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Abstract—This paper studies the workload offloading
problem for fog computing networks in which a set of fog
nodes can offload part or all the workload originally targeted
to the cloud data centers to further improve the
quality-of-experience (QoE) of users. We investigate two
performance metrics for fog computing networks: users’ QoE
and fog nodes’ power efficiency. We observe a fundamental
tradeoff between these two metrics for fog computing networks.
We then consider cooperative fog computing networks in which
multiple fog nodes can help each other to jointly offload
workload from cloud data centers. We propose a novel
cooperation strategy referred to as offload forwarding, in which
each fog node, instead of always relying on cloud data centers
to process its unprocessed workload, can also forward part or
all of its unprocessed workload to its neighboring fog nodes to
further improve the QoE of its users. A distributed
optimization algorithm based on distributed alternating
direction method of multipliers (ADMM) via variable splitting
is proposed to achieve the optimal workload allocation solution
that maximizes users’ QoE under the given power efficiency.
We consider a fog computing platform that is supported by a
wireless infrastructure as a case study to verify the
performance of our proposed framework. Numerical results
show that our proposed approach significantly improves the
performance of fog computing networks.

Index Terms—Fog computing, response-time analysis, power
efficiency, offload forwarding, ADMM.

I. INTRODUCTION

Cloud computing has been proposed as a promising

paradigm to meet the fast growing demand for

computationally intensive applications and services. It

provides users with versatile and on-demand services by

effectively utilizing the hardware and software in cloud data

centers. Large-scale data centers are massive and expensive,

and therefore always built in the low-cost remote areas.

Currently, how to provide high quality services for the

widely geographical distributed users, especially the users at

the edge of network, is still an open problem. This motivates

a new framework referred to as the fog computing, which

extends the cloud computing paradigm to the network edge.

Formally, fog computing is defined as a visualized network

architecture that “uses one or a collaborative multitude of
end-user clients or near-user edge devices to carry out a
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substantial amount of storage (instead of stored primarily in
cloud data centers), communication (instead of routed over
backbone networks), and control, configuration,
measurement, and management” [1]. Edge devices that

provide services between end users and cloud data centers

are commonly referred to as fog nodes. They can be

resource-limited routers, gateways, and access points, and

can also correspond to mobile devices with excessive

computing resources that can be utilized to offer services for

others [2]. Fog computing enables computational workload

offloading through fog nodes which can further reduce the

transmission latency and ease traffic congestions of the

Internet. It also introduces many new services and

applications that cannot fit well in the traditional cloud

computing architecture. For example, large-scale

environmental monitoring systems can deploy computational

intensive applications at the sensors and utilize the fog

computing architecture to achieve instantaneous environment

monitoring and fast hazard detection [3], [4].

One of the main objectives of fog computing is to

improve the service quality of users at the edge of the

network. Most existing works focus on developing optimal

resource allocation strategies that can maximize users’

quality-of-service (QoS), a metric denoting the level of

service performance that can be offered by the hardware

platform or hosting infrastructure [5] such as processing

capacity, resource utilization efficiency, processing delay of

the cloud data centers. In particular, the resource

provisioning problem for a cloud data center network has

been modeled as an auction-based market in [6] in which

users can develop bidding strategies to compete for the

capacity of the cloud data centers with low costs. In [7], the

authors introduced a service-oriented resource estimating and

management framework for fog computing to maximize the

resource utilization of the cloud data centers. A framework

that supports computation offloading and data staging at the

tactical edge was proposed in [8]. Motivated by the

observation that the QoS cannot always reflect the actually

service quality that is experienced by the users, the concept

of quality-of-experience (QoE) was introduced recently as

one of the main guiding paradigms for service quality of the

cloud computing networks [9]. QoE can be regarded as an

extension of the QoS by focusing more on the influence of

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

978-1-5090-5336-0/17/$31.00 ©2017 IEEE



the interactivity of the cloud service experienced by the

users. In this paper, we focus on the QoE of users measured

by the average service response-time that can be influenced

by the queueing delay and round-trip workload transmission

time including that between users and fog nodes, that

between fog nodes and cloud data centers as well as that

between cooperative fog nodes.

Fog computing is not intended to replace cloud computing

but to compliment it. In this paper, we study workload

offloading for fog computing networks in which fog nodes

can offload workload from cloud data centers to further

improve the QoE of the users. We consider two performance

metrics for this fog computing network: the users’ QoE and

the fog nodes’ power efficiency, measured by the amount of

power consumed by each fog node to offload each unit of

workload from the cloud. We perform detailed response-time

analysis under different scenarios and derive the optimal

amount of workload to be offloaded by the fog nodes that

can maximize the users’ QoE under the given power

efficiency. We observe a fundamental tradeoff between these

two metrics. In addition, motivated by the observation that

the users’ QoE can be further improved if the workload

offloading process of each fog node can be helped by other

fog nodes, we consider a fog computing framework with fog

node cooperation. We propose a novel cooperation strategy

called offload forwarding, in which each fog node can

forward part or all of its offloaded workload to other local

fog nodes, instead of always forwarding all unprocessed

workload to the cloud. We study the offload allocation

problem in which all fog nodes jointly determine the optimal

amount of offloaded workload to be forwarded and processed

by each other to further improve the users’ QoE. We analyze

the QoE and power efficiency tradeoff under cooperative fog

computing with offload forwarding and propose a novel

distributed optimization framework based on distributed

alternating direction method of multipliers (ADMM) via

variable splitting to achieve this tradeoff. Our proposed

algorithm does not require fog nodes to have back-and-forth

negotiation or disclose their private information. Finally, as a

case study, we consider a fog computing platform that is

supported by a wireless network infrastructure. Numerical

results show that our approach can significantly improve the

performance of fog computing systems. To the best of our

knowledge, this is the first work that studies the allocations

of offloaded workload among cooperative fog nodes under

the fog computing paradigm.

II. FOG COMPUTING ARCHITECTURE AND PROBLEM

FORMULATION

A generic fog computing architecture consists of a three-

layer structure as illustrated in Figure 1:

1) Cloud layer comprises large-scale cloud data centers

with high-performance computing units usually located

in remote area that can be far from some users.

2) Fog layer contains a set of low-cost fog nodes that can

be widely deployed in locations that are closer to the

Cloud data centers

Fo
g 

La
ye

r
Cl

ou
d 

 L
ay

er
U

se
r  

La
ye

r

Fog node 1 Fog node 2 Fog node 3 Fog node N

Fig. 1. A three-layer fog computing architecture.

users. Each fog node has limited computing capability

and power resource, and hence needs to carefully decide

the amount of workload to be processed locally. If

multiple neighboring fog nodes can communicate with

each other through local communication infrastructure,

they can help each other to jointly process the workload

to further improve the QoE of users. Fog nodes can be

deployed by the cloud data centers or third party service

providers.

3) User layer consists of users that desire low-latency high

QoE computing services. Since fog nodes are located in

the vicinity of users, allowing each user to always submit

its workload to nearby fog nodes can further expend the

service coverage area and improve the QoE of the users.

Note that, in some systems, the fog and user layers can

consist of the same type of devices. For example, in a

wireless sensor network, sensors without sufficient

computing resources can be regarded as elements in the user

layer. These sensors can submit their excessive workload to

other sensors in the fog layer that have surplus computing

resources to process.

We consider a fog computing network with a set of N fog

nodes labeled as F = {1, 2, . . . , N}. We assume each user

has been already associated with one or more fog nodes. The

association between users and fog nodes can be decided by

their physical locations and channel conditions (e.g., each

user chooses its closest fog node to submit request) or

decided by the cloud data centers. For example, users can

send their service requests to cloud data centers following

the same operation as the traditional cloud computing system

and cloud data centers can then delegate one or more fog

nodes to receive and process the workload submitted by the

users. Each fog node j can either process a portion αj of its

received workload using its local computing resources or

forward all received workload to the cloud layer. Note that if

αj = 1, it means that fog node j will process all of its
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received workload. On the other hand, αj = 0 means fog

node j will not process any of its received workload but will

directly forward all the workload to the cloud layer. The

workload arrival rate of each fog node j, denoted by λj , is

assumed to be fixed.

In this paper, we measure the QoE of users that require fog

computing service by the average response time. We focus on

the following two performance metrics;

1) QoE (Response-time) of users, which includes the round-

trip workload transmission time and the queueing delay

at the fog layer. In this paper, we follow a commonly

adopted setting and consider an M/M/1 queueing system

for each fog node to process the request of the users

[10]. Let Rj be the response-time of users served by fog

node j. As mentioned before, one of the main objectives

of fog computing is to improve the QoE of users. Since

fog nodes are close to the users, allowing each fog node

to offload nearby users’ workload from the cloud can

reduce the workload transmission time. However, each

fog node has limited computing resources and processing

a large amount of received workload locally will result in

long queueing delay. Therefore, how to choose a balanced

amount of workload to be offloaded by each fog node is

an important problem.

2) Power efficiency (Power consumption per unit of
offloaded workload) of each fog node is measured by

the amount of power spent on offloading each unit of

received workload. It is important for each fog node to

maximize the power efficiency by minimizing its power

consumed for processing the workload. It is known that

the total amount of power consumed by a node depends

on the power usage effectiveness (PUE) as well as the

static and dynamic power consumption [11].

Specifically, the PUE is defined as the total power input

from the power grid divided by the power consumption

of the IT infrastructure. Static power consumption, also

called leakage power, is mainly caused by the leakage

currents and is unrelated to the usage of the computing

resources of each fog node. Dynamic power

consumption is the result of the circuit activity and is

determined by the activity of computing resources. Let

ej and wS
j be the PUE and static power consumption of

fog node j. Let wD
j be the dynamic power consumed

by fog node j to offload each unit of workload. We can

write the total power consumption of fog node j per

time unit as wj = ej
(
wS

j + wD
j αjλj

)
. The power

efficiency of fog node j can then be written as

ηj (αj) =
wj

αjλj
= ej

(
wS

j

αjλj
+ wD

j

)
. (1)

The main objective of this paper is to develop workload

allocation strategies to maximize the QoE of users under a

given power efficiency constraint. Formally, we try to solve

the following optimization problem for a single-node fog

computing network:

min
0≤αj≤1

Rj (αj) (2)

s.t. ηj (αj) ≤ η̄j .

where Rj (αj) is the response-time of fog node j when it

processes αj portion of its received workload, and η̄j is the

maximum power efficiency supported by the hardware of fog

node j. We will give a more detailed discussion on the

response-time of fog node j under different scenarios in

Section III.

In this paper, we also consider cooperative fog computing

networks in which fog nodes can help each other and share

their offloaded workload. The main objective in this case is

to minimize the average response time of all users. Note that

different fog nodes can have different workload arrival rates.

The optimization problem under cooperative fog computing

can then be stated as follows:

min
α=[α1,α2...,αN ]

∑
j∈F

RC
j (ξj , αj) (3)

s.t. ηj (αj) ≤ η̄j , 0 ≤ αj ≤ 1, ∀j ∈ F,

where RC
j (ξj , αj) is the average response-time of all the

users associated with fog node j when fog node j can be

helped by others and ξj is the weight factor for each fog

node j defined as ξj =
λj∑

k∈F

λk
. As will be discussed later in

Section IV, we add a weight factor for the response time to

ensure that users associated with different fog nodes of

different workload arrival rates will have the same QoE. In

contrast to the single-node fog computing model, the

response time in cooperative fog computing also depends on

the cooperation strategy among nodes. We will give a more

detailed discussion about the strategies of the cooperative fog

computing networks.

As we will describe later, the users’ QoE and fog nodes’

power efficiency are closely related to each other. More

specifically, we can observe a fundamental tradeoff between

users’ QoE and fog nodes’ power efficiency in fog

computing networks. In the next section, we will discuss this

tradeoff for fog computing networks without fog node

cooperation. We will study the QoE and power efficiency

tradeoff for cooperative fog computing in Section IV.

III. QOE AND POWER EFFICIENCY TRADEOFF

In this section, we first derive the response-time of users

supported by fog computing. We then discuss the tradeoff

between users’ QoE and fog node’s power efficiency under

different scenarios. Since fog nodes cannot cooperate or

communicate with each other, each fog node needs to make

independent decision about the amount of workload to be

processed by itself. In this section, without loss of generality,

we focus on the workload offloading process of one fog

node, labeled as fog node j.
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A. Response-time Analysis and Response-time Minimization
Solution

Let τuj be the average round trip time between fog node j
and its corresponding users. We assume the round trip time

for workload transmission between each fog node j and the

cloud layer can be regarded as a constant denoted as τ c. Fog

node j can choose to serve its received workload using the

following three ways:
1) No Offloading: Fog node j can directly forward all the

received workload to cloud data centers through the

backbone IP network [1]. In this case, the fog computing

network becomes equivalent to the traditional cloud

computing network in which all the workload is processed

by the cloud layer. As mentioned earlier, since cloud data

centers are generally installed with high-performance

workload processing units, the response time for data centers

to process the workload forwarded by each fog node is much

smaller than the time spent on workload transmission and,

hence, in most existing applications, can be ignored [12]. In

this paper, we follow the same line and assume the delay

caused by cloud data centers to process the workload

forwarded by each fog node is negligible. In this case, we

can write the response time of fog node j as

RW1
j = τuj + τ c. (4)

Since in this case fog node j does not activate any

computing resource to process its received workload, the

power efficiency will not depend on users’ response-time. As

mentioned earlier, one of the main objectives of fog

computing is to further improve users’ QoE by offloading

workload targeted to the cloud layer to the fog layer. In

other words, (4) can be regarded as an upper bound of the

response-time provided by fog node j to its users.
2) Full Offloading: Fog node j can also process all the

received workload by itself using its local computing

resources. In this case, the cloud layer will not process any

workload for users associated with fog node j, i.e., αj = 1.

Let μj be the maximum amount of workload that can be

processed by the computing resources installed at the jth fog

node at each time unit. We can write the response time of

fog node j in this case as

RW2
j (αj) = τuj +

1

μj − λj
. (5)

3) Partial Offloading: Compared to cloud data centers,

each fog node can only have limited computing resource. It

is generally impossible to always allow each fog node to

process all the received workload. We therefore consider the

cases that each fog node j only processes a portion (1− αj)
of its received workload using its own computing resources

and forwards the rest of its received workload to the cloud,

i.e., we have 0 ≤ αj < 1 and αjλj < μj . We can write the

expected response time for fog node j as

RW3
j (αj) = τuj + αj

(
1

μj − αjλj

)
+(1− αj) τ

c. (6)

λ

λ
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λ
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Fig. 2. Response-time under different amounts of offloaded workload and
power efficiency.

Let us now consider the solution of problem (2) by

substituting the response time equations in (4)–(6).

It can be easily observed that problem (2) is a convex

optimization problem and, hence can be solved using the

standard approach [13]. We omit the detailed derivation due

to the limit of space.

B. A Fundamental Tradeoff between Users’ QoE and Fog
Node’s Power Efficiency

In Figure 2(a), we present users’ response-time under

different amounts of workload offloaded by the

corresponding fog node. We can observe that there exists an

optimal amount of offloaded workload to minimize the

response-time of users. As observed in (1), the power

consumption for each fog node to process each unit of

workload decreases with the total amount of offloaded

workload. In many practical applications, there is a

maximum tolerable response-time for the users. We can

therefore observe that the power efficiency maximization

solution for fog computing in this case will be achieved

when users’ response-time becomes equivalent to the

required maximum tolerable point. In Figure 2(a), we use

solid line to highlight the segment between the response time

minimization solution and the power efficiency maximization

solution with maximum tolerable response-time θ for

RW3
j

(
α∗
j

)
< θ < ∞. We can observe from the highlighted

segment that there is a fundamental tradeoff between the

users’ QoE measured by response time and the power

efficiency of the fog node. This tradeoff can be specifically

characterized by substituting (5) and (6) into (2) which is

shown in Figure 2(b). We can observe that starting from the

power consumption minimization point, the users’ QoE

decreases with the power consumption for the fog node to

offload each unit of workload. With the power consumption

of the fog node continues to grow, the decreasing speed of

the response-time of the users reduces. In other words, in

non-delay-sensitive applications such as voice/video call

services, the fog node can choose a low power consumption

solution as long as the resulting response time is tolerable

for the users. For delay sensitive applications such as online

gaming, it is ideal for the fog node to choose a high power

consumption solution to satisfy users’ QoE. We also present

the tradeoff solutions with different workload arrival rates of

fog node j in Figure 2(b). We can observe that the users’
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QoE increases with fog node j’s workload arrival rate under

a fixed power efficiency. In addition, the higher the workload

arrival rate, the smaller the changes of the response time

under different power efficiency.

It can be observed that with the portion of workload to

be offloaded by each fog node approaches 1, the resulting

response-time will approach an infinite value. In other words,

fog computing cannot always improve the response-time of

the users without properly choosing the amount of workload

to be offloaded by the fog node.

IV. COOPERATIVE FOG COMPUTING NETWORKS

In fog computing systems, different fog nodes receive

workloads with different rates. In this section, we introduce

a novel cooperation strategy, referred to as the offload
forwarding, for multiple fog nodes to help each other to

jointly offload workload from the cloud layer. In this

strategy, each fog node instead of always forwarding all its

unprocessed workload to the cloud data center, can also

forward part of its offloaded workload to other fog nodes

with surplus computing resources to further reduce the

response-time for its users. In other words, the fog nodes in

the fog layer can be divided into two types: fog nodes of the

first type, referred to as the (workload processing service)
requesters, that will forward part of their workload to others

to process, fog nodes of the other type, referred to as the

servers, will help others to process their received workload.

The amount of workload sent from each fog node to others

will be based on the mutual agreement.

In this section, we present the response-time analysis for

offload forwarding strategy and describe the delay and power

efficiency tradeoff for the cooperative fog computing. We

will present the detailed discussion about how to achieve the

optimal solution presented in this section in a distributed

fashion in the next section.

A. Response-time Analysis of Workload Forwarding with One
Server and One Requester

We first consider the case that fog node j decides that the

QoE of its users can be further improved by offloading part

(1 − βj)αj of its workload to fog node i for 0 ≤ βj < 1,

i �= j and i, j ∈ F. Note that since fog node i will always

serve its own received workload first, the response time of the

users associated with fog node i does not change even fog

node i will process extra workload for fog node j. If fog node

j sends all the workload that is supposed to be forwarded to

the cloud to fog node i, i.e., αj = 1 and 0 ≤ βj < 1, we can

write the response-time of fog node j as

RC1
j (αj = 1, βj) = τuj + ξj

[
βj

(
1

μj − βjλj

)

(1− βj)

(
τij +

1

μi − λi − (1− βj)λj

)]
. (7)

where ξj =
λj

λi+λj
is the weighted factor. We add weighted

factor ξj for the queueing delay term of the response-time

for each fog node j. This is because different fog nodes have

different workload arrival rates and hence, to ensure users

associated with different fog nodes to have the same

queueing delay, we add a weighted factor that is proportional

to the workload arrival rate at the queueing delay term for

each fog node.
It is possible that the computing resources that are provided

by fog node i is insufficient to process all the rest of the

workload received by fog node j. In this case, fog node j can

also forward a portion (1 − αj) of its workload to the cloud

data center, i.e., 0 ≤ αj < 1. In this case, fog node j will

only forward (1− βj)αjλj workload to fog node i, and the

total amounts of workload to be processed by fog nodes j
and fog node i are given by αjβjλj and λi + (1− βj)αjλj ,

respectively. We can write the response-time of fog node j in

this case as

RC2
j (βj , αj) = τuj + ξj

[
αjβj

(
1

μj − αjβjλj

)

+αj (1− βj)

(
τij +

1

μi − λi − (1− βj)αjλj

)]
+(1− αj) τ

c. (8)

By substituting the above equations into problem (3) to

optimize the values of βj and αj , fog node j can further

improve the response-time of its users. We will give a more

detailed discussion on how to achieve the optimal solution in

Section V.

B. Extending to General Cooperative Fog Computing
Networks

We can further extend the above results into a general

cooperative fog computing network with more than two fog

nodes. In this network, each fog node can forward its

offloaded workload to the other fog nodes in the fog layer

and at the same time help other fog nodes to process their

offloaded workload. In this case, each fog node j can divide

its offloaded workload into N + 1 partitions including one

partition of workload ϕjj to be processed by itself, one

partition ϕjc to be forwarded to the cloud, and N − 1
partitions, denoted as ϕjk for the partition sent to fog node

k ∈ Cj , that will be send to other fog nodes in the fog layer.

Note that it is not necessary for each fog node to always

forward part of its offloaded workload to all the other fog

nodes in the fog layer. If fog node j does not forward any

offloaded workload to fog node i, we have ϕji = 0 for i �= j
and i, j ∈ F. We refer to ϕj• = 〈ϕji〉i∈F\{j} as the request

vector of fog node j. We also refer to φ•i = 〈ϕji〉j∈F\{i} as

the service vector of fog node i. Let φ = 〈ϕji〉i,j∈F be the

workload processing matrix for the entire fog layer. We have∑
k∈Cj

ϕjk + ϕjj ≤ 1 ∀j ∈ F. The response-time of fog node

j ∈ F can then be written as

RC3
j

(
ξj ,ϕj•

)
= τuj +

1∑
i∈F λi

[
ϕjj

(
1

μj − ϕjj

)

+
∑
i∈Cj

ϕji

⎛
⎝τji +

1

μi −
∑
k∈F

ϕki

⎞
⎠
⎤
⎦+ ϕicτ

c, (9)
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where ϕic = 1 − ∑
j∈F\{i} ϕij , ϕkj = λkϕkj is the amount

of workload processed by fog node j for fog node k and

ϕk• = 〈ϕkj〉j∈F\{k} is the vector of workload to be forwarded

by fog node k to other fog nodes.

We can rewrite the optimization problem in (3) with (9) as

follows.

max
ϕ1•,...,ϕN•

N∑
j=1

RC3
j

(
ξj ,ϕj•

)
(10)

s.t.
∑
k∈Cj

ϕjk + ϕjj + ϕjc = λj , (11)

∑
k∈F

ϕkj ≤ min{μj , χj}, 0 ≤ ϕkj ≤ λk, ∀k, j ∈ F.

(12)

It can be observed that, in order for each fog node j to

calculate the portions of workload to be forwarded to other

fog nodes, fog node j needs to know the workload

processing capabilities and the workload arrival rates of all

the other fog nodes which can be private information and

impossible to be known by fog node j. In the next section,

we will propose a distributed optimization framework based

on distributed ADMM via variable splitting which allows all

the fog nodes to jointly optimize the average response-time

of the fog layer without disclosing their private information.

C. QoE and Power Efficiency Tradeoff for Cooperative Fog
Computing Networks

In Figure 3(a), we present the minimized response-time of

the fog layer in a cooperative fog computing network

calculated by solving problem (10). Note that the workload

processed by each fog node can consist of both its own

received workload and the workload sent from other fog

node. We can observe that the response-time of the fog layer

is closely related to the amount of workload processed by

each fog node. We use black grid to highlight the area

between the response-time minimization solution and the

power efficiency maximization solution with a fixed

maximum tolerable response-time. By substituting the power

efficiency definition in (1), we can also present the

relationship between the fog layer’s response-time and each

fog node’s power efficiency for a two-node cooperative fog

computing network with offload forwarding in Figure 3(b).

Similar to the single-node fog computing, we can observe a

fundamental tradeoff between the response-time of all the

users served by the fog layer and the power efficiency of

each fog node. In addition, even if the power consumption

for each fog node to offload each unit of workload has been

limited to a very small value, it is still possible to achieve

the response-time constraint of each fog node using the

workload forwarding.

V. A DISTRIBUTED OPTIMIZATION FRAMEWORK FOR

COOPERATIVE FOG COMPUTING

As mentioned previously, deciding the optimal amount of

workload to be processed by each fog node is important to

Fig. 3. Response-time under different amounts of processed workload and
power consumptions (PC) for each fog node to offload each unit of workload.

achieve the optimal QoE and power efficiency tradeoff in

cooperative fog computing networks. Unfortunately, the

optimization problem in (10) is non-smooth and therefore

cannot be solved by using the traditional optimization

approaches that can only handle smooth objective function

[13]. One popular tool to solve the non-smooth optimization

problem is the ADMM-based approaches [14]. In this

section, we propose a novel distributed optimization

framework based on distributed ADMM via variable splitting

to maximize the QoE of users with a given power efficiency

constraint of fog nodes. Our proposed framework utilizes the

structures of our optimization problem in (10) to decompose

the original problem into N subproblems each of which can

be solved by each fog node using its private information.

The subproblem optimization of all the fog nodes will be

coordinated through a workload forwarding coordinator

(WFC) which can be established by the cloud data centers or

is one of the components in the cloud layer. Note that, as

will be discussed later, the WFC does not need to know the

maximum workload processing capability or workload arrival

rate of each fog node and our algorithm only requires very

limited information exchanged between each fog node and

WFC.

Unfortunately, the traditional ADMM approach in [14]

cannot be directly applied to solve our problem because of

the following reasons:

1) Traditional ADMM can only be utilized to solve the

optimization problem without inequality constraints

[14]. However, our optimization problem in (10)

includes inequality constraints and therefore cannot be

directly solved by the ADMM approach.

2) Traditional ADMM approach can only solve problems

with two blocks of random variables. However, the

optimization problem in (10) consists of more than two

variables to optimize.

3) Traditional ADMM approach is a centralized

optimization approach which requires the private

information of each agent to be shared with others. In

addition, most existing distributed ADMM approaches

are proposed to solve the consensus optimization

problem in which a local copy of the model parameter

has to be shared and updated by all the agents [15]. In

fog computing networks, fog nodes may not always
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want to share their private information with each other

and hence cannot utilize these existing approaches to

optimize their performance.

To solve issue 1), we introduce a set of N + 1 indicator

functions that include each of separable inequality

constraints in (12) and incorporate these indicator functions

into the objective function of our problem to convert the

constraint optimization problem into the unconstrained one.

More specifically, we define

Gi = {ϕ•i :
∑

k∈F ϕki ≤ min{μi, ξ̄i}, ξki > 0, ∀k ∈ F} as

the polyhedra of each constraint of fog node i in problem (3)

where ϕ•i = 〈ϕki〉k∈F\{i} is the vector of amounts of

workload to be processed by fog node i for other fog nodes.

We then can define an indicator function IGi
(ψi) as follows:

IGi
(ϕ•i) =

{
0, ϕ•i ∈ Gi,

+∞, ϕ•i /∈ Gi.
(13)

We also introduce an indicator function to characterize the

inseparable constraint in (11) which is defined as

IGc (ψ) =

{
0, ψ ∈ Gc,

+∞, ψ /∈ Gc,
(14)

where ψ = [ψ1,ψ2, . . . ,ψN ], Gc = {ψ :
∑N

i=1 INψi ≤ 1},

IN is an identity matrix with size N , ψ ∈ RN×N , ψi ∈ RN .

By including the above indicator functions into the

objective function of our optimization problem, we can

convert the original problem (3) with inequality constraints

into the following optimization problem without inequality

constraints.

min
ϕ•1,...,ϕ•N ,ψ

∑
i∈F

(
RC3

i (ξi,ϕ•i) + IGi
(ϕ•i)

)
+IGc (ψ) (15)

s.t. ϕ•i −ψi = 0, ∀i ∈ F.

To solve issue 2), we need to first convert the original

optimization problem with multiple random variables in (15)

into the form with two blocks of random variables.

Following the same line as [16], we can show that the

solution of the optimization problem in (15) is equivalent to

solving the optimization problem with the following

augmented Lagrangian form with two blocks of random

variables. We can write the ϕ-optimization subproblem as

ϕt+1 = argmin
ϕ

Lρ

(
ϕ•1,ϕ•2, . . . ,ϕ•N ,ψt,Λt

)
= argmin

ϕ

∑
i∈F

{
RC3

i (ξi,ϕi•) + IGi (ϕ•i)

−Λt
i

(
ϕ•i −ψt

i

)
+

ρ

2
‖ϕ•i −ψt

i‖22
}
, (16)

where ρ is the augmented Lagrangian parameter and Λ is the

matrix of the dual variables [16].

We can write the ψ-updating problem as

ψt+1 = argmin
ψ

ρ

2
‖ϕt+1 −ψt +

1

ρ
Λt‖22 + IGc

(ψ) . (17)

The dual variable update sub-problem can then be written

as follows

Λt+1 = Λt − ρ
(
ϕt+1 −ψt+1

)
. (18)

We can observe that the subproblem optimization in (16)–

(18) is equivalent to the form of the traditional ADMM with

two random variables: ϕ and ψ.

Finally, to solve issue 3), we need to prove that the

augmented Lagrangian form of our optimization problem in

(16) can be decomposed into N subproblems each of which

can be individually solved by each fog node using its private

information. More specifically, we can prove that the

augmented Lagrangian form of our optimization problem has

the following features.

Theorem 1: The augmented Lagrangian form of the

objective function of our optimization problem in (10) is

separable and convex.

Proof: First, we prove the augmented Lagrangian form

of the objective function of our optimization problem is

separable. We can rewrite (10) as follows:

Lρ (ϕ•1,ϕ•2, . . . ,ϕ•N ,ψ,Λ) =

N∑
i=1

LSi
(ϕ•i,ψi,Λi) , (19)

where

LSi
(ϕ•i) = Si (ϕ•i) + IGi

(ϕ•i) + ΛT
i (ϕ•i −ψi)

+
ρ

2
‖ϕ•i −ψi‖22, (20)

and Si (ϕ•i) is defined as

Si (ϕ•i) = τui +ϕii

(
1

ui −ϕii

)

+
∑

j∈F\{i}
ϕji

⎛
⎜⎝τji +

1

ui −ϕii −
∑

k∈F\{i}
ϕki

⎞
⎟⎠

−
∑
j∈F

ϕjiτ
c + τ c. (21)

It can be observed that the variables in LSi can be calculated

by fog node i and are independent with the variables associated

with other fog nodes. This proves that augmented Lagrangian

form of our optimization problem (10) can be separated into

N subproblems each of which can be solved by each fog node

using its private information.

Let us prove that the objective function of problem (10) is

also convex. It can be directly shown that the domain of

variables in the objective function of (10) is a polyhedra

which is a convex set. We can also show that the second

derivative of each individual item in Si (ϕ•i) is always

positive which means that it is a convex function with

respect to each individual variable. Following the property

that a nonnegative weighted sum of convex function

f =
∑N

i=1 cifi, f : RN → R is convex if and only if fi is

convex and ci is a constant for all i ∈ {1, 2, . . . N}, we can

prove that the objective function of problem (3) is convex.
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Fig. 4. Convergence rate of Algorithm
1.

Fig. 5. Response time under
different power efficiencies.

The first part of the above theorem proves that each fog

node i only need to calculate its own separable sub-problem

individually. More specifically, each fog node i will calculate

the optimal service vector ϕ∗
•i by solving the following sub-

problem:

ϕt+1
•i = argmin

ϕ•i
LSi

(
ϕ•i,ψ

t
i,Λ

t
i

)
(22)

The second part of Theorem 1 proves that if there exists

an algorithm that can converge to an optimal solution, this

optimal solution will be unique and stable.
Let us present the detailed description of our algorithm

below.

Algorithm 1: Distributed Optimization for Workload Forwarding

Initialization: Each fog node i chooses an initial service vector ϕ0
•i and

WFC chooses an initial dual variable Λ0.

WHILE t=0, 1, . . .

i) Fog node updating: Each fog node i calculates ϕt+1
•i by solving

(22) and then sends the resulting ϕt+1
•i and λk to the WFC,

ii) WFC Updating: WFC calculates ψt+1 by solving ψ-updating
problem in (17).

iii) Dual Variable Updating: WFC updates dual variables Λt+1 =
Λk − ρ

(
ϕt+1 −ψt+1

)
and sends ϕt+1

i and Λt+1
i to fog

node i.

ENDWHILE

In the above algorithm, each fog node i needs to solve

problem (22) with its own private information of fog node i.
Each fog node i sends its optimized solution ϕ•i to the

WFC and WFC will then update the dual variable for all the

fog nodes and send each fog node j with its individual dual

variable related to the sub-problem in (22). In other words,

in Algorithm 1, each fog node does not need to disclose its

private information and still can achieve the global optimal

solution of (10).

We have the following result for the above algorithm.

Theorem 2: Algorithm 1 converges to the global optimal

solution of Problem (3) with convergence rate of O (1/t)1.

Proof: The convergence of Algorithm 1 follows directly

from the standard ADMM approach. We omit the detailed

description due to limit of space.

VI. NUMERICAL RESULTS

In this section, we consider fog computing network

supported by a wireless network system to evaluate the

1We follows Bachmann-Landau notations: f = O(g) if lim
n→∞

f(n)
g(n)

<

+∞.

Fig. 6. Response time under different
workload arrival rates.

Fig. 7. The amount of workload
offloaded by fog nodes under
different workload arrival rates.

Fig. 8. (a) and (b): Power consumption to offload each unit of workload
and amount of offloaded workload of each fog node with different workload
arrival rates of fog node j, and (c) amount of offloaded workload without fog
node cooperation.

workload offloading performance of our proposed

approaches. In this systems, users are mobile devices with

computational intensive applications, and the fog nodes are

the access points (e.g., cellular base stations in cellular

networks or Wi-Fi access points for a Wi-Fi network.)

managed by a network operator. Note that the network

operator cannot control the cloud layer but can only manage

the fog nodes in the fog layer. Users and fog nodes are

connected with the wireless communication channels and the

round trip workload submission time from each user to its

closest fog node is given by τuj = 1/
(
log2

(
1 + h√

d3
w
))

where w is the transmit power, d is the distance between

each user and its closest fog node, and h is the ratio of

channel coefficient to the additive noise level. Fog nodes can

communicate with cloud data center through the Internet. We

assume the round trip workload submission time between

any fog node and the cloud data center is set to τ c = 50ms.

We assume there exist local communication links among fog

nodes and the round trip workload forwarding time between

any two fog nodes is the same given by τij = 20ms. Each

fog node serves 10 users within the coverage area and the

distance between each fog node and its associated fog nodes

follows a uniformly randomly distribution between 20 and

200 meters, a range that covers the small cell and Wi-Fi

networks. We assume each user will only submit its

workload to the closest fog nodes with a constant rate.

We first consider the convergence performance of

Algorithm 1 for a fog computing network with different

number of fog nodes in Figure 4. We can observe that our

proposed algorithm can converge to the global optimal

solution within the first few iterations (less than 30 iterations

in both cases). In addition, the network size (number of fog

nodes in the network) does not have any noticeable affect on
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the convergence rate of our algorithm. We also present the

convergence rate when the centralized ADMM in [14] is

applied to solve our optimization problem in (10). We can

observe that our proposed algorithm achieves similar

convergence performance as the centralized one.

In Figure 5, we present the response-time and power

efficiency tradeoff curves for a fog computing network with

and without fog node cooperation when only one fog node

(fog node j) changes its power efficiency while the power

efficiency of others are fixed. We observe that offload

forwarding significantly reduces the response-time of the

users especially when the power consumption of fog node j
is low. We can also observe that, for the given power

efficiency of all the fog nodes, the response-time can be

significantly reduced when the number of fog nodes

increases. In other words, our proposed offload forwarding

strategy can further improve the QoE and power efficiency

tradeoff for cooperative fog computing networks.

In Figures 6 and 7, we investigate the effect of fog nodes’

workload arrival rates on the users’ response time and the

workload to be offloaded by the fog layer, respectively. We

again fix the workload arrival rates of all the fog nodes except

fog node j. We can observe in Figures 6 that, compared to the

case without fog node cooperation, offload forwarding reduces

the growing speed of the response time when the workload

arrival rate of fog node j increases. We can observe in Figure

7 that the amount of workload to be offload by the fog nodes

increases almost linearly when the workload arrival rate for

fog node j is small. However, with the workload arrival rate

continues to grow, the total amount of offloaded workload that

can be offloaded by the fog layer approaches to a fixed value.

In Figure 8, we compare the power consumption and

offloaded workload of each individual fog node with and

without fog node cooperation under various workload arrival

rates of fog node j. We can observe that our proposed

offload forwarding strategy can balance the power efficiency

and workload offloading performance of different fog nodes.

More specifically, fog node j will process the workload for

other when its workload arrival rate is small and will

forward part of the offloaded workload to others when its

received workload approaches the maximum workload

processing capability.

VII. CONCLUSION AND FUTURE WORK

In this paper, the workload offloading problem has been

studied for fog computing networks. We have investigated

the relationship between two performance metrics for fog

computing networks: users’ QoE and fog nodes’ power

efficiency. We have discussed the tradeoff between these two

metrics for a single-node fog computing network. We then

extend our result into the fog computing network with fog

node cooperation. In this network, fog nodes can help each

other to jointly offload workload from the cloud layer. We

have introduced a novel fog node cooperation strategy

referred to as the offload forwarding. In this strategy, each

fog node can forward part or all of its offloaded workload to

other local fog nodes to further improve the QoE of users.

We have studied the workload allocation problem for offload

forwarding-enabled cooperative fog computing networks in

which each fog node can decide the optimal partitions of

workload to be forwarded to other fog nodes as well as

those to be processed for other fog nodes under a given

power efficiency constraint. We have investigated the QoE

and power efficiency tradeoff for cooperative fog computing

networks and propose a distributed ADMM via variable

splitting algorithm to approach the global optimal workload

allocation that maximizes users’ QoE under a given power

efficiency of fog nodes. Finally, we have considered a

wireless network-supported fog computing system as a case

study to verify the performance of our proposed approach.

Numerical results have been presented to verify the

performance of our approach.
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