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Abstract—Wireless radio frequency (RF) energy transfer is a
promising technology to provide a reliability-guaranteed power
supply for wireless sensor networks. In this paper, we consider
a special wireless-powered sensor network consisting of a
mobile energy station that can travel through a pre-planned
path to charge wireless-powered sensors located in the
considered area. We develop a hardware platform using
off-the-shelf RF energy transfer hardware equipment to
evaluate the practical performance of wireless sensor networks
powered by RF energy transfer. We establish an empirical
model based on our developed platform and use the empirical
model to jointly optimize path planning and mobile charge
scheduling for wireless-powered sensor networks. We derive the
optimal policy for the mobile energy station to optimize its
decisions about the path that it will travel and the subset of
sensors to charge during each time period. Numerical results
show that our derived policy significantly improves the
performance of wireless sensor networks in different practical
scenarios.

Index Terms—Wireless power transfer, sensor networks,
Markov decision process, mobile charging.

I. INTRODUCTION

A wireless sensor network (WSN) is a special network
system consisting of autonomous sensors spatially distributed
in a given area to sense and collect the information of
interest. It has been widely applied in area monitoring [1],
healthcare monitoring [2], environmental sensing [3],
industrial monitoring [4], etc. Most existing WSNs rely on
the energy pre-stored in batteries to support the required
service. How to develop simple and energy efficient sensors
that can support data sensing and communication as long as
possible is one of the most important challenges.

Recently, energy harvesting has been considered as one of
the ideal solutions for WSNs due to its potential to provide
perpetual energy sources for electronic devices [5]–[8].
However, energy harvested from external sources can suffer
from uncertainty and fluctuation and cannot always provide
reliably guaranteed energy supply for most of WSNs. For
example, in solar and wind energy harvesting systems, the
amount of energy is determined by the duration and strength
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of solar radiation or wind, which are generally time-varying
and difficult to predict [9]. To solve this problem, various
energy and data transmission scheduling algorithms have
been proposed. More specifically, the transmit packet
scheduling problem was studied for a single-user energy
harvesting communication system with prefect information
in [10] where the transmitter can store an infinite amount of
energy and know the future changes of the energy harvesting
process. An off-line data packet transmission scheduling
algorithm was also proposed and proved to minimize the
total transmission delay. This result has been further
extended into the stochastic environment in which the
transmitter cannot perfectly know the future energy
harvesting process but knows only the stochastic features of
the energy harvesting process [11]–[13]. For example, the
power allocation problem was studied for wireless networks
with energy harvesting constraints in [6], [14]. In [8], the
cases that the transmitter cannot know the statistics of the
future energy harvesting process were considered. A
Bayesian reinforcement learning approach was proposed for
the transmitter to sequentially learn the statistic parameters
from past experience. In [15], the authors put forward an
adaptively directional wireless power transfer scheme where
the wireless energy station can adjust the energy
beamforming strategy according to the locations of the
sensors. In [16], the authors investigated the
location-dependent power harvesting rates in multiple RF
energy stations to charge the sensors in a wireless sensor
network. The key challenges of designing wireless powered
cellular networks were discussed in [17]. A detailed review
of RF energy harvesting technologies applied to wireless
networks is given in [18].

There has been a surge of research interests in wireless
energy transfer (WET)-based wireless sensor networks in
which the sensors can be supported by energy wirelessly
supplied by dedicated energy sources mostly through
inductive coupling, magnetic resonance coupling, and radio
frequency (RF) energy transfer technologies [19]–[22]. Since
the energy wirelessly transferred from dedicated sources is
not subject to weather or seasonal constraints, WET has the
potential to fundamentally solve the energy problems and
provide a permanent energy source for future generation
wireless sensor networks. RF wireless power transfer-based
hardware has been evaluated and tested in many existing
works. For example, in [23], the data relaying path selection
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problem was evaluated using the Powercast RF power
transfer systems. An optimization framework was developed
to determine the optimal charging and transmission cycle for
the sensor network. In [24], the scenario of a mobile
charging vehicle periodically traveling inside the sensor
network and charging each sensor node’s battery wirelessly
was considered. An optimization framework with the
objective of maximizing the ratio of the wireless charging
vehicle (WCV) vacation time over the cycle time was
proposed. A two-dimensional directional water-filling
algorithm was proposed in [25] to optimally control the flow
of harvested energy in both time (from past to future) and
among users (from energy-transferring to energy-receiving).
It showed that the proposed algorithm achieves the boundary
of the capacity region of the two-way channel. In [26], the
authors consider the dynamic sensing and transmission
behaviors of sensors by providing a novel charging paradigm
and proposing efficient sensor charging algorithms. A
multi-functional mobile entity called SenCar was employed
in [27], which serves not only as a mobile data collector that
roams over the field to gather data via short-range
communication but also as an energy transporter that charges
static sensors on its migration tour via wireless energy
transmissions. The authors in [28] studied the scenario of a
mobile charging vehicle periodically traveling inside the
sensor network and charging each sensor node’s battery
wirelessly. In [29], a novel Energy Synchronized Mobile
Charging (ESync) protocol was proposed to simultaneously
reduce both of charger travel distance and the charging delay
of sensors. In [30], the authors proposed a circuit model for
renewable energy cycle and corresponding RF charging time,
and derived the node lifetime expressions. In [31], the
authors considered a wireless sensor network with
rechargeable sensors deployed in a random sensing
environment. The MDP is used to find out the optimal
recharge policy. In contrast, we derive an empirical model by
establishing a real hardware platform using off-the-shelf RF
energy transfer hardware equipment, and then apply the
derived empirical model to optimize the charging path of a
robotic vehicle installed with a RF energy power transmitter.

In this paper, we consider the RF energy transfer-based
wireless sensor networks in which each sensor is installed
with an antenna or antenna-array that can convert RF signals
into electrical energy. RF energy transfer has proven to be a
suitable method for powering multiple devices through low
power and long distance transfer [19], [32]–[37]. More
specifically, in [32], field experiments for charging sensor
nodes with RF energy transfer were conducted with
Powercast RF energy harvesting kit. These equipment are
commercially available RF-based wireless transfer power
products [38]. A charger was continuously sending out
903-927MHz frequency RF signals which were then
transformed to DC voltage to charge some sensor nodes. It
was shown that recharging efficiency could be improved by
adjusting three parameters: number of nodes being recharged
simultaneously, distance between nodes, and distance
between the nodes and the charger, to measure the average
received power. The authors then formulated an optimization

problem to determine the optimal node deployment and
routing arrangement. They proved that the problem is
NP-complete and proposed several heuristic algorithms as
solutions.

Based on the same technology, a mobile robot was used
for carrying a similar wireless charger to charge a WSN [39].
A wireless charging problem that the energy station was
trying to solve was formulated, and two heuristic charging
algorithms to address the issue were presented. Prototype
experiments for a small-scale network were conducted, and
the cases for a large-scale network simulated. Both
experimental and simulation results showed that the proposed
algorithms could prolong network lifetime. However, the low
power transfer efficiency was shown to be the bottleneck of
the network lifetime. In [40], Unmanned Aerial Vehicles
(UAVs) were employed as an alternative to wireless charging
vehicles to carry the charger in harsh terrains. UAVs were
intended to carry a wireless power charger, select and fly to
the sensor clusters, recharge the sensors within the selected
cluster, and bring back the sensed data. The goal was to find
the optimal matching pairs for sensor clusters and UAVs to
obtain the maximum data delivery rate from sensor clusters
to the sink. Through simulations, they demonstrated that the
matching process of the greedy algorithm with descending
order preference achieves the optimal solution. The focus
was thus on maximizing data collection utility, not on
extending the lifetime of the sensor network. In [41], [42],
the authors studied the problem of how to place multiple
wireless energy transmitters in a wireless sensor networks to
ensure all the sensor nodes can receive sufficient energy for
data transmission. In [43], [44], the authors considered the
WET system with a mobile charging station installed on a
vehicle that can travel through a pre-planned path to charge
the sensors and collect data.

Our research focuses on a special wireless-powered sensor
network consisting of a set of sensors powered by the energy
transferred from a Mobile Energy Station (MES) that can
periodically travel through a pre-planned path to charge the
sensors. We develop an RF energy transfer-based hardware
platform as shown in Figure 1 to assess the practical
performance of the proposed wireless-powered sensor
network. In our platform, the MES consists of an
off-the-shelf RF energy transmitter installed on a robotic
vehicle, and each sensor consists of a directional antenna
that can receive the RF energy transferred from the MES, a
supercapacitor that can store the received energy and a
sensing, and data transmitting module that can generate data
packets and send to the fusion center. We establish an
empirical model for mobile charging-enabled WSNs using
our developed platform. We then focus on the joint
optimization problem for path planning and mobile charging
scheduling problem of the MES. In this problem, the MES
can sequentially decide the path it will travel and the subset
of sensors to charge at the beginning of each time period.
We formulate a Markov decision process (MDP)-based
framework to derive the joint optimization solution of the
above problems. Numerical results are presented to show the
performance improvement that can be achieved by our
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Fig. 1. Our developed hardware platform for RF energy transfer-based
wireless sensor networks.

proposed approach.
We summarize the main contribution of this paper as

follows:
1) We establish an empirical model for RF wireless power

transfer using the data collected from the hardware
prototype built using the off-the-shelf RF power transfer
hardware.

2) We formulate the path selection problem for wireless
sensor networks with mobile charging station as an
MDP and then apply our established model to calculate
the MDP parameters.

3) We derive an optimal policy for the mobile energy station
to sequentially decide the optimal path and the subset of
sensors to charge.

4) We present numerical results to verify the performance
of our proposed policy.

The rest of this paper is organized as follows. The system
model and problem formulation are presented in Section II. We
describe the hardware setup and empirical model in Section III.
The joint optimization solution for path planning and mobile
charging scheduling is derived in Section IV. Numerical results
are presented in Section V, and the paper is concluded in
Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a WET-based sensor network consisting of a
set of K sensors denoted as S = {s1, s2, . . . , sK} randomly
located in the service area. Each sensor can monitor the
information of interest, and a sequence of data packets will
be generated and transmitted to a fusion center. Let Qsk be
the set of possible data packets that can be generated by the
kth sensor. We assume that the data generated by each
sensor sk follows the Poisson distribution with a known
parameter λsk . In particular, let uk,t be the number of data
packets sent by sensor sk at the beginning of time slot t, we
have usk,t ∼ Pois (λsk). Let wsk,t be the amount of energy
that will be consumed by sensor sk to transmit usk,t data
packets. We assume there exits a one-to-one mapping
function Y (·) from usk,t to wsk,t. Specifically, we can write
wsk,t = Y (usk,t) and usk,t = Y −1 (wsk,t).

Different from the traditional sensor networks in which
the energy consumed for data transmission of each sensor is
limited by the energy pre-stored in the battery, the lifetime of
each sensor in a WET-based sensor network can be further
extended by power wirelessly transferred from an energy
station. In this paper, we study the wireless-powered sensor
network with mobile charging in which an MES periodically
starts from a charging base and travels through a pre-planned
path to wirelessly charge a set of sensors before returning to
the charging base. We assume that there is a minimum unit
of energy, denoted as b, that can be consumed by each
sensor to send each data packet. Each sensor sk is installed
with an energy storage device that can store up to b̄k units of
energy. We focus on the wireless-powered sensor networks
with causal constraints. This means that each sensor cannot
use the energy that can only be received in the future, i.e.,
we can hence write the energy level of the energy storage
device at sensor sk at the beginning of time slot t as

bsk,t = min
{
b̄sk , (bsk,t−1 + vsk,t − wsk,t)

+
}

(1)

where vsk,t is the amount of energy that can be received by
sk from the MES and (·)+ = max{0, ·}. We also write the
set of possible stored energy levels for sensor sk as Bk =
{b, 2b, . . . , b̄kb}. Planing the optimal path that can travel and
visit all the sensors with the shortest distance is an NP-hard
problem [45]. Also in many practical situations, the number
of paths that are feasible for traveling by the MES can be
limited by various practical conditions. We assume the number
of paths that can be traveled by the MES is finite and use P
to denote the set of feasible paths that can be traveled by the
MES during each period of time. Let pt be the path chosen
by the MES to travel in time slot t, i.e., we have pt ∈ P .

We assume the MES can only choose one path at each
time period and cannot change its path before returning to
the charging base. This can be from the fact that the
computation and decision are performed and made at the
charging base which has a complete information about the
network. It is known that the wireless energy transfer
efficiency deteriorates significantly with the increase of the
distance between the MES and the energy receiving sensor.
Therefore, the MES will only start sending energy to sensor
sk when it arrives at the closest location in its chosen path.

Without loss of generality, we assume the closest location of
each sensor in each specific path is unique and use Dis (k, pt)
to denote the distance between sensor sk and the location that
is closest to sk in path pt. At the beginning of time period
t, the MES will jointly decide a specific path and choose a
subset of sensors denoted as St ⊆ S to charge before leaving
the charging base. The MES will then sequentially stop at
each location that is closest to each of the selected sensors
in the chosen path for wireless charging. The MES will only
leave for the next location when the current sensor has been
fully charged. We assume the energy sent by the MES to each
specific sensor cannot be received by other sensors.

B. Problem Formulation
Let ϕ (pt) be the time duration for the MES to travel through

path pt for pt ∈ P . Let ψ (sk, pt, bsk,t, usk,t) be the time
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TABLE I
LIST OF NOTATIONS

Symbol Definition
S Set of sensors
Qk Set of possible numbers of data packets that arrived

at the kth sensor
qk,t Number of data packets arrived at sensor k at the

beginning of time period k
b̄k Maximum number of energy units that can be

stored at sensor k
Bk Energy that can be harvested by T in time period

t
pt Path chosen by MES to travel during time period

t
Dis (Sk, pt) Distance between sensor k and the location of the

point that is closest to sensor k in path pt
St Subset of sensors that are chosen by MES to charge

during the tth time period
τ̄ Length of each time period
Ξ Set of states of wireless-power sensor networks

duration for the MES to stop at the location closest to sk
and charge sensor sk until its energy storage device is fully
charged. The total time duration spent on the tth trip of the
MES is given by

Tt (pt,St, bt,ut) = ϕ (pt) +
∑

sk∈St

ψ (sk, pt, bsk,t, usk,t) . (2)

We assume the maximum amount of time for the MES to
travel is bounded by τ̄ and the mobile charging process is
repeated every τ̄ time period. Specifically, if the time spent
by the MES on charging sensors is less than τ̄ , the MES will
wait at the charging base and start the next trip at the end of
τ̄ time period. On the other hand, if the total time duration for
the MES spent on traveling over the selected path and charging
all the sensors exceeds τ̄ , the MES will only charge a subset
of sensors and will return to the base within time duration of
τ̄ .

The MES tries to ensure that all sensors keep sending their
data packets to the fusion center with the lowest average data
loss measured by the expected number of data packets that
will be dropped by all the sensors due to insufficient energy.
We can write the data loss at time slot t as,

Lt (pt,St, bt,ut) =∑
sk∈S

(
usk,t − Y −1 (bsk,t + 1 (sk ∈ St) vsk,t)

)+
(3)

where 1(·) is the indicator function. We write the average
payoff of the MES during the tth time period as

ϖt (pt,St, bt,ut) =
1

τ̄
Lt (pt,St, bt,ut). (4)

The objective for the MES is to minimize the long-term
discounted data loss for wireless-powered sensor networks,
i.e., we have

E

(
lim
t→∞

t∑
l=0

γlϖl (pt,St, bt,ut)

)
, (5)

where γ is the discount factor for 0 < γ < 1.

III. HARDWARE SETUP AND EMPIRICAL MODELS

A. Hardware Setup

We implement a hardware platform to evaluate the
practical performance of wireless mobile charging systems.
The hardware selected for the experiments are the
P1110-EVB evaluation board with components from the
P2110-EVAL-01 Lifetime Power Energy Harvesting
Development Kit for Wireless Sensors. The P1110-EVB
contains the P1110 Powerharvester for use in charging
batteries or supercapacitors.

The P2110-EVAL-01 contains a 3-watt, 915MHz RF
energy transmitter with integrated 8dBi antenna, an
evaluation board, a dipole (omni-directional) and a patch
(directional) antenna, an access point, and a wireless sensor
board to measure temperature, humidity and light. The
wireless sensor boards are powered by the P2110
Powerharvester Receiver, which converts RF energy into DC
power. The communication frequency from the sensor board
to the access point is 2.4GHz on the Wi-Fi protocol. The kit
is designed and configured for low power operation; its
firmware is pre-installed for out-of-the-box operation.

1) Hardware Modification: The evaluation board
P2110-EVB of the kit is not adequate for our intended
experiments as it does not convert RF signals directly into an
output voltage that can be used to supply power to the
sensors. Instead, its Powerharvester receiver (P2110) converts
RF energy to DC voltage stored in an external storage
capacitor, referred to as a charge capacitor. When a threshold
voltage on the charge capacitor is achieved, the P2110 boosts
the voltage to a set output level and enables the power
supply release. This output power supply (Vcc) remains
steady at 3.3V as long as the voltage across the charge
capacitor (Vcap) remains above a limit value. Once the RF
transmitter is turned off after charging, Vcap starts to drop
and the amount of time that it can remain above the lower
threshold depends on the capacitance value. Due to the small
value of Vcap (1.24V), the low gap between Vcap and the
lower threshold, and the difficulty to balance between a brief
charge period and a long hold time of Vcc, the P2110-EVB
is not suitable to achieve optimal results.

Therefore, we replaced the P2110-EVB with a
P1110-EVB board. In this board, a Powerharvester receiver
(P1110) provides power management directly to a battery or
storage capacitor, without any need of an external charge
capacitor. When a threshold voltage Vcc (3.3V) on the
storage capacitor is achieved, the P1110 chip automatically
disables charging. The Vcc voltage is used as a power supply
to the sensor board. The value of the storage capacitor will
determine the amount and duration of energy available from
the output and the length of the charge time. It should have
a leakage current, which is the current at 72 hours required
to keep the capacitor charged at the rated voltage, as small
as possible. Higher leakage currents will result in using more
of the harvested energy to replace the capacity lost due to
leakage rather than replenishing the capacity [46].

A supercapacitor is an ideal choice for a storage capacitor.
Supercapacitors, also referred to as Electrochemical
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Capacitors or Double Layer Capacitors, are not only an
excellent compromise between electronic or dielectric
capacitors such as ceramic and tantalum and rechargeable
batteries, but are also suitable technology for providing a
unique combination of characteristics, particularly very high
energy, power and capacitance densities. They exhibit much
longer lifetime than batteries, can accept and deliver charge
much faster, tolerate many more charge and discharge cycles,
and have minimal environmental impact [47].

For this purpose, we decided to install a 5F Power storage
supercapacitor of 13mΩ internal resistance, 25VA leakage
current, with a surge voltage of 5.5V. The antenna selected
to mount on the P1110-EVB board is the patch antenna from
the development kit. It is a vertically polarized directional
antenna with 120-degree reception pattern with a higher gain
(6.1dBi) than the dipole antenna’s 1.0dBi. In order to find
the minimum charging time, we vary the distance between
the RF transmitter mounted on the unmanned vehicle and the
sensor board to achieve the lower the separation distance, the
faster the charging time. 18cm is found to be the optimal
distance, since the RF transmitter automatically shuts off at
shorter distance, to limit RF radiation exposure. Once the
target charge voltage is reached, the RF transmitter is
disabled and moved to power another board. The
supercapacitor voltage Vcc used to power the board then
starts to drop at a slow rate. As long as it remains above
2.45V, the sensor boards can still communicate with the
access point. Before the lower threshold is reached, the
unmanned vehicle is moved again to recharge the sensor
board.

2) Firmware Customization: The sensor board of the
P2110-EVAL-1 kit comes with a preloaded firmware written
in C language and requires Microchip’s MPLAB
development environment and C30 Compiler. A Microchip
PIC24F16KA102 is used to demonstrate the capabilities of
the Powerharvester to supply uninterrupted power. Once the
supply voltage Vcc is above a certain value, the Microchip
turns on, reads the sensors data and via an MRF24J40MA
RF Transceiver Module, and sends them to an access point.
The default firmware settings include a Reset signal that
turns off Vcc for a few milliseconds after the data packets are
transmitted. The voltage Vcap, used by the P2110 to create
the supply voltage, then drops suddenly until it reaches a
lower value of 1.02V. Then it automatically charges back so
that a similar transmission cycle is repeated. These settings
assume an RF transmitter continuously turned on as
described earlier. Similarly, with a P1110 evaluation board,
Vcc would be disabled by the reset signal.

Our objective is to keep the communication between the
sensors and the access point alive as long as possible so as
to allow the charging vehicle to travel to other sensor nodes.
Hence, keeping Vcc for a duration longer than that of the
default firmware settings is essential. The first modification
we implemented is to remove the reset signal so that the
P1110 output voltage is not turned off once Vcc reaches its
3.3V target. This is achieved by changing sections of the
source code. The second modification is to position the
Microchip and RF Transmitter Module to sleep mode after

Fig. 2. Packet data received by the fusion center.

the sensing data packets are sent to the access point, thus
saving power and extending Vcc above the minimum value as
long as possible. Also, prior to entering sleep mode, all I/Os
of the microprocessor are set as output and peripherals
disabled so as to further lower the current consumption
during sleep mode. Figure 2 shows an example of packets
received by the access point two minutes apart (a
microprocessor was put to sleep for two minutes after
sending its packet data). It also includes the default 10
second delay between each packet, which is embedded in the
source code.

B. Empirical Models

As mentioned previously, the performance of the wireless
mobile charging system can be affected by many practical
conditions and limitations such as the efficiency of wireless
power transfer, energy consumption of data processing and
transmission units in the sensor, energy storage loss, feasible
paths and stopping sites that can be applied for the MES, and
the maximum traveling time constraints of the MES, etc. In the
rest of this section, we present empirical models for wireless
discharging and charging processes developed based on our
proposed wireless mobile charging platform.

1) Empirical Model for Discharging: In wireless-powered
sensor networks, each sensor needs to transmit its sensing
results to the fusion center with the energy available at its
supercapacitor. Each sensor consists of multiple units and
circuits including CPU, data collection and transmission
units each of which can only be activated when it has
sufficient energy supply form the supercapacitor. For
example, data transmission unit in each sensor can only be
activated when the voltage of the supercapacitor is above
2.45V. In other words, the discharging rate of each sensor
will depend on the current energy level of the supercapacitor.

The above observation is verified in our experimental data
presented in Figure 3(a) where we measure the voltage of
the supercapacitor for one of the sensors under different time
slots. We can observe that the voltage decreasing rate of the
supercapacitor decreases significantly when the voltage of the
supercapacitor becomes less than 2.45V. This means that the
data transmission unit of each sensor consumes the highest
amount of energy. Motivated by this observation, we modify
the firmware of the sensors and allow the data transmission
unit to be able to switch off according to the energy availability
and the data buffer level of each sensor. More specifically,
we develop two operation modes for each wireless-powered
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Fig. 3. Experiment results for discharging rate under different modes.

sensor in our platform: active mode and sleep mode. Once
the stored data packets reach the maximum capacity of the
buffer and the supercapacitor has enough energy to support
data transmission, the sensor can operate in active mode and
start transmitting data packets to the fusion center.

We observe that the discharging rates for both active mode
and sleep mode can be fitted into linear functions as illustrated
in Figure 3. Note that since each sensor can only operate in
active mode when the voltage of the supercapacitor is above
2.45V, we only use the experimental data that is above 2.45V
to fit the linear function in Figure 3(a). From Figure 3, we can
obtain the following discharging function for each sensor.

∆Vk (∆t) =

{
−∆t · 0.1, in Active Mode,

−∆t · 0.00395, in Sleep Mode. (6)

2) Empirical Models for Wireless Power Transfer: It is
known that the efficiency of wireless power transfer depends
strongly on the transfer distance. The relation between
transmit power, received power and the wireless power
transfer distance is commonly characterized by Friis’ free
space propagation model given by

wk,t =
GTGRν

2

(4πd)
2 wM,t, (7)

where wM,t is the transmit power of the MSE, wk,t is the
power received by sensor sk, GT and GR are the antenna
gains of the MES and sensor sk, respectively, d is the power
transfer distance between the MES and the sensor, and ν is
the power transfer signal wavelength [48]. It is known that
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Fig. 5. Wireless power transfer efficiency under different distances.

for short distance transmission, the above equation has to be
further adjusted to include the polarization loss and the effects
of power rectification and conversion. The short-distance Friis’
free space propagation model can then be rewritten as [41]

wk,t =
χ

(d+ c)
2wM,t, (8)

where χ = GTGRν2

(4π)2
and wM,t = 3W and c is the

compensation factor for the short-distance Friis’ equation.
To verify (8) in a practical RF WET system, we measure

the relation between the transmit and receiver powers using
our hardware platform. As mentioned in Section III, the
off-the-shelf wireless energy transmitter installed at the MES
contains a directional antenna with transmit gain GT =8dBi.
The wireless power transfer frequency is 915MHz with
average wavelength of 0.328 m. Each sensor board has also
an antenna with receive gain GR = 6.1dBi. We measure the
instantaneous voltage of the supercapacitor and calculate the
power received by each sensor k by

wk,t =
κ

2∆t

(
(Vk,t +∆Vk,t (∆t))

2 − Ṽ 2
k

)
, (9)

where Ṽk is the voltage of the supercapacitor of sensor sk at
the beginning of time period t before charging at the
beginning of time period t. Vk is the observed voltage after
∆t duration of charging, and ∆Vk,t (∆t) is the voltage
reduction caused by the energy consumption for data
collection and transmission in time interval ∆t. κ = 5F is
the capacitance of the supercapacitor.

Due to the limited capacitance of the supercapacitor
installed at each sensor, the maximum energy that can be
received by each sensor in our hardware platform is limited.
To study the relation between the received energy and the
charging time and distance in a more general setting, we fit
our experimental voltage data for each sensor under different
charging time into a more general function. We observe that
all our experimental data can fit the exponential function
with standard errors less than or equal to 0.1. The relation
between the observed voltages and the charging time in
different charging distances is presented in Figure 4. We
have the following observations from Figure 4: 1) the
charging rate for each sensor under each given charging
distance is closely related to the initial voltage before
charging. This is because, as mentioned previously, different
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Fig. 4. Wireless charging rates with different charging distances.

units installed at each sensor such as the CPU, the data
collection and transmission units, etc., consume different
energy under different amounts of energy supply. With more
energy being received by each sensor, energy consumption
of each sensor will also increase which results in the
decrease of the charging rate. 2) the charging time increases
significantly with the distance between MES and sensors. In
other words, the MES should only start to transmit wireless
energy when it arrives at the closest location to each sensor.
We fit the average value of our measured data in Figure 5
into the Friis’ equation in (8) and obtain χ = 1.644 and
c = 1.112.

In the rest of this paper, we apply our empirical models to
optimize the path planning and charge scheduling for an MES.

IV. JOINT OPTIMIZATION FOR PATH PLANNING AND
MOBILE CHARGE SCHEDULING

Let us next consider mobile charging for wireless-powered
sensor networks with multiple sensors.

A. State Estimation

We formulate the joint path planning and mobile charging
scheduling problem as an MDP with infinite horizon which
consists of the following elements:

• State space Ξ = B×Q: is a finite set of all the possible
energy levels of the supercapacitors for the sensors in
each time slot. We write the state in time slot t as ξt =
⟨bt, ut⟩ ∈ Ξ for all t.

• Action space A = P×
∪

S′⊆S S ′: is a finite set of all the
possible paths and subsets of sensors that can be chosen
by the MES at the beginning of each time period. We
write the action decided by the MES in time period t as
at = ⟨pt,St⟩ ∈ A for all t.

• State transition function T : Ξ × A × Ξ → [0, 1]:
specifies the probability distribution that, starting at
state ξt and taking action at, the state ends in ξt+1. Let
us now describe how to estimate the state transition
function from the statistics of the environment. From
(1), it can be observed that the energy level of each
sensor at the beginning of time slot t is determined by
the energy level, energy consumption and the received
energy in the previous time slot. We can then write the

probability of this state transition as follows:

Pr (ξt+1|ξt, at) = Pr (bt+1|bt, pt,St)

= Πsk∈St+1 Pr
(
bsk,t+1 = b̄sk − wsk,t

)
Πs′k∈S\St+1

Pr
(
bs′k,t+1 = bs′k,t − ws′k,t

)
= Πsk∈St+1 Pr

(
usk,t = Y −1

(
b̄sk − bsk,t+1

))
Πs′k∈S\St+1

Pr
(
us′k,t = Y −1

(
bs′k,t − bs′k,t+1

))
(10)

where usk,t ∼ Pois (λsk).

B. Sequential Path Planning and Charge Scheduling

To minimize the long-term data loss, the MES needs to
evaluate both the current and future data loss that will result
from each of possible actions. We define the value function
U (ξt, at) as the sum of the current and future discounted data
loss when the current state and action are given by ξt and
at, respectively. Suppose the current state is given by ξt. We
can write the current expected payoff ϖt when the transmitter
decides to take action at in the current time slot as follows:

ϖ̄t =
∑
ξt∈Ξ

Pr (ξt|ξt−1, at−1)ϖt (at, ξt) , (11)

where ϖt (at, ξt) is defined in (4).
The MES should also be able to estimate the future expected

data loss using the state transition function. We can hence write
U (ξ, a) as follows:

U(ξt, at) = ϖ̄t

+γ
∑

st+1∈S

Pr (ξt+1|st, at)U∗(ξt+1, at+1). (12)

We can write the optimal value function for the MES under
state ξt as follows:

U∗(ξt) = min
at∈A

U(ξt, at). (13)

Therefore, the optimal policy π∗ is given by

a∗t = arg min
at∈A

U(ξt, at). (14)

(14) means that the MES should always choose action a∗t when
the current state is given by ξt.

Following the same line as in [49], we can conclude that
the policy in (14) is optimal in the sense that it maximizes
the long-term discounted performance of the entire wireless
sensor network. In addition, our proposed MDP-based model
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Fig. 6. Simulation setup for wireless-powered sensor networks with three
sensors and one MSE.

is very general and can be applied into many other situations
with different choice of critical variables such as wireless
channels and traffic loads. It is known that the solution of
the MDP-based algorithm has exponential complexity with
respect to the number of states which in our algorithm
include the number of battery levels and transmit data
packets. Fortunately, the main calculation in our hardware
platform is done by the charging station which should have
equipped with high computing power infrastructure and the
calculated optimal path will be informed to the MES when it
arrives the charging station. In our setting, the charging
station consists of a laptop computer and therefore the
solution can be calculated even when the computation
complexity is high.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
joint optimization algorithm using our hardware platform. We
setup an experiment with three sensor boards and one MES
consisting of a powercast RF energy transmitter mounted on a
robotic vehicle shown in Figure 6. We consider four possible
paths for MES to charge the sensors including one circled path
that can visit each sensor with the shortest distance of 18cm
and three paths each of which will visit one of the sensors
back and forth in a straight line. In this paper, we assume
the set of paths that can be used by the MES to travel and
charge sensors are pre-calculated according to the maps or
existing geographic features of the area of consideration. This
assumption is reasonable in many practical systems because
most of the blockage such as building, trees etc. as illustrated
in Figure 6, can be regarded as fixed and will not change with
time. Allowing the MES to learn the geographic features and
only travel through the selected path without any blockage
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Fig. 7. Probability for MES to choose path 2 and charge sensor 1 under
different states when the duration of each time period is 10 min.
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Fig. 8. Probability for MES to choose path 1 and charge sensors 1 and 2
under different states when the duration of each time period is 20 min.

will increase the efficiency of the mobile charging system and
further increase the lifetime of the sensor networks. We set
the travel time for the circled path at 5 mins and each of
other paths at 2 mins. A sequence of data packets is randomly
generated by each sensor at the beginning of each time period.

As mentioned previously, how to choose the path for
travel and scheduling a proper subset of sensors to charge by
MES directly affect the performance of wireless powered
sensor networks. Our proposed joint optimization algorithm
allows the MES to sequentially choose the path and charging
sensors according to the state of the system. In Figure 7, we
assume that the voltage and arrived data packets of sensors 2
and 3 can be regarded as fixed and analyze the probability
for the MES to choose path 2 and charge sensor 1 under
different voltage and arrived data packets of sensor 1. We
consider data loss as the main performance criteria for our
prototype because as observed in [1] and [2] that one of the
main objectives for many existing wireless sensor networks
is to sense the environmental data and report to the monitor
station for further analysis. It is therefore very important to
ensure low data loss for the wireless sensor network
especially when abnormal/emergency environmental
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Fig. 10. Comparison of data loss using joint optimization policy and
sequential charging according to arrival of data packets.

situations were observed by some sensors.
We observe that the MES will not charge sensor 1 when

it believes that the energy stored at sensor 1 is sufficient to
support the data transmission. However, when the voltage of
the supercapacitor of sensor 1 decreases, the probability for
the MES to choose sensor 1 for mobile charging will increase.
If sensor 1 cannot send any data packets due to insufficient
energy, the MES will always choose path 2 to charge sensor
1. Note that in our setting, the MES can only estimate the
exact energy level of each sensor when it charges the sensor.
Otherwise, it will use the known probability distribution of the
data arrival process to estimate the energy level of each sensor.
This explains why in some system states as shown in Figure
7, the probability for the MES to charge sensor 1 can also be
positive when the energy of sensor 1 is enough to send all the
arrived data packets during the current time period. It is known
that the size of the action space is affected by the duration of
each time period, i.e., the MES cannot charge all the sensors
if the required time duration to charge all the sensors plus the
travel time exceeds the duration of each time period.

In Figure 8, we consider the case that the duration of each
time period is given by 20mins. In this case, it is possible

for the MES to be able to charge two or more sensors. We
observe that the MES will not charge sensor 1 but choose
path 1 to charge other two sensors if it believes that sensor 1
has enough energy to send its arrived data packets. However,
if the supercapacitor of sensor 1 does not have enough
energy to support the data transmission, the MES will
choose sensor 1 and any of the other sensors to charge. Note
that in our setting, the main cost for the MES to choose path
1 compared to choose other paths is that choosing path 1
will result in more travel time during each time period. Our
model does not take into consideration other costs of the
MES when it chooses different paths such as the energy or
other resource consumption, cost of the maintenance after
each trip, etc. In other words, if the duration of each time
period allows charging two or more sensors, the MES will
be unlikely to choose paths 2, 3 and 4 to only charge one
sensor. How to integrate these costs functions into our
hardware platform will be our future works.

From the empirical models established in Section III, we can
observe that due to the energy consumption and discharging
of each sensor, the performance of wireless-powered sensor
networks is closely related to the duration of each time period.
In other words, the longer the duration of each time slot, the
more data loss for the sensors due to the insufficient energy
supply. In Figure 9, we compare the data loss of our proposed
joint optimization policy with the sequential charging approach
in which the MES equally divide the duration of each time
period into three equal length intervals during each of which
it will charge one sensor. We observe that our proposed joint
optimization approach significantly improves the performance
of the sensor network when the duration of each time period is
small. When the duration of time period becomes long enough
for the MES to charge all the sensors before returning back to
the base, the performance of our joint optimization approach
will be equal to that of sequential charging. This means that
our proposed joint optimization approach is more suitable for
the data loss sensitive wireless-powered sensor networks in
which only limited data loss can be tolerated.

It can be observed from our empirical model established
in Section III that the data transmission is the most energy
consuming process for wireless-powered sensor networks.
Therefore, in Figure 10, we compare the data loss of the
sensor network under different data arrival rates. We observe
that when the number of arrived data packets is few for all
the sensors, both sequential charging and the joint
optimization policy proposed in Section IV can provide
sufficient energy supply for WSNs. However, when the
number of arrived data packets increases, the data loss
achieved by the sequentially charging will become
significantly larger than that of our proposed joint
optimization policy. In addition, the percentage of the lost
data will not significantly increase with the total number of
arrived data packets in the joint optimization policy. In other
words, our proposed joint optimization policy is more
efficient when it is applied in the sensor networks with high
sensing data traffics.

Note that, in some practical situations, the energy level of
the battery can be affected by various specific environmental
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and operational parameters and therefore characterizing the
relationship between the overall battery life under various
practical applications is also important. For example, in
some emergency scenarios, the sensors may operate in the
active mode for most of the time which will significantly
reduce the battery life. While, in normal time, the sensors
can operate in the sleep mode to reduce the energy
consumption. In other words, the operation time of the
sensors will be different for different applications and
specific requirements. In this paper, we only present the
simulation results to characterize the relationship between
charging time and the received energy as well as that
between discharging time and the remaining energy for the
battery of the receiver in either active or sleep modes. The
practical battery life of the sensors can be directly calculated
from the numerical results presented in this paper.

VI. CONCLUSION

In this paper, we studied a wireless-powered sensor
network consisting of an MES installed with RF energy
transmitter. The MES could travel through a pre-planned
path to charge multiple sensors in a given area. We
developed a prototype with off-the-shelf RF energy transfer
hardware equipment to verify the practical performance of
RF energy transfer-based wireless sensor networks. We
established an empirical model and used the established
model to jointly optimize the path planning and mobile
charge scheduling for the wireless-powered sensor network.
We derived an optimal policy for the MES to sequentially
optimize the planned path and the subset of sensors to
charge during each time period. We also presented numerical
results to show the performance improvement that can be
achieved by our derived policy.
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