A Multi-Leader Multi-Follower Stackelberg Game for Resource Management in LTE Unlicensed

Huaqing Zhang, Yong Xiao, Lin X. Cai, Dusit Niyato, Lingyang Song, and Zhu Han

Abstract—It is known that the capacity of the cellular network can be significantly improved when cellular operators are allowed to access the unlicensed spectrum. Nevertheless, when multiple operators serve their user equipments (UEs) in the same unlicensed spectrum, the inter-operator interference management becomes a challenging task. In this paper, we develop a multi-operator multi-UE Stackelberg game to analyze the interaction between multiple operators and the UEs subscribed to the services of the operators in unlicensed spectrum. In this game, to avoid intolerable interference to the Wi-Fi access point (WAP), each operator sets an interference penalty price for each UE that causes interference to the WAP, and the UEs can choose their sub-bands and determine the optimal transmit power in the chosen sub-bands of the unlicensed spectrum. Accordingly, the operators can predict the possible actions of the UEs and hence set the optimal prices to maximize its revenue earned from UEs. Furthermore, we consider two possible scenarios for the interaction of operators in the unlicensed spectrum. In the first scenario, referred to as the non-cooperative scenario, the operators cannot coordinate with each other in the unlicensed spectrum. A sub-gradient approach is applied for each operator to decide its best-response action based on the possible behaviors of others. In the second scenario, referred to as the cooperative scenario, all operators can coordinate with each other to serve UEs and control the UEs’ interference in the unlicensed spectrum. Simulation results have been presented to verify the performance improvement that can be achieved by our proposed schemes.

Index Terms—Stackelberg game, LTE unlicensed, resource allocation, wireless communication.

I. INTRODUCTION

By allowing cellular operators to offload data traffic to unlicensed spectrum, LTE in unlicensed spectrum (LTE-U) recently has attracted significant interest due to its potential to further improve the performance of the cellular networks [1]–[3]. Adopting carrier aggregation to combine unlicensed spectrum and the licensed band for downlink transmission, Licensed Assisted Access (LAA) is introduced in 3GPP release 13 as part of LTE Advanced Pro [4]. Currently, major telecommunication companies including Huawei [5], Qualcomm [6], [7] and Nokia [8] are actively involved in the research of LTE-U. It is commonly believed that the interference resulting from LTE-U to Wi-Fi needs be properly managed to avoid severe performance degradation of the Wi-Fi service subscribers. For example, the authors in [9]–[15] have presented detailed evaluation and simulation results to show that the Wi-Fi service can be seriously affected when LTE cellular networks have been allowed to operate in the unlicensed spectrum.

To address the above issue, many existing works have proposed solutions and algorithms to ensure possible coexistence of LTE-U and Wi-Fi in the unlicensed spectrum. In [16], the authors introduced the traffic offloading and resource sharing problems when cellular network operators are allowed to access the unlicensed spectrum. The authors propose a hybrid method where cellular base stations can simultaneously offload traffic to Wi-Fi networks and occupy certain number of time slots on unlicensed bands. Practical strategies have been proposed to maximize the minimum average per-user throughput of each small cell. In [17], the authors introduced a network architecture where small cells can share the unlicensed spectrum with the performance guarantee of Wi-Fi systems. An almost blank subframe (ABS) scheme was employed to mitigate the co-channel interference from small cells to Wi-Fi systems, and an interference avoidance scheme was proposed based on small cell estimation about the density of nearby Wi-Fi access points. The authors in [18] evaluated and compared several existing licensed and unlicensed user coexisting mechanisms. The appropriate coexistence mechanisms, such as static muting and sensing-based adaptive, were required to achieve a balance between the performance of LTE and WLAN systems. In [19], the authors proposed a capability-based water-filling method for the LTE-U users to regulate the interference to Wi-Fi users in the unlicensed spectrum. In [20], the authors proposed a novel proportional fair allocation scheme which guaranteed fairness when both LTE-U and Wi-Fi coexisted in the unlicensed spectrum. In [21], the authors proposed a spectrum etiquette protocol to restrict the priority of LTE-U and balance the unfair competition between LTE and Wi-Fi in the unlicensed spectrum. In [22], the authors proposed an “intelligent” power allocation strategy to optimize the utility of users with LTE-U and the social welfare simultaneously. In [23], an improved power control method was proposed for uplink transmissions, and thus both Wi-Fi and LTE are able to coexist with acceptable interference levels. Moreover, in order to guarantee the performance of...
the Wi-Fi users, the strategies in cognitive radio networks can also be applied in the relations between LTE-U and Wi-Fi. In [24], the authors modeled the cognitive users’ network access behavior as a two-dimensional Markov decision process and proposed a modified value iteration algorithm to find the best strategy profiles for cognitive users. In [25], the authors jointly considered the spectrum sensing and access problems as an evolutionary game, where each secondary user senses and accesses the primary channel with the probabilities learned from its history. In [26], a Dynamic Chinese Restaurant Game was proposed to learn the uncertainties of networks and make optimal strategies. In [27], the authors proposed a dynamic spectrum access protocol for the secondary users to deal with unknown behaviors of primary users. In [28], the authors investigate resource allocation problems for the uplink transmission of a spectrum-sharing-enabled femtocell network. A Stackelberg game with one leader and multiple followers is applied where the macrocell base station, leader, sets prices to the femtocell users, followers, to control its interference on the macrocell users. The macrocell users and femtocell users share the licensed spectrum, each femtocell user determines and optimizes the transmit power on each sub-band only.

Furthermore, from the operators’ perspective, how to manage the resource allocated in both licensed and unlicensed spectrum is a critical challenge. To minimize the interference caused by the UEs in LTE-U, a dynamic traffic balancing algorithm over licensed and unlicensed spectrum was proposed for Integrated Femto-Wi-Fi and Dual-Band Femtocell in [29]. It was shown that the algorithm can improve the overall user experience in both licensed and unlicensed bands. In [30], a flexible resource allocation scheme was proposed to improve the efficiency of resource utilization in both licensed and unlicensed bands. By adjusting the resource on licensed and unlicensed bands dynamically based on the utility functions, the network performance can be optimized to attain the maximum utility. In [31], the authors jointly considered the power control and spectrum allocation in both licensed and unlicensed bands. With the help of convex optimization methods, the spectrum efficiency was maximized in the system. In [32], the authors proposed the channel selection strategies for LTE-U enabled cells. By adopting the distributed Q-learning mechanism for channel selection, all LTE operators are able to coexist in an efficient way. In [33], a student-project allocation matching is applied to approach a stable matching results of channel allocation problem in the unlicensed spectrum.

Nevertheless, most existing works of resource management problems in unlicensed spectrum were focused on scenarios with a single cellular operator. When multiple cellular operators are allowed to access the unlicensed spectrum at the same time, they tend to compete for the same spectrum resources with each other. This will result in severe cross-interference among operators sharing the unlicensed spectrum. In [5], two general ideas are put forwards to solve the problem. One is applying the orthogonal/exclusive use of the unlicensed spectrum for each operator. The other is to propose dynamic schemes for shared use of unlicensed radio resources. The use of unlicensed spectrum depends on the instantaneous/semi-static traffic load of LTE-U. However, the first solution lacks flexibility and the second solution requires perfect central control mechanisms. In [34], the Kalai-Smorodinsky bargaining is adopted to coordinate all operators to utilize unlicensed spectrum. In this paper, we further extend our previous work and consider an unlicensed spectrum sharing problem in which multiple cellular operators serve a set of user equipments (UEs) and charge penalty prices to all UEs accessing the unlicensed spectrum according to their interference to the Wi-Fi networks. We focus on the pricing mechanism that can be applied by the cellular operators to manage and control the interference caused by each UE to other UEs as well as Wi-Fi users in the unlicensed spectrum. Each UE can also optimize its performance under the pricing mechanism of the operators. In this paper, we formulate a multi-leader multi-follower Stackelberg game to study the interactions between the cellular operators and UEs. In this game, all the operators first set their interference penalty price on each sub-band of the unlicensed spectrum. Based on the prices set by operators, each UE then decides its sub-bands in the unlicensed spectrum by a matching algorithm. Moreover, each UE can also optimize its transmit power to further improve its capacity without causing intolerable interference to other UEs and Wi-Fi users. Accordingly, the operators can predict the actions of the UEs and set the optimal prices to receive high utilities. We propose both non-cooperative and cooperative schemes for operators to deal with the interference problem in the unlicensed spectrum. In the non-cooperative scheme, each operator sets its prices individually without coordinating with others, and a sub-gradient algorithm is adopted to achieve the highest utility for each operator based on the behaviors of others. In the cooperative scheme, all operators are able to coordinate when they set prices. We optimize the relations of the prices with a linear programming method so as to reach the highest utilities of all operators. To the best of our knowledge, this is the first work that applies the Stackelberg game with multiple leaders and multiple followers to study the LTE unlicensed networks. Simulation results show that the operators in both the non-cooperative and cooperative schemes can improve their utilities without causing intolerable interferences to the unlicensed users, based on different traffic conditions in the unlicensed spectrum.

The rest of this paper is organized as follows. We introduce the system model in Section II, and then formulate the problems in Section III. Based on the formulated problem, we model the scenario in a multi-leader multi-follower Stackelberg game and further analyze the game in Section IV and Section V. We present our simulation results in Section VI and finally conclude this paper in Section VII.

II. System Model

We consider a heterogeneous cellular network system where M co-located operators serve N UEs in an indoor environment. We assume operator i, $\forall i \in M = \{1, 2, \ldots, M\}$, deployed P_i small cell base stations (SCBSs) that are co-located with Q_i Wi-Fi access points (WAPs) randomly distributed in the coverage area. The SCBSs are able to serve the UEs in both the licensed and unlicensed spectrum. In the licensed spectrum, we
assume all UEs operate in the same manner as the traditional LTE networks and are able to obtain licensed resource that can support C_j^l data transmission rate, $\forall j \in \mathcal{N} = \{1, 2, \ldots, N\}$. If UE j is satisfied with a data transmission rate that is less than or equal to C_j^l, it will only access the licensed spectrum.

If UE j requires a data transmission rate that is higher than C_j^l, UE j will then also seek spectrum resource in the unlicensed spectrum to further improve its Quality-of-Service (QoS).

To simplify our description, we assume the channel gains between cellular base station and UEs can be regarded as constants and therefore C_j^l can be regarded as a fixed value so that we can focus on the resource allocation in the unlicensed spectrum. In each sub-band of both licensed and unlicensed spectrum, we suppose there is an upper bound of the transmit power. As the resource management mechanisms in the licensed spectrum are currently mature and well-deployed in the telecommunication network, in order to adopt LTE-U without affecting the original resource management, we follow the current power control mechanism in the licensed spectrum first. If the UEs are not satisfied with the services in licensed spectrum, following the power constraint in each sub-band, the power control in the unlicensed spectrum is executed. Suppose N UEs require to also access the unlicensed spectrum. In the unlicensed spectrum, all operators utilize a common spectrum pool with Wi-Fi access points and other unlicensed users. In order to guarantee the performance of other unlicensed users, the transmit power of each UE cannot strongly interfere other unlicensed users in the same sub-bands or surpass the available residue power. Furthermore, we assume that the UEs served by the SCBSs can be allocated with unlicensed spectrum, and that each UE chooses the operator with the SCBS closest to it. We suppose there are S sub-bands in the unlicensed spectrum. When multiple UEs are allocated with the same sub-band in the unlicensed spectrum, the UEs may cause severe interference among each other. Accordingly, we follow the same setting as our previous works [34] and consider the dynamic spectrum access systems with multiple operators. We assume all the operators can share the unlicensed spectrum with Wi-Fi networks. Each operator can access any sub-band that is occupied or unoccupied by Wi-Fi users in the spectrum pool. However, each sub-band can only be accessed by one operator at each time. For the UEs served by the same operator in the LTE-U, the LTE standard is applied in the unlicensed spectrum. Thus, Orthogonal Frequency Division Multiple Access (OFDMA) is adopted to avoid the cross-interference. For the UEs that are served by different operators, we suppose that Frequency Division Multiple Access (FDMA) is applied [5]. As shown in Fig. 1, in the unlicensed spectrum, following the settings in [35], [36], [38], before the data transmission between each UE and its serving SCBS, in the control channels, the operators are able to broadcast the prices that it would charge in the unlicensed spectrum to all the UEs because of the interference to the Wi-Fi users. Based on the prices set by all the operators, UE j, where $j \in \mathcal{N}$, determines its desired transmit power in the sub-band s, $\forall s \in \mathcal{S} = \{1, 2, \ldots, S\}$, which is denoted as $p_{j,s}$.

When UE j is served by the operator i in the sub-band s, $\forall s \in \mathcal{S}$ of the unlicensed spectrum, we define the spectrum efficiency of UE j as

$$ R_{j,s} = \log_2 \left(1 + \frac{p_{j,s}g_{j,s}}{\sum_{k \neq s} p_{k,j} + \sum_{k} p_{k,s}} \right), $$

(1)

where $g_{j,s}$ is the channel gain from the serving SCBS to UE j, $Z_{j,s}$ is the total interference measured by UE j in the sub-band s. Receiving the training data, the serving SCBS are able to feedback the estimated channel response $g_{j,s}$ and interference $Z_{j,s}$ to UEs for decisions [39].

Accordingly, we suppose B_u as the size of each sub-band in the unlicensed spectrum. If UE j, $\forall j \in \mathcal{N}$, is served in both the licensed and unlicensed spectrum, the utility of UE j can be shown as

$$ U_j = C_j^l + \sum_{s=1}^{S} \lambda_{j,s} \left(\gamma_{j}B_u R_{j,s} - \sum_{i=1}^{M} \sum_{k=1}^{Q_i} r_{i} h_{i,j} p_{j,s} \right), $$

(2)

where $\gamma_{j}B_u R_{j,s}$ is the profit that UE j receives from the services in the sub-band s, $\forall s \in \mathcal{S}$, of the unlicensed spectrum. γ_{j} is the revenue that UE j gains for unit data rate transmitted. r_{i} is the penalty price for unit watt of the operator i in the unlicensed spectrum, $h_{i,j}$ is the channel gain from the k^{th} WAP of the operator i to UE j, and $p_{j,s}$ is the transmit power of UE j in the sub-band s, $\forall s \in \mathcal{S}$, of the unlicensed spectrum. As the data transmission in the unlicensed spectrum causes interference to the WAPs nearby, we set $r_{i} h_{i,j}$ as the interference penalty from the k^{th} WAP of the operator i to UE j in the sub-band s of the unlicensed spectrum, $k \in \mathcal{K}_i = \{1, 2, \ldots, Q_i\}$, $i \in \mathcal{M}$, $\forall s \in \mathcal{S}$. The WAPs of operators can forward the information to the core communication network and feedback the estimated channel gain $h_{i,j}$ to UEs for decisions. $\lambda_{j,s}$ is a binary number determining whether or not the sub-band s is allocated to UE j.

Accordingly, the utility of operator i is defined as the revenues received from all WAPs of the operator to all the

Fig. 1: System architecture in multi-operator multi-user scenario

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at [10.1109/TWC.2016.2623603](http://dx.doi.org/10.1109/TWC.2016.2623603)

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
UEs in the unlicensed spectrum, i.e., ∀i ∈ 𝑀,

\[W_i = r_i \sum_{s=1}^{S} \sum_{j=1}^{N} \left(\lambda_{j,s} p_{j,s} \sum_{k=1}^{Q_1} h_{ik,j} \right). \tag{3} \]

III. Problem Formulation

In a cellular network system with multiple operators and UEs, it is possible that not every operator is always interested to coordinate with others. We therefore consider two specific scenarios: all the operators can either non-coordinate with each other or can fully coordinate with each other by forming as a group. When some operators are cooperated and some non-cooperated, we can combine the above two situations and solve the problem.

When the operators are not coordinated with each other, they can make decisions in a distributed manner, i.e., operator \(i \) is supposed to set its price \(r_i \), the interference penalty to all UEs served on all sub-bands in the unlicensed spectrum. Not only should it predict the reactions of all the UEs, but it also needs to consider the behaviors of the other operators in order to receive satisfying revenues. Therefore, the optimization problem for the operator \(i \) is,

\[
\begin{align*}
\max_{r_i} W_i(r_i | r^*_i, p^*), \quad \forall i \in M, \\
\text{s.t.} & \quad r^*_i \geq 0, \quad \forall j \in N, \forall s \in S, \\
& \quad p_{j,s}^* \geq 0, \quad \forall j \in N, \forall s \in S, \\
& \quad p_{j,s}^* < p_{j,s}^{max}, \quad \forall j \in N, \forall s \in S,
\end{align*}
\tag{4}
\]

where \(r^*_i \) is the set of the optimal pricing strategies of all the other operators except the operator \(i \) on all sub-bands of the unlicensed spectrum. \(r^* = [r^*_1, r^*_2, \ldots, r^*_M] \) is the set of the optimal pricing strategies of all operators. \(0 = [0, 0, \ldots, 0] \) is the set with \(M \) elements, each of which is zero. \(p^* = [p^*_1, p^*_2, \ldots, p^*_M] \) is the set of the optimal transmit powers of all UEs on all sub-bands of the unlicensed spectrum. In order to manage the interference to ensure the service of unlicensed users nearby, the operators should control the transmit power of each UE. We define \(p_{j,s}^{max} \) as the maximum transmit power of UE \(j \) in the sub-band \(s \) of the unlicensed spectrum, \(\forall j \in N, \forall s \in S \).

Furthermore, when all operators are able to cooperate with each other, all operators aim to achieve the maximum total utility. Accordingly, before setting prices of interference for all UEs in the unlicensed spectrum, the operators are only required to predict the transmit power of all UEs so as to achieve high utilities. The optimization problem for all operators is formulated as follows,

\[
\begin{align*}
\max_{r} \sum_{i=1}^{M} \alpha_i W_i(r), \\
\text{s.t.} & \quad r \geq 0, \quad \forall j \in N, \forall s \in S, \\
& \quad p_{j,s}^* \geq 0, \quad \forall j \in N, \forall s \in S, \\
& \quad p_{j,s}^* < p_{j,s}^{max}, \quad \forall j \in N, \forall s \in S,
\end{align*}
\tag{5}
\]

where \(\alpha_i, \forall i \in M \) is the weight factors for operator \(i \). If \(\alpha_i \) increases, operator \(i \) plays more significant role in the cooperation.

According to the optimal prices set by all operators \(r^* \), UE \(j \) determines the transmit power in each sub-band of the unlicensed spectrum \(p_{j,s} \). Accordingly, the optimization problem for UE \(j \) satisfies,

\[
\begin{align*}
\max_{p_{j,s}, \lambda_j} U_j(p_{j,s} | r^*, \lambda_{-j}), \quad \forall j \in N, \forall s \in S, \\
\text{s.t.} & \quad p_{j,s} > 0, \quad p_{j,s} < p_{j,s}^{max}, \quad \forall j \in N, \forall s \in S, \\
& \quad \lambda_{j,s} B_u R_{j,s} \geq \lambda_{j,s} \sum_{i=1}^{M} \sum_{k=1}^{Q_1} r_i h_{ik,j} p_{j,s},
\end{align*}
\tag{6}
\]

where \(\lambda_j = [\lambda_{j,1}, \ldots, \lambda_{j,S}] \) is the sub-band allocation result for UE \(j \), \(\lambda_{-j} \) is the sub-band allocation results for all other UEs except UE \(j \). The received revenue of UE \(j \), i.e., \(B_u R_{j,s} \), in the serving sub-band should be no less than the interference penalty the UE pays to all operators \(\sum_{i=1}^{M} \sum_{k=1}^{Q_1} r_i h_{ik,j} p_{j,s} \). As the UEs are unable to acknowledge the information of Wi-Fi users, we let the operators to set prices to restrict the transmit power of UEs. When the price imposed by each operator is high, no UE can afford the prices and therefore no UE will access the service provided by each operator. Therefore, in the formulated problem of operators, we set the power constraint for all UEs to guarantee the basic data transmission of Wi-Fi users.

Based on the above formulations, all operators and UEs are autonomous decision makers who would like to maximize their own utilities in a selfish manner. In order to analyze the problem of resource allocations in the unlicensed spectrum, we model the scenario as a multi-leader multi-follower Stackelberg game, where all operators are leaders and all UEs are followers. In the game, each operator first sets its penalty price of interference in the unlicensed spectrum. Based on the prices set by all operators, each UE determines its optimal transmit power. In the following sections, backward induction is adopted to analyze the problems. We first discuss the strategy of each UE, given the penalty price of interference set by all operators. Then, with the prediction of the optimal behaviors of each UE, we design a sub-band allocation scheme with matching theory and propose the corresponding non-cooperative or cooperative strategies for operators to achieve the maximum utilities.

IV. Game Analysis of UEs as Followers

Observing the prices set by operators, the UEs are supposed to adopt strategies for optimal utilities. In this section, we first analyze the optimal power transmission strategies for the UEs. Based on the optimal transmit power on each sub-bands of the unlicensed spectrum, we then design a sub-band allocation scheme with matching theory for high utilities.

A. Strategies of Power Transmission for UEs

In the formulated multi-leader multi-follower Stackelberg game, all UEs act as followers. In order to receive high revenues from the services and reduce the interference penalty to other operators, based on the prices set by operators \(i, \forall i \in M \), UE \(j \) optimizes its transmit power \(p_{j,s} \) in the sub-band \(s \) of the unlicensed spectrum, \(\forall j \in N, \forall s \in S \). The
optimal transmit power for each UE is relative to the prices set by all operators, and Lemma 1 is developed as follows.

Lemma 1: If UE j is served by the operator i in the unlicensed spectrum, $\forall i \in M$, $\forall j \in N$, the optimal transmit power to UE j on the sub-band is

$$p_{j,s}^* = \left(\frac{B_u}{\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,s} r_i} - \frac{1}{q_{j,s}} \right)^+,$$ \hspace{0.5cm} (7)

where

$$(x)^+ = \max \{ x, 0 \},$$ \hspace{0.5cm} (8)

and

$$q_{j,s} = \frac{q_j}{z_{j,s}}.$$ \hspace{0.5cm} (9)

In (7), as the channel gain $g_{j,s}$ is related with the distance between UE j and its serving SCBS, and the channel gain $h_{i,k,s}$ is related with the distance between the k^{th} WAP of the operator i and UE j, we discover that when the distance between UE j and its serving SCBS increases, the channel gain $g_{j,s}$ decreases. Thus the optimal transmit power $p_{j,s}$ in the sub-band s decreases. When the distances between the UE j and the k^{th} WAP of the operator i increases, the value of channel gain $h_{i,k,s}$ decreases. Thus the optimal transmit power $p_{j,s}$ in the sub-band s increases.

Proof: When UE j is allocated with the unlicensed spectrum, the utility function of UE j is continuous. We take the second derivative of U_j with respect to $p_{j,s}$, i.e., $\forall s \in S$,

$$\frac{\partial^2 U_j}{\partial p_{j,s}^2} = \frac{-B_u q_j^2}{(1 + p_{j,s} q_{j,s})^2}. \hspace{0.5cm} (10)$$

The second derivative of U_j with respect to $p_{j,s}$ is negative, so U_j is quasi-concave in $p_{j,s}$. Accordingly, when the first derivative of U_j with respect to $p_{j,s}$ is equal to zero, i.e., $\forall s \in S$,

$$\frac{\partial U_j}{\partial p_{j,s}} = \frac{B_u q_j}{1 + p_{j,s} q_{j,s}} - \frac{M}{\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,s} r_i} = 0,$$ \hspace{0.5cm} (11)

the utility function of UE j achieves the maximum value, where the transmit power from the operator i to UE j in the sub-band s, $\forall s \in S$, of the unlicensed spectrum satisfies

$$p_{j,s} = \frac{B_u}{\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,s} r_i} - \frac{1}{q_{j,s}}.$$ \hspace{0.5cm} (12)

Furthermore, the transmit power $p_{j,s}$ follows the constraint $p_{j,s} \in [0, p_{j,s}^{\max}]$. On one hand, according to the properties of quasi-concave function, if the value of (12) is negative, the optimal solution in the feasible region is $p_{j,s}^* = 0$, namely, there are many other UEs and unlicensed users transmitting information on the sub-band s of the unlicensed spectrum. Thus, the transmit power on the sub-band is zero because of the high interference penalty. On the other hand, each UE is unaware of the interference it will cause to other unlicensed users when it accesses each sub-band. For UE j, if $p_{j,s}$ is larger than the maximum transmit power constraint $p_{j,s}^{\max}$ in the sub-band s of the unlicensed spectrum, the UE j will cause severe interference to all other unlicensed users in the sub-band. In order to ensure the performance of other unlicensed users, we suppose the transmit power for each UE in the unlicensed spectrum can be predicted and controlled by the operators, which will be illustrated in the following sections.

Correspondingly, when UE j is served in the sub-band s, $\forall s \in S$, of the unlicensed spectrum, the maximum utility of UE j in the sub-band, if $p_{j,s} = 0$, follows

$$u_{j,s} = 0,$$ \hspace{0.5cm} (13)

where $u_{j,s}$ is the utility of UE j in the sub-band s of the unlicensed spectrum, $\forall j \in N$, $\forall s \in S$. If $p_{j,s}^* > 0$, we have

$$u_{j,s} = B_u \log_2 \left(\frac{q_j}{\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,s} r_i} \right) - \frac{\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,s} r_i}{q_{j,s}}.$$ \hspace{0.5cm} (14)

where the optimal utility is related to the prices of all other operators keep unchanged. We take the second derivative of $u_{j,s}$ with respect to r_i, i.e.,

$$\frac{\partial^2 u_{j,s}}{\partial r_i^2} = \frac{B_u \left(\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,s} r_i \right)^2}{\left(\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,s} r_i \right)^2}.$$ \hspace{0.5cm} (15)

We discover $\frac{\partial^2 u_{j,s}}{\partial r_i^2} \leq 0$, i.e., the optimal utility of each UE j is quasi-convex with respect to the penalty prices set by operator i, if the penalty prices of all other operators keep unchanged. Accordingly, we set the first derivative of $u_{j,s}$ with respect to r_i equal to zero,

$$\frac{\partial u_{j,s}}{\partial r_i} = -\frac{B_u \sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,s} r_i + B_u q_j \sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,s}}{q_{j,s}}.$$ \hspace{0.5cm} (16)

Thus,

$$\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,s} r_i = B_u q_j.$$ \hspace{0.5cm} (17)

Based on the above, when the price of operator i increases and the prices of all the other operators keep unchanged, the utility of UE j firstly decreases. When the increasing price satisfies (17), the utility of UE j stops decreasing and starts to increase as the price continuously increases.

B. Sub-Band Allocation Scheme

During the services, as each UE prefers to be allocated with the sub-band for high utility, we construct a preference list for UE j based on the utility $u_{j,s}$ in each sub-band s, such as

$$PL_{UE}(j, s) = u_{j,s}.$$ \hspace{0.5cm} (18)
Considering the optimal transmit power strategies of all UEs, we take the second derivative of \(u_{j,s} \) with respect to \(Z_{j,s} \), i.e.,

\[
\frac{\partial^2 u_{j,s}}{\partial Z_{j,s}^2} = \frac{B_u}{Z_{j,s}} \sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i_k,j} r_i \tag{19}
\]

which is larger than zero, i.e., the \(u_{j,s} \) is quasi-convex function with respect to \(Z_{j,s} \). Accordingly, we set the first derivative of \(u_{j,s} \) with respect to \(Z_{j,s} \) equal to zero, such as,

\[
\frac{\partial u_{j,s}}{\partial Z_{j,s}} = -\frac{B_u}{Z_{j,s}^2} \sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i_k,j} r_i g_j = 0. \tag{20}
\]

Thus

\[
Z^*_{j,s} = \frac{B_u g_j}{\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i_k,j} r_i}. \tag{21}
\]

When \(Z_{j,s} \) is less than \(Z^*_{j,s} \), with \(Z_{j,s} \) increasing, the utility \(u_{j,s} \) decreases. When \(Z_{j,s} \) surpasses \(Z^*_{j,s} \), the utility \(u_{j,s} \) starts increasing. Moreover, according to the constraint \(p_{j,s} > 0 \), we have

\[
Z^*_{j,s} < \frac{B_u g_j}{\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i_k,j} r_i}. \tag{22}
\]

Therefore, with \(Z_{j,s} \) increasing, the utility \(u_{j,s} \) monotonously decreases in the available region. Accordingly, UE \(j \) prefers to be served in the sub-band \(s \) with low interference from other unlicensed users \(Z_{j,s} \).

Moreover, we construct a preference list for sub-band \(s \) based on the total revenue the operators receive from the sub-band \(s \), which is denoted as \(w_s, \forall s \in S \),

\[
PL_{SB}(s,j) = w_s. \tag{23}
\]

Based on the predictions of all UEs’ optimal strategies, the \(w_s \) can be expressed as follows,

\[
w_s = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{Q_i} r_i \lambda_{i,j,s} h_{i_k,j} \left(\frac{B_u}{\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i_k,j} r_i} - Z_{j,s} \right). \tag{24}
\]

We take the first derivative of \(w_s \) with respect to \(Z_{j,s} \) and discover that the value of \(w_s \) is monotonously decreasing when \(Z_{j,s} \) increases. Therefore, each sub-band \(s \) prefers to be allocated to the UE with small interference.

Based on the preference lists from both UEs and sub-bands, we design a resident-oriented Gale-Shapley (RGS) algorithm [40] for sub-band allocation, which is shown in Algorithm 1. In Algorithm 1, each UE first proposes to its desired sub-bands based on its preference list. According to the proposal from all UEs, if more than one UE chooses the same sub-band, the sub-band keeps the most preferred UE based on its preference list and reject all the rest. The rejected UEs then continue to propose to its preferred sub-bands based on the rest of its preference list. The circulation continues until each UE is either allocated with sub-bands in the unlicensed spectrum, or rejected by all the sub-bands on their preference lists. The

\begin{algorithm}
\caption{RGS Algorithm for Sub-Band Allocation.}
\begin{algorithmic}[1]
\For {UE \(j \)}
\State Construct the preference list of sub-bands \(PL_{UE} \) based on the value of \(Z_{j,s} \);
\EndFor
\For {Sub-band \(s \)}
\State Construct the preference list of UEs \(PL_{SB} \) based on the value of \(Z_{j,s} \);
\EndFor
\While {the system is unmatched}
\For {Unmatched UE \(j \)}
\State Propose to first sub-band \(c_j \) in its preference list;
\State Remove \(c_j \) from the preference list;
\EndFor
\EndWhile
\State Sub-bands make decisions;
\For {Sub-band \(s \)}
\If {1 or more than 1 UE propose to the sub-band}
\State The sub-band \(s \) chooses the most preferred UE and rejects the rest;
\EndIf
\EndFor
\EndWhile
\end{algorithmic}
\end{algorithm}

UE which is rejected by all the sub-bands on their preference lists will be allocated with licensed spectrum for services.

\begin{lemma}
Following the Algorithm 1, the RGS algorithm will ultimately converge and achieve a stable matching result.
\end{lemma}

\begin{proof}
The detailed proof can be seen in [40], [41].
\end{proof}

V. GAME ANALYSIS OF OPERATORS AS LEADERS

Based on the predictions of the UEs’ behaviors and the sub-band allocation results, we first consider that all operators are noncooperative with each other. Each operator is required to consider the behaviors of other operators and determine its optimal strategy. Furthermore, we propose a cooperative scheme where all operators make decisions in a coordinated way so as to achieve high utility of all operators.

A. Noncooperative Strategies for Operators

In the unlicensed spectrum, based on the predictions of all UEs’ optimal strategies, the utility function of operator \(i \), \(\forall i \in M \), satisfies

\[
W_i = \sum_{s=1}^{S} \sum_{j=1}^{N} \sum_{k=1}^{Q_i} \lambda_{i,j,s} h_{i_k,j} \left(\frac{B_u}{\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i_k,j} r_i} - \frac{1}{q_{j,s}} \right). \tag{25}
\]

Accordingly, each operator is required to determine its prices on the unlicensed spectrum for satisfactory utilities. We take the second derivative of operator \(i \)’s utility function,

\[
\frac{\partial^2 W_i}{\partial r_i^2} = -\sum_{s=1}^{S} \sum_{j=1}^{N} \sum_{k=1}^{Q_i} 2\lambda_{i,j,s} h_{i_k,j} A_j < 0. \tag{26}
\]
Wi-Fi users, the highest transmit power cannot surpass $p_{j,s}^{\text{max}}$, resulting in low revenue for each operator. Accordingly, the price of each operator has upper and lower bounds, satisfying,

$$p_{j,s} = \frac{B_u}{\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,j}} - \frac{1}{q_{j,s}} \in \left[0, p_{j,s}^{\text{max}}\right], \forall j \in \mathcal{N}, \forall s \in \mathcal{S}. \quad (28)$$

Accordingly, we consider the linear combination of prices set by all operators as

$$R = \sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k,j}, \quad (29)$$

Based on the constraints of all UEs’ transmit power, for operator i, $\forall i \in \mathcal{M}$, the prediction of prices set by all other operators in the sub-band s of the unlicensed spectrum follows the constraint,

$$R \in \left[\frac{B_u q_{j,s}}{p_{j,s}^{\text{max}}} q_{j,s} + 1, B_u q_{j,s}\right]. \quad (30)$$

Therefore, in order to achieve a Nash Equilibrium solution of the problem, based on the sub-band allocation results, we adopt the sub-gradient method for the pricing strategies of operators. The method is shown in Algorithm 2. In the Algorithm 2, all operators start with a high price, where no UEs would like to be served in the unlicensed spectrum. Then in each round of the circulation, for operator i, $\forall i \in \mathcal{M}$, we set a small step Δ and changes its current prices $r_{i,j,s}$ with Δ higher or lower than the original price. If the utility is the highest when the price increases with Δ, in the next round, the price changes to be $r_{i,j,s} + \Delta$. If the utility is the highest when the price decreases with Δ, in the next round, the price changes to be $r_{i,j,s} - \Delta$. Otherwise, the price remains unchanged. The circulation continuous until all operators can not deviate from their current price unilaterally for higher utilities.

Lemma 3: When the starting price and the original step size Δ are fixed, the game can always converge to a unique outcome, which is also the Nash equilibrium of the game.

Proof: The convergence of the sub-gradient algorithm has been proved in [42] and [43]. According to [42] and [43], the sub-gradient algorithm is able to achieve an optimal solution with small ranges in convex optimization. Therefore, with given moving step size, each operator is unable to unilaterally adjust its price in order to receive higher utility when the sub-gradient algorithm converges to an optimal solution.

Furthermore, when the starting price and the original Δ are fixed, the results in the second iteration are fixed. According to the mathematical induction, we suppose that at the Q^{th} iteration, the prices of operators are fixed. Then in the $(Q + 1)^{th}$ iteration, according to the proposed sub-gradient strategy, the step size is fixed, and the direction from the current iteration to the next iteration is unique. Therefore, the prices of operators in the $(Q + 1)^{th}$ iteration are also fixed. Therefore, based on the above, the game can converge to a unique outcome, when the starting price and the original Δ are fixed.
Algorithm 2 Strategy of operators in LTE-U:

1: Initially, each operator sets high price. Thus, the transmit power of all UEs equal 0.
2: while At least one operator adjusts its price do
3: for UE \(j \) do
4: Based on the price set by all operators and the sub-band allocation results, each UE determines the optimal transmit power in unlicensed spectrum.
5: end for
6: for operator \(i \) do
7: Each operator tries to increase and decrease its price with a small step \(\Delta = \Delta \times 0.99 \), and calculates its own payoff based on the prediction of the followers’ strategies.
8: if \(R(r_{\text{old}} - \Delta) < \frac{B_a q_{i,s}}{P_{j,s}^\text{max} q_{j,s} + 1} \) then
9: The Wi-Fi users is interfered. \(W_i = -\text{inf.} \)
10: end if
11: if \(W_i(r_{\text{old}}, r_{\text{old},...}) \leq W_i(r_{\text{old}} - \Delta, r_{\text{old},...}) \) and \(W_i(r_{\text{old}} - \Delta, r_{\text{old},...}) \leq W_i(r_{\text{old}}, r_{\text{old},...}) \) then
12: \(r_i = \min [r_i \text{max}, r_{\text{old}} + \Delta] \); % Increase the price
13: else if \(U_i(r_{\text{old}}, r_{\text{old},...}) \leq U_i(r_{\text{old}}, r_{\text{old},...}) \) and \(W_i(r_{\text{old}}, r_{\text{old},...}) \leq W_i(r_{\text{old}} - \Delta, r_{\text{old},...}) \) then
14: \(r_i = \max [0, r_{\text{old}} - \Delta] \); % Reduce the price
15: else \(r_i = r_{\text{old}} \); % Keep the price unchanged
16: end if
17: end if
18: end for
19: end while

B. Cooperative strategies for operators

Nevertheless, in order to make full use of wireless resources and achieve high revenues, some wireless operators may cooperate with each other in the unlicensed spectrum. In this subsection, we analyze the behaviors of operators when they cooperate and optimize the weighted utilities of all operators, such as,

\[
W^\text{all} = \sum_{i=1}^{M} \alpha_i W_i. \tag{31}
\]

According to the strategies of all UEs, when all operators set different prices for interference, the transmit power of UEs may be different. However, in order to avoid the interference to nearby unlicensed users, the transmit power of each UE \(l^th \) is constrained as \(p_{j,s} \in [0, p_{j,s}^\text{max}] \). Therefore, if the transmit power of all UEs is maintained in a feasible region, the prices of all operators \(r = [r_1, r_2, \ldots, r_M] \) should satisfy

\[
\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k} r_i \leq B_a q_{i,j,s}, \quad \forall j \in N, \forall s \in S. \tag{32}
\]

Take an example of two operators in the game. We suppose there are two sub-bands in the unlicensed spectrum, which are allocated to two UEs. As shown in Fig. 4, x axis shows the prices set by the operator 1, \(r_1 \), y axis shows the price set by the operator 2, \(r_2 \). Correspondingly, according to (32) the upper bound of prices for UEs 1 and 2 are line segments AB and CD, respectively. The lower bound of prices for UEs 1 and 2 are line segments EF and GH, respectively. When both operators set prices higher than the upper bound, the UE cannot afford the interference penalty and the transmit power is zero. Therefore, in the region above CJ and JB, there are no UE served in the unlicensed spectrum. In the region BDJ, only UE 2 is served in the unlicensed spectrum. In the region ACJ, only UE 2 is served in the unlicensed spectrum. In the region AJDHIE, both UEs are served in the unlicensed spectrum. Furthermore, in order to avoid interference to Wi-Fi users in the unlicensed spectrum, the transmit power of all users should satisfy

\[
\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{i,k} r_i \geq \max \left\{ \frac{B_a q_{i,j,s}}{p_{j,s}^\text{max} q_{j,s} + 1}, \quad \forall j \in N, \forall s \in S \right\}, \tag{34}
\]

namely, in the example, the feasible region of the prices should be above EI and IH.

As all operators cooperate with each other, we assume that the prices set by all operators satisfy

\[
r_i = \theta_i r_1, \quad \forall i \in \{2, 3, \ldots, M\}. \tag{35}
\]

Substitute (35) into (25), we have

\[
W_i = \sum_{s=1}^{S} \lambda_{j,s} \left(\theta_i \sum_{l=1}^{N} \sum_{k=1}^{Q_i} h_{l,k} \frac{Q_l}{k} - r_l K_{i,s} \right), \tag{36}
\]

where

\[
K_{i,s} = \sum_{j=1}^{N} h_{i,k} q_{i,s}. \tag{37}
\]
Accordingly, the total utility of operators can be derived as
\[
W^{all} = \sum_{i=1}^{M} \alpha_i \sum_{s=1}^{S} \lambda_{i,s} \left(\theta_i \sum_{j=1}^{N} B_j \sum_{k=1}^{Q_i} h_{ik,j} - K_{i,s} r_i \right) .
\] (38)

It is observed that when the relations of prices are fixed, the first part of \(W^{all} \) in (38) is not related to the value of prices. Based on the expression in the second part of \(W^{all} \), the \(W^{all} \) is linearly decreasing with each \(r_i \), \(\forall i \in M \). Therefore, we have the following lemma.

Lemma 4: The optimal solution to achieve the maximum \(W^{all} \) lies in the boundary
\[
\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{ik,j} r_i \geq \max \left\{ \frac{B_j q_{j,s}}{p_{\text{max},j} q_{j,s}} + 1, \forall j \in N, \forall s \in S \right\} .
\] (39)

The position of the solution in the boundary depends on the parameters \(K_{i,s}, \forall i \in M, \forall s \in S \) of prices.

Proof: When the UEs receive services in the unlicensed spectrum, in order to guarantee the performance of Wi-Fi users, the transmit power cannot be above the upper bound. Correspondingly, the price set by operators cannot be lower than the boundary
\[
\sum_{i=1}^{M} \sum_{k=1}^{Q_i} h_{ik,j} r_i \geq \max \left\{ \frac{B_j q_{j,s}}{p_{\text{max},j} q_{j,s}} + 1, \forall j \in N, \forall s \in S \right\} .
\] (40)

Furthermore, when the prices of operator are coordinated, as the total utility of operators is linearly decreasing when the prices increase. In order to achieve high utility of all operators, the prices of all operators decrease, and finally stop at the lowest boundary in (40). With different parameter \(\theta_i \), the price decreases with different tracks, thus stopping at different positions in the lowest boundary.

We would like to find an optimal \(K_{i,s}, \forall i \in M, \forall s \in S \) to achieve the maximum value of \(W^{all} \), given the sub-band allocation results. We set the second part of \(W^{all} \) as \(G \), such as,
\[
G = \sum_{i=1}^{M} \alpha_i K_{i,s} r_i .
\] (41)

(41) is a hyperplane in the feasible region of prices. With \(G \) increasing from a small value, the distance between the hyperplane and the feasible region decreases. Ultimately, the hyperplane will go through the feasible region. The first point \(O^* \) positioned \((r_{1*}, r_{2*}, \ldots, r_{M*}) \) in the feasible region achieves the lowest value of \(G \), compared with all the other points in the feasible region. In other words, \(O^* \) is the optimal point to achieve the maximum value of \(W^{all} \). Correspondingly, the relationship of the prices follows
\[
\theta_i = \frac{r_{i*}}{r_{i1*}} .
\] (42)

For better understanding, we show the procedure in the example of two operators. We suppose there are two sub-bands in the unlicensed spectrum allocating to two UEs respectively. As shown in Fig. 5, the hyperplane is shown as \(G = \alpha_1 K_{1,1} r_1 + \alpha_2 K_{2,2} r_2 \). When \(G \) approaches \(G^* \), the hyperplane goes through the first point \(O^* \) in the feasible region. As the position of point \(O^* \) is \((r_{1*}, r_{2*}) \), \(r_{1*} \) and \(r_{2*} \) will be the optimal solution to achieve the maximum value of \(W^{all} \). When the weight factors \(\alpha_i \) in \(W^{all} \) are different, the position of the optimal point \(O^* \) may be different.

VI. SIMULATION RESULTS

We evaluate the performance of the proposed cooperative and non-cooperative scheme with MATLAB. We consider a hotspot circle area with a radius of 100 meters. In the area, there are two operators, and each operator randomly deploy 2 SCBSs and 2 WAPs. We consider the uplink transmission and assume there are 100 UEs requesting service from the 20 sub-bands in the unlicensed spectrum. In order to avoid causing intolerably high interference to Wi-Fi users, we set the maximum transmit power of each UE in each time to be 2 W. We consider Additive White Gaussian Noise (AWGN) channels. Each sub-band in the unlicensed spectrum is 1 MHz, and the interference in each sub-band of the unlicensed spectrum for each UE is set as a random number with an average value of \(-20\) dBm. The noise is assumed to be \(-30\) dBm.

We first compare the performance of our proposed cooperative and non-cooperative schemes with that of single-operator scenario, where only one operator serves UEs in the unlicensed spectrum. As most existing resource management schemes in unlicensed spectrum assume a single-operator scenario, the comparison highlights the difference and advantages of our proposed strategies.

As shown in Fig. 6a, we analyze the total utility of operators under different number of UEs. With the number of UEs increasing, the total utility of operators generally increases. In the proposed cooperative scheme, as the operators cooperate with each other, the total utility is the highest, followed by the non-cooperative scheme, where each operator makes decisions to maximize its own utility. Moreover, the total utilities in both the proposed cooperative and proposed non-cooperative schemes are higher than the total utility when there is only one operator in the scheme. In the single-operator cases, because of the limited number of WAPs, the total revenue received by the single operator is also limited.
of the competition, each operator is unable to reduce its price unilaterally to achieve higher utility. Thus, the prices set by operators keep in high value. Therefore, the total utility of operators in the proposed non-cooperative scheme is decreasing.

In Fig. 7b, we investigate the total utility of UEs under different number of WAPs of each operator. When the number of WAPs of each operator increases, for each WAP, each UE is required to pay the interference penalty. However, in the proposed cooperative scheme and single operator scheme, as the operators are able to reduce the price in order to avoid losing UEs because of the high interference penalty, the total utility of UEs in the proposed cooperative scheme and single operator scheme typically does not change, while the total utility of UEs in the proposed cooperative scheme typically increases higher than the utility of UEs in the single operator scheme. Moreover, in the proposed non-cooperative scheme, because of the competition, each operator is unable to reduce its price unilaterally to achieve higher utility. Thus, the prices set by operators keep in high value. Therefore, the total utility of operators in the proposed non-cooperative scheme is decreasing.

In Fig. 8a, we evaluate the total utility of operators with different interference from Wi-Fi. As shown in the figure, when the interference from Wi-Fi increases, the utilities of some UEs may decrease to zero. Therefore, with a fewer UEs using the unlicensed spectrum, the total utility of operators decreases. Accordingly, the total utility generally decreases. Moreover, for the proposed non-cooperative scheme, the total utility of operators first increases slightly then decreases. The reason is that when the interference from Wi-Fi is small, the
prices set by some operators may be very high. With the interference from Wi-Fi, the operators are able to reduce their prices first to motivate the UEs to purchase services in the unlicensed spectrum, and thus the utility increases. However, when the price reduces to the lowest boundary, in order to guarantee the performance of Wi-Fi users, the operators cannot reduce their prices anymore, and the utilities of UEs gradually reduce and reach zero ultimately. Moreover, the total utility of operators in the proposed cooperative scheme is always larger than the utility of the operators in the proposed non-cooperative scheme and the utility of the operator in the single operator scheme. When the interference from Wi-Fi is small, the prices set by the operators are high in the proposed non-cooperative scheme. Thus, the total utility of operators in the proposed non-cooperative scheme is lower than the utility of the operator in the single-operator schemes. With the interference from Wi-Fi increasing, the prices set by the operators in the proposed non-cooperative scheme gradually decreases. Thus, the total utility of operators in the proposed non-cooperative scheme gradually surpasses the utility of operator in the single-operator schemes.

In Fig. 8b, we analyze the relation between the total utility of UEs with different interference from Wi-Fi. Because of the strong interference from Wi-Fi, some UEs may receive zero utility and refuse to be served in unlicensed spectrum. Accordingly, the utilities of UEs generally decrease. However, in the proposed non-cooperative scheme, because the operators can reduce their prices to motivate the UEs in the unlicensed spectrum, the utility of UEs first increases then decreases. The total utility of UEs in the proposed cooperative scheme is always larger than the utility of the UEs in the proposed non-cooperative scheme and the utility in the single operator scheme. When the interference from Wi-Fi is small, the prices set by the operators are high in the proposed non-cooperative scheme. Thus, the total utility of UEs is lower than the utility of UEs in the single-operator schemes. With the interference from Wi-Fi increasing, the prices set by the operators in the proposed non-cooperative scheme gradually decreases. Thus, the total utility of UEs in the proposed non-cooperative scheme gradually surpasses the utility of UEs in the single-operator schemes.

In Fig. 9a, we discuss the relationship between the total utility of operators and the maximum transmit power of UEs. With the maximum transmit power increasing, as operators are able to serve UEs with a lower price, the total utility of operators generally increases. When the maximum transmit power of UEs are relatively small, In the proposed cooperative and non-cooperative scheme, as the UE is able to choose operators with higher quality of service and lower price, the total utility of operators in the proposed cooperative scheme and in the proposed noncooperative scheme is always larger than the utility in the single-operator scheme. Furthermore, because of the competition of operators, the prices set by the operators in the proposed cooperative scheme is relatively smaller than the prices in the proposed non-cooperative scheme. Thus, the total utility of operators in the proposed cooperative scheme keeps higher than the utility in the proposed non-cooperative scheme. Moreover, with the maximum transmit power increasing, the feasible region of in the Fig. 4 increases. When the Nash equilibrium point of the non-cooperative scheme is no longer in the boundary of the feasible regions, the total utility of operators in the proposed non-cooperative scheme stops increasing and keeps unchanged. Therefore, when the maximum transmit power is large, with the maximum transmit power increasing, the total utility of operators in the single operator scheme surpass the the total utility of operators in the proposed non-cooperative scheme.

In Fig. 9b, we analyze the relation between the total utility of UEs and the maximum transmit power of UEs. When the maximum transmit power increases, all UEs are able to transmit in high power, increasing the transmission rate during the service. Therefore, the total utility of all UEs generally increases. The total utility of UEs of the proposed cooperative scheme is always larger than that of the proposed non-cooperative scheme. Moreover, when the maximum transmit power is small, as the UE is able to choose operators with higher quality of service and lower price, the total utility of UEs in the proposed noncooperative scheme is larger than the utility in the single operator scheme. However, with the maximum transmit power increasing, the feasible region of in the Fig. 4 increases. When the Nash equilibrium point of the non-cooperative scheme is no longer in the boundary of the feasible regions, the total utility of UEs in the proposed noncooperative scheme stops increasing and keeps unchanged. Therefore, when the maximum transmit power is large, with the maximum transmit power increasing, the total utility of UEs in the single operator scheme surpass the the total utility of UEs in the proposed non-cooperative scheme.

In Fig. 10, we fix the value of \(\alpha_2 \) and increase \(\alpha_1 \) to...
which means that the first intersection \(O \) of weight factors. In the simulated scenario, the ratios of different points based on different ratios of weight factor \(\frac{1}{\alpha} \). Within five sections, when the ratio increases, the total weighted utility of operators increases.

In Fig. 11, we evaluate the utility of operator 2 when its price decreases in both the proposed cooperative and non-cooperative schemes. As shown in the figure, in the proposed cooperative scheme, the prices of operators are linearly related, with the price of operator 2 decreasing, the utility of operator 2 increases monotonically. Furthermore, in order to guarantee the basic data transmission of Wi-Fi users, when the prices of all other operators keep unchanged, there is a lower bound for the price set by operator 2. Therefore, the optimal price of operator 2 is the price in the lowest boundary. However, in the proposed non-cooperative scheme, when the price of operator 2 decreases and the price of operator 1 remains unchanged, the utility of operator 2 first increases and decreases. Thus, the optimal price of operator 2 is not in the lowest boundary in the non-cooperative scheme, but in the middle of the feasible region.

VII. CONCLUSIONS

In this paper, we have studied the power control mechanism among multiple cellular operators in the LTE-unlicensed spectrum in order to mitigate the interference management among multiple cellular operators and the unlicensed systems. A multi-leader multi-follower Stackelberg game has been formulated and both the proposed cooperative or non-cooperative schemes have been proposed for operators to achieve high revenues in the LTE-unlicensed spectrum. In the non-cooperative scheme, each operator sets price rationally and independently based on the behaviors of others, and a subgradient algorithm has been adopted to achieve the highest utility. In the cooperative scheme, we have optimized the relations of the prices with linear programming method so as to reach the highest utilities of all operators. Simulation results have shown that the operators in both the non-cooperative and cooperative schemes can significantly improve the utilities of all operators without causing intolerable interferences to the unlicensed users, based on different network conditions in the unlicensed spectrum.

REFERENCES

Yong Xiao (S’09-M’13-SM’15) received his B.S. degree in electrical engineering from China University of Geosciences, Wuhan, China in 2002, M.Sc. degree in telecommunication from Hong Kong University of Science and Technology in 2006, and his Ph. D degree in electrical and electronic engineering from Nanyang Technological University, Singapore in 2012. From August 2010 to April 2011, he was a research associate in school of electrical and electronic engineering, Nanyang Technological University, Singapore. From May 2011 to October 2012, he was a research fellow at CTVR, school of computer science and statistics, Trinity College Dublin, Ireland. From November 2012 to December 2013, he was a postdoctoral fellow at Massachusetts Institute of Technology. From December 2013 to November 2014, he was a MIT-SUTD postdoctoral fellow with Singapore University of Technology and Design and Massachusetts Institute of Technology. From November 2014 to August 2015, he was a postdoctoral fellow II at Department of Electrical and Computer Engineering at University of Houston. Currently, he is a research assistant professor in the Department of Electrical and Computer Engineering at the University of Arizona. He is also the center manager of the NSF BWAC center at the University of Arizona. His research interests include machine learning, game theory and their applications in communication networks. He is an IEEE senior member.

Lin X. Cai received the M.A.Sc. and Ph.D. degrees in Electrical and Computer Engineering from the University of Waterloo, Waterloo, Canada, in 2005 and 2010, respectively. She was a postdoctoral research fellow in Electrical Engineering department at Princeton University in 2011 before she joined Huawei US Wireless R&D center as a senior engineer in 2012. She has been an Assistant Professor with the Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois, USA, since August 2014. Her research interests include green communication and networking, broadband multimedia services, and radio resource and mobility management. She received a Postdoctoral Fellowship Award from the Natural Sciences and Engineering Research Council of Canada (NSERC) in 2010, a Best Paper Award from the IEEE Globecom 2011, and an NSF Career Award in 2016. She is an Associated Editor for IEEE Network Magazine, and a co-chair for IEEE conferences.

Dusit Niyato (M’09-SM’15) is currently an Associate Professor in the School of Computer Science and Engineering, at Nanyang Technological University, Singapore. He received B.Eng, from King Mongkuts Institute of Technology Ladkrabang (KMITL) in 1999 and Ph.D. in Electrical and Computer Engineering from the University of Manitoba, Canada in 2008. His research interests are in the area of energy harvesting for wireless communication, Internet of Things (IoT) and sensor networks.

Lingyang Song (S03-M06-SM12) received his PhD from the University of York, UK, in 2007, where he received the K. M. Stott Prize for excellent research. He worked as a research fellow at the University of Oslo, Norway until rejoining Philips Research UK in March 2008. In May 2009, he joined the School of Electronics Engineering and Computer Science, Peking University, China, as a full professor. His main research interests include MIMO, cognitive and cooperative communications, physical layer security, and wireless ad hoc/sensor networks.

Dr. Song is currently on the Editorial Board of IEEE Transactions on Wireless Communications, China Communications, and Journal of Network and Computer Applications. He served as the TPC co-chairs for the International Conference on Ubiquitous and Future Networks (ICUFN 2011 and 2012) and registration co-chair for the 1st IEEE International Conference on Communications in China (ICCC 2012). He served as symposium co-chairs for International Wireless Communications and Mobile Computing Conference (IWCMC 2009 and 2010), IEEE International Conference on Communication Technology (ICCT 2011), IEEE International Conference on Communications (ICC 2014, 2016), IEEE Vehicular Technology Conference (VTC 2016 spring), and IEEE Global Communication Conference (Globecom 2016).

Dr. Song is an IEEE distinguished lecturer since 2015.

Zhu Han (S’01-M’04-SM’09-F’14) received the B.S. degree in electronic engineering from Tsinghua University, in 1997, and the M.S. and Ph.D. degrees in electrical and computer engineering from the University of Maryland, College Park, in 1999 and 2003, respectively.

From 2000 to 2002, he was an R&D Engineer of JDSU, Germantown, Maryland. From 2003 to 2006, he was a Research Associate at the University of Maryland. From 2006 to 2008, he was an assistant professor at Boise State University, Idaho. Currently, he is a Professor in the Electrical and Computer Engineering Department as well as in the Computer Science Department at the University of Houston, Texas. His research interests include wireless resource allocation and management, wireless communications and networking, game theory, big data analysis, security, and smart grid. Dr. Han received an NSF Career Award in 2010, the Fred W. Ellersick Prize of the IEEE Communication Society in 2011, the EURASIP Best Paper Award for the Journal on Advances in Signal Processing in 2015, IEEE Leonard G. Abraham Prize in the field of Communications Systems (best paper award in IEEE JSAC) in 2016, and several best paper awards in IEEE conferences. Currently, Dr. Han is an IEEE Communications Society Distinguished Lecturer.