005.
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