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Cloud Computing Challenges

* Global data center IP traffic will grow 3-fold from 2015 to
2020, reaching 15.3 zettabytes by the end of 2020
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Latency, Latency, Latency!!l

Big drops in sales and traffic have
been found when pages took
longer to load

» 0.5s delay will cause a 20%
drop in Google’s traffic

» 0.1s delay can cause a drop in
1% of Amazon’s sales

Many future applications become
more sensitive to latency.
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Energy, Energy, Energy!!!

By the year 2040, world energy
consumption would exceed the
available energy produced from

existing sources
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Fog Computing Architecture

Digitization drives data and infrastructure to the
edge

Data centers usually
located in remote area

Cloud Laver

Fog nodes are deployed
closer to the users
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Key Contributions

« Characterize the fundamental tradeoff
between QoE and Power Efficiency for
fog computing

 Propose offload forwarding strategy for
cooperative fog computing

* Propose a new distributed ADMM via
variable splitting approach to optimize
the cooperative fog computing networks



QoE for Fog Computing

« We focus on the QoE of users measured by
the average service response-time influenced

by
% Round-trip workload transmission time:

v Non-cooperative fog computing
v' Cooperative fog nodes
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Response-time Analysis

 No Offloading:

Upper bound
W1 A{ —» Workload tx time between fog nodes and cloud

Workload tx time between users and fog nodes

« Full Offloading:
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Maximizing QoE

« Response-time minimization problem:
% For non-cooperative fog computing:
each fog node j

- Portion of offloaded workload
n R,
0<ay<1 7

s.t. n{(a;) <7;.)

Power efficiency constraint



Power Efficiency

- We define power efficiency as the power consumption per
unit of offloaded workload by the fog layer:

% Total power consumption for each fog node j:
Statlc power consumption/leakage power
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Dynamic power consumption
< Power efficiency: Power usage effectiveness (PUE)
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Workload offloaded by fog node j



QoE and Power Efficiency Tradeoff
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Cooperative Fog Computing

« Performance of cooperative fog computing is closely related
to the cooperation strategy.
« We propose offload forwarding strategy:
% Each fog node forwards part of its offloaded workload to
others to further improve users’ QoE.
% Fog nodes can then be divided into
v Requesters: require help from others.
v' Servers: can help processing workload for others.




Response-time Analysis

« Cooperative fog computing with offload forwarding
% Fog node j forwards the offloaded workload to a set of

neighboring fog nodes C;

R7? (& #50) = 7)' +

Partition of workload to be forwarded
from fog node j to fog node i
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Maximizing QoE

« Response-time minimization problem

N

min Z Rf3 (&sPje)

Pler1PNe ©
J=1

st ) @ik + @i + Pie = A
keej

Z ki < min{y,j,}, 0< ki <A, Vk,jETF
keF

The maximum amount of workload offloaded by
fog node j under the power efficiency constraint

nj(a;) < 1;.
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QoE and Power Efficiency Tradeoff
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Outline

An ADMM-based Distributed Optimization Algorithm
« Introduction of ADMM
« ADMM via variable splitting



Why Apply ADMM to Optimize Fog
Computing

« ADMM approach is suitable to optimize fog computing
networks:

% Objective function (Users’ QoOE) is convex;

» Distributed optimization for fog nodes;

> With equality constraints:
offloaded + unprocessed workload = workload arrival
rate;

(R)

L)

(R)

L)

L)

Standard ADMM Approach

ADMM Solution
Optimization Problem M= argmin L, (. 2* . yF)

J

minimize  f(x) + g(2)
subject to Ax + Bz =c¢

k41 K1k
y")

= argmin L, (2", 2,

£

= yF + p(A.f"{“H + Bz - ¢)




Problems for Applying ADMM to
Fog Computing

Standard ADMM cannot be directly applied because:

1) Inequality constraints: forwarded workload < workload
arrival rate;

2) From two blocks to multiple blocks;

3) No communication among fog nodes;

Objective:

% Extending standard ADMM to solve the optimal tradeoff
problem

Our Problem

Problem for standard ADMM
minimize  f(x) + g(2)
subject to Ax + Bz =c¢

s.t. Z @ik + Pij T Pie = A
ke(?,-

Z prj < min{pj, x} 0 < @ri < Ak,
kEF




Proposed Distributed Optimization

Framework
« A distributed ADMM via variable splitting approach:

1) Introduce indicator functions and auxiliary variables to
remove the inequality constraint
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go.l,i?{%;iN,,,,z_eZ;( O3 (&, Pie) + I, (Pei)

+Ig, ()
S.t. ‘P.Z_wz ZO.VI Eg

2) Convert the original problem with multiple random
variables into the form with two blocks via variable
splitting;
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Distributed Algorithm

Algorithm 1: Distributed Optimization for Workload Forwarding

Initialization: Each fog node i chooses an initial service vector ¢p? o; and
WEC chooses an initial dual variable A".

WHILE t=0, 1,

1) Fognode updanng Each fog node z calculates cpt+1 by solving

( *) and then sends the resulting cp:?q and A\, to the cloud
ii) WFC Updating: cloud calculates 1,0“1 by solving /-updating
problem in (18).
iii) Dual Variable Updating cloud updates dual variables A1 =

A* — p (ptt! —ap'T1) and sends ¢!T! and AP to fog
node i.
ENDWHILE



Response—time

Simulation results (I)
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Converge in only 22 iterations

Observation: the number of fog nodes does not affect the

convergence speed.
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Response—time

Simulation results (II)
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Conclusion

Characterize the fundamental tradeoff
between QoE and Power Efficiency for fog
computing

Propose offload forwarding strategy for
cooperative fog computing

Propose a new distributed ADMM via
variable splitting algorithm

Future work:

- Extending into stochastic environment

« Study the QoE and power efficiency tradeoff in more
complex fog computing networks, e.g., with other
cooperation strategies
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