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Abstract—Tactile Internet is an emerging concept that focuses
on supporting high-fidelity, ultra-responsive, and widely avail-
able human-to-machine interactions. To reduce the transmission
latency and alleviate Internet congestion, fog computing has been
advocated as an important component of the Tactile Internet. In
this paper, we focus on energy-efficient design of fog computing
networks that support low-latency Tactile Internet applications.
We investigate two performance metrics: Service response time of
end-users and power usage efficiency of fog nodes. We quantify
the fundamental tradeoff between these two metrics and then
extend our analysis to fog computing networks involving coop-
eration between fog nodes. We introduce a novel cooperative fog
computing concept, referred to as offload forwarding, in which a
set of fog nodes with different computing and energy resources
can cooperate with each other. The objective of this cooperation is
to balance the workload processed by different fog nodes, further
reduce the service response time, and improve the efficiency of
power usage. We develop a distributed optimization framework
based on dual decomposition to achieve the optimal tradeoff. Our
framework does not require fog nodes to disclose their private
information nor conduct back-and-forth negotiations with each
other. Two distributed optimization algorithms are proposed. One
is based on the subgradient method with dual decomposition and
the other is based on distributed alternating direction method
of multipliers via variable splitting (ADMM-VS). We prove that
both algorithms can achieve the optimal workload allocation that
minimizes the response time under the given power efficiency
constraints of fog nodes. Finally, to evaluate the performance of
our proposed concept, we simulate a possible implementation of
a city-wide self-driving bus system supported by fog computing
in the city of Dublin. The fog computing network topology is
set based on a real cellular network infrastructure involving
200 base stations deployed by a major cellular operator in
Ireland. Numerical results show that our proposed framework
can balance the power usage efficiency among fog nodes and
reduce the service latency for users by around 50% in urban
scenarios.

Index Terms—Tactile Internet, fog computing, power efficiency,
dual decomposition, ADMM, self-driving vehicle.

I. INTRODUCTION

With the widespread deployment of high-performance com-
puting infrastructure and advancement of networking and com-
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munication technology, it is believed that the vision of the Tac-
tile Internet (TI) will soon become a reality, transforming the
existing content-delivery-based Internet into skill-set delivery-
based networks [2]. According to the Next-Generation Mobile
Network (NGMN) Alliance [3], TI is defined as the capability
of remotely delivering real-time control over both real and
virtual objects as well as physical haptic experiences through
the Internet. It will be able to contribute to the solution
of many complex challenges faced by our society, enabling
novel services and applications that cannot fit well in the
current state-of-the-art networking and cloud computing archi-
tectures. Examples of these applications include long-distance
education with immersive learning experience, high-precision
remote medical diagnosis and treatment, high-sensitive in-
dustry control and automation, collision-avoidance for high-
speed autonomous vehicles, high-fidelity virtual/augment re-
ality (VR/AR), etc. Recent analysis shows that the TI has
the potential to generate up to $20 trillions global market,
accounting for around 20% of the global GDP [4]. Because the
TI will provide critical services, it needs to be extremely reli-
able, ultra-responsive, and widely available. More specifically,
according to International Telecommunication Union (ITU),
the TI must support latencies as low as 1 ms, the reliability
of around one second of outage per year, enhanced security,
as well as sufficient computational resources within the range
of a few kilometers from each end-user [5].

Fog computing has been recently introduced as a promising
solution to accommodate the stringent requirements of the TI.
It complements the cloud infrastructure by involving a large
number of low-cost, often decentralized devices, commonly
referred to as fog nodes, to perform computing, storage,
control, and network functions closer to end-users [6]–[8].
Fog nodes embody a variety of devices between end-users and
cloud data centers (CDCs), including routers, smart gateways,
access points (APs), base stations (BSs), as well as portable
devices such as drones, robots, and vehicles with computing
and storage capabilities [9]. The success of the TI will hinge on
widespread deployment of fog nodes with high computational
capabilities and reliable energy supply [3]. However, the the-
oretical foundations for optimizing distributed fog computing
systems to meet the demands of the TI are still lacking. In
particular, computationally intensive services requiring low
latencies generally demand more energy consumption from fog
nodes. At the same time, many TI applications involve portable
devices such as robots, drones, and vehicles with limited power
supplies. In addition, the fast growing power consumption of
information and communication technologies and its impact
on climate change have recently raised significant concerns



in both industry and academia [10], [11]. Existing cloud data
centers in the US have already constituted more than 2% of
the country’s total electricity usage. Power consumption is
expected to be significantly increased with the deployment
of a large number of fog computing servers throughout the
world. How to improve the efficiency of the power usage
for fog computing networks while taking into consideration
the stringent requirements of the TI services is still an open
problem.

Another issue is that, in contrast to other applications, work-
load generated by the TI can exhibit much higher temporal and
geographical variations due to the bursty nature of human-
generated traffic. For example, an autonomous vehicle that is
trying to pass another will create a much larger computational
workload and require much lower latency service compared
to other vehicles that stick to pre-planned routes. How to
efficiently distribute and orchestrate the workload of different
fog nodes for parallel execution under real-time constraints is
still an open issue.

In this paper, we take steps towards addressing the above
issues. In particular, we study energy-efficient workload of-
floading for fog computing systems that support the TI appli-
cations and services. We focus on optimizing two important
performance metrics: (1) Service response time, including the
round-trip transmission latency between users and fog nodes,
queueing delays, and workload transmission and forwarding
latency among fog nodes as well as that between fog nodes
and CDCs; and (2) fog nodes’ power efficiency, measured by
the amount of power consumed by fog nodes to process a
unit of workload. We perform detailed analysis under different
scenarios and derive the optimal amount of workload to be
processed by fog nodes so as to minimize the response time
under a given power efficiency. We quantify the fundamental
tradeoff between these two metrics.

To address the issue of skewed workload distribution among
fog nodes, we study a cooperative setting in which the
workload of a fog node can be partially processed by other
nodes in proximity. We observe that the response time and
power-efficiency tradeoff is closely related to the cooperation
strategy among fog nodes. Accordingly, we propose a novel
cooperation strategy called offload forwarding, in which each
fog node can forward a part or all of its unprocessed workload
to other nearby fog nodes, instead of always forwarding
workload that exceeds its processing capability to a remote
CDC. We study the offload allocation problem in which all
fog nodes jointly determine the optimal amount of workload
to be forwarded and processed by each other to further reduce
the response time.

Based on our analysis, we observe that, for most TI appli-
cations, it is generally impossible to optimize the workload
distribution among fog nodes in a centralized fashion due to
the following reasons: (1) Deploying a central controller to
calculate the amounts of workload processed by every fog
node may result in intolerably high information collection and
coordination delay as well as high computation complexity at
the controller; (2) the workload received by each fog node
can be highly dynamic, and constantly exchanging information
about workload as well as computational resource availability

among fog nodes can result in network congestion; and (3) fog
nodes may not want to reveal their private information. Moti-
vated by these observations, we propose a novel distributed op-
timization framework for cooperative fog computing based on
dual decomposition. Our proposed framework does not require
fog nodes to have back-and-forth negotiation or disclose their
private information. Two distributed algorithms are developed
under the proposed framework. The first one is based on the
subgradient method with dual decomposition. We show that
this algorithm converges to the globally optimal solution with
low computational complexity at each fog node. To further
improve the convergence rate, we propose another distributed
algorithm based on distributed alternating direction method
of multipliers via variable splitting (ADMM-VS). We prove
that ADMM-VS can converge to the globally optimal solution
in linear time with a slight increase in the computational
complexity at each fog node.

Motivated by the fact that the self-driving vehicle has been
considered as one of the key use cases for the TI [2], [5], as a
case study, we evaluate the performance of our framework by
simulating a city-wide implementation of a self-driving bus
system supported by a fog computing network. We analyze
over 2500 traffic images of 8 existing bus routes operated at the
city of Dublin and consider the scenario that these traffic data
can be submitted and processed by a fog computing network
deployed in a real wireless network infrastructure consisting of
over 200 base stations of a major cellular operator in Ireland to
ensure safe and efficient decision making and driving guidance
for all the buses. We evaluate the service response time and
power efficiency of fog computing networks in different areas
of the city with different densities of fog node deployment.
Numerical results show that our algorithms can almost double
the workload processing capacity of fog nodes in urban areas
with high density of fog node deployment. To the best of
our knowledge, this is the first work that studies distributed
workload allocation among cooperative fog nodes with energy
efficiency awareness.

II. RELATED WORK

ITU and NGMN Alliance identify fog computing as one
of the key components for the TI to achieve ultra-low service
latency for users [2], [4], [5]. In contrast to CDCs, fog nodes
can be built much closer to users so the workload transmission
latency can be significantly reduced. However, due to the
limited computational capability of each fog node, offloading
a large amount of workload to fog nodes will result in a high
processing delay. Therefore, previous works focused on how
to optimize resource provisioning of fog nodes so as to reduce
the processing delay. For example, in [12], a virtual machine
(VM) synthesis approach was proposed to allow each end user
to quickly provision the resources of neighboring fog nodes
and create the required VM images to support the requested
service. The resource provisioning problem for a CDC network
has been modeled in [13] as an auction-based market, where
users develop bidding strategies to compete for the CDC at
low costs. In [14], a service-oriented resource estimation and
management framework for fog computing was introduced to
maximize the resource utilization of the CDCs. The authors in



[15] introduced a system that allows fine-grained energy-aware
offloading of users’ mobile codes to the infrastructure. In [16],
resource provisioning was investigated for tactical cloudlets.
A provisioning mechanism was proposed for the infrastructure
to support computation offloading and data staging at the
tactical edge. In [17], a hierarchical architecture was proposed
in which edge cloud servers are organized into different tiers
according to their distances to the edge. If the workload
received by an edge cloud server of a given tier exceeds its
computational capacity, the extra workload is forwarded to
higher-tier servers. In [18], a scalable online algorithm was
introduced to optimize the workload dispatched to a fog node.

One of the premises of fog computing is that a large number
of fog nodes are widely deployed across a large geographical
area. This, however, can result in a significant increase in
energy consumption. In addition, some fog computing systems
such as computational ferry [19], mobile cloudlet [20] and
fog nodes deployed in tactical environments [21], have limited
access to reliable power sources (e.g., power grid). Therefore,
developing energy-efficient solutions for fog computing is
critical to ensure the sustainability, availability, and ubiquity
of services. In [22], an energy adaptive scheme was pro-
posed for fog nodes to operate at different transmit powers
with variable data rates. The authors in [23] compared the
energy consumption of applications using centralized CDCs
with applications that use nano data centers under the fog
computing architecture. They verified that the most energy-
efficient strategy for content storage and distribution in cloud
applications is a combination of centralized data centers and
distributed fog nodes.

In this paper, we evaluate our proposed fog node coop-
eration framework by simulating a fog computing-supported
self-driving bus system. Most existing self-driving vehicle
platform, including Google’s Waymo self-driving car project
[24] and Stanford’s Junior self-driving vehicle platform [25],
focus on the scenarios that the driving decision will be made
by an on-board computer according to a pre-set policy and/or
human instructions1. Recently, fog computing-supported self-
driving systems have attracted significant interest [27], [28].
In contrast to the existing on-vehicle computing solution, fog
computing-assisted driving guidance and decision making can
support high-performance image and video processing as well
as high capacity storage for storing high-definition maps with
instantaneous traffic updating.

So far, the impact of the energy-efficient fog computing
design on the service response time has not been well inves-
tigated. Motivated by this observation, in this paper, we study
the relationship between the response time of users and the
power efficiency of fog nodes considering the possibility of
fog node cooperation to support various TI applications.
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Fig. 1. Fog computing-supported Tactile Internet architecture.

III. FOG COMPUTING-SUPPORTED TACTILE INTERNET
ARCHITECTURE

A generic fog computing-supported Tactile Internet archi-
tecture consisting of four major components as illustrated in
Figure 1 [2], [4], [5]:
1) Operator–A human operator and/or human-to-machine
(H2M) interface that can manipulate virtual and/or real ob-
jectives using various input signals such as human gestures,
touch, and voice. In some applications such as self-driving
vehicles and autonomous robots, operators can also correspond
to pre-calculated policies that can mimic the human behav-
iors/decision making processes. Operators can also expect
feedback within a given time duration depending on the
particular applications. For example, a real-time AR/VR game
may require as low as 1ms response time. Other applications,
such as remotely controlled robots, can tolerate up to one
second response time.
2) Responder–One or multiple teleoperators (remotely con-
trolled robots, machines, drones, etc.) that can be directly
controlled by the operators. Responders interact with the
environment and send feedback signals to the operators.
3) Fog–The composition of a number of low-cost fog nodes
that are characterized by limited computing capabilities and
power supplies. Fog nodes are deployed closer to end-users.
According to the types of users served by fog nodes, the fog
can be further divided into control fog and tactile fog. Control
fog consists of fog nodes that can support computation-
intensive services, such as analog-to-digital conversion, cod-
ing, signal processing, data compression, etc. Tactile fog
consists of the fog nodes that are responsible for processing,
compressing, and sending feedback data generated through
the interactions between responders and the environment. Fog
nodes may take the form of mini-servers within the wireless
edge network infrastructure, reside in base stations (BSs),
roadside units (RSUs), etc. Each fog node serves a distinct set
of users in its coverage area. Users first submit their workloads
to the closest fog node. Each fog node will then need to
carefully decide the amount of workload it can process locally.
If multiple closely located fog nodes can communicate with

1Society of Automotive Engineers (SAE) International defines autonomous
driving systems into six levels: no automation, driver assistance, partial
automation, conditional automation, high automation, and full automation.
Note that even when a vehicle has been defined as full automation, human
intervention is required under emergency situations [26].



each other (e.g., using high-speed backhaul connection links
in a cellular network), some fog nodes may forward part of
their workload to other nearby nodes to further improve the
processing capability and balance the workload among nodes.
4) Cloud–Large-scale CDCs equipped with powerful process-
ing units. These data centers are often built in remote areas,
far from end users.

Fog nodes and users (operators or responders) may cor-
respond to the same type of devices. For example, in some
distributed mobile computing grid systems (e.g., IBM’s world
community grid project), the idle computing resources of some
computers (i.e., fog nodes) can be used by other computers
(i.e., users) to perform computationally intensive tasks.

We consider a fog computing system that contains a set of
N fog nodes F = {1, 2, . . . , N}. Any user can be associated
with one or more of these fog nodes. The association between
users and fog nodes can be made based on physical proximity,
channel conditions, or prior agreements between users and
network service provider. For example, if the fog is deployed
by the cloud provider, users can send their service requests
to CDCs following the same procedure of a traditional cloud
computing system. The cloud provider can then delegate one
or more nearby fog nodes to process the workload submitted
by these users. Each fog node j can process a nonnegative
portion αj of its received workload using its local resources.
Remaining workload, if any, is forwarded to the cloud. Note
that αj = 1 means that fog node j will process all its
received workload. The workload arrival rate at each fog node
j, denoted by λj , is assumed to be fixed.

We focus on two performance metrics:
1) (Service) response time of end-users: The response time
includes the round-trip time for transmitting the workload
between a user and the associated fog node as well as the
queueing delay at the fog. Given their proximity to to users,
fog nodes are likely to exhibit smaller transmission times than
remote CDCs. However, due to their limited resources, fog
nodes that process a large amount of workload will likely have
a long queueing delay. Therefore, it is important to balance
the workload offloaded by fog nodes. Note that the response
time associated with fog node i, denoted as Ri (αi), depends
on the portion of workload locally processed by fog node i.
2) Power efficiency of fog nodes: We consider the power
efficiency by the amount of power spent on processing a unit of
received workload. Maximizing the power efficiency amounts
to minimizing the power consumption for processing a given
workload. It is known that the total amount of power consumed
by any electronic device (e.g., a fog node) depends on the
power usage effectiveness (PUE) as well as the static and
dynamic power consumption. PUE is the input power from
the power grid divided by the power consumption of the given
device. Static power consumption, also called leakage power,
is mainly caused by the leakage currents, and is unrelated to
the usage of the computing resources at a fog node. Dynamic
power consumption is the result of the circuit activity and is
determined by the activity of computing resources. Let ei and
wSi be the PUE and static power consumption of fog node
i, respectively. Let wDi be the dynamic power consumed by
fog node i to offload each unit of workload. We can write

the total power consumption of fog node i per time unit as
wi = ei

(
wSi + wDi αiλj

)
. The power efficiency of fog node i

can then be written as

ηi (αi) =
wi
αiλi

= ei

(
wSi
αiλi

+ wDi

)
. (1)

One of the main objective of this paper is to develop
workload allocation strategies for determine the appropriate
portion of workload to be processed locally so as to minimize
the response time under given power-efficiency constraints.
Formally, each fog node i tries to find the optimal value α∗i
by solving the following optimization problem:

α∗i = arg min
αi∈[0,1]

Ri (αi) (2)

s.t. ηi (αi) ≤ η̄i,
where η̄i is the maximum power efficiency that can be sup-
ported by the hardware of fog node i. In Section IV, we will
give a more detailed discussion of the response time of fog
node i under different scenarios.

As mentioned earlier, different fog nodes can have differ-
ent workload arrival rates. Therefore, allowing fog nodes to
cooperate with each other and jointly process their received
workload can further improve the overall workload processing
capability. Specifically, fog nodes that receive more workload
than their processing capabilities can seek help from nearby
fog nodes with surplus computing resources. The main ob-
jective in this case is to minimize the average response time
of users associated with all cooperative fog nodes. The total
amount of workload processed by each fog node in this case
will not only depend on its own received workload, but also
on the workload forwarded from other fog nodes. We can
write the response time of fog node i under cooperation as
RCi (α) where α = 〈α1, α2 . . . , αN 〉. The optimal workload
distribution under cooperative fog computing can then be
written as

α∗ = arg min
α

∑

i∈F

RCi (α) (3)

s.t. ηi (αi) ≤ η̄i, 0 ≤ αi ≤ 1,∀i ∈ F.

Later on, we provide a more detailed discussion of the
strategies for cooperative fog computing.

IV. RESPONSE TIME AND POWER EFFICIENCY TRADEOFF

A. Response Time Analysis and Minimization

Let τuj be the average round trip time (RTT) between fog
node j and its users. Typically, fog nodes and CDCs have fixed
locations. Thus, we assume the average workload transmission
time between each fog node j and the cloud can be regarded
as a constant denoted as τf . Node j can directly forward
its received workload to CDCs through the backbone IP
network [6]. In this case, the fog computing network becomes
equivalent to the traditional cloud computing network with
all the workload being processed by the cloud. As mentioned
before, CDCs are generally installed with high-performance
workload processing units, and therefore their processing times
are much smaller than the workload transmission time [29].
For simplicity, we ignore the processing time of CDCs. In
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Fig. 2. Response-time under different amounts of offloaded workload and power efficiency.

We can also observe from (7) that the optimal portion of the workload offloaded by fog node

j increases with the ratio of its local computing capacity and the workload arrival rate. In other

words, for a given workload arrival rate, the more computing resources that owned by fog node

j, the more workload should be offloaded and processed by fog node j. We can also observe

that the value of α∗j also increases with the round trip time between fog node j and the cloud

data center. In other words, if the transmission delay for fog node j to send the workload to the

cloud data center is too high, it is more efficient to allocate more workload to be computed by

fog node j instead of submitting as much workload as possible to the cloud.

B. A Fundamental Tradeoff between Users’ QoE and Fog Node’s Power Efficiency

In Figure 2(a), we present users’ response-time under different amounts of workload offloaded

by the corresponding fog node. We can observe that there exists an optimal amount of workload

to be processed by fog node j that can minimize the response-time of users. As observed in

(1), the power consumption for each fog node to process each unit of workload decreases with

the total amount of offloaded workload. In many practical applications, there is a maximum

tolerable response-time for the users. We can therefore observe that the power efficiency max-

imization solution for fog computing in this case will be achieved when users’ response-time

becomes equivalent to the required maximum tolerable point. In Figure 2(a), we use solid line to

highlight the segment between the response-time minimization solution and the power efficiency

maximization solution with maximum tolerable response-time θ for RW3
j

(
α∗j
)
< θ < ∞. We

Fig. 2. (a) Response time under different amounts of workload processed by
fog node j, (b) response time under different power efficiency values.

this case, the response time of fog node j can be written as
RW1
j = τuj +τf . Since in this case fog node j does not activate

any computing resources to process its received workload, the
power efficiency will not depend on the response time.

In another extreme case, node j may process all its received
workload using its local computing resources, i.e., αj = 1. If
we follow a commonly adopted setting and consider an M/M/1
queueing system for each fog node to process the received
request, we can write the response time of fog node j as
RW2
j (λj) = τuj + 1

µj−λj
where µj os the maximum amount

of workload that can be processed by the on-board computing
resources of fog node j. We have λj ≤ µj .

Compared to CDCs, each fog node can only have limited
computing resources. It is generally impossible to always
allow each fog node to process all the received workload. We
now consider the cases that fog node j processes only a portion
αj , 0 ≤ αj < 1, of its received workload and forwards the
remaining 1−αj of its workload to CDCs, i.e., we still require
αjλj < µj . We can write the expected response time for fog
node j as:

RW3
j (αj) = τuj + αj

(
1

µj − αjλj

)
+ (1− αj) τf .(4)

Consider the solution of problem (2) by substituting the
response time equation in (4). We can observe that problem
(2) is a convex optimization problem, and hence can be solved
using standard approaches. We omit the detailed derivation and
directly present the solutions of these problems as follows. The
minimum response time for users associated with fog node j is
RW3
j

(
α∗j
)
, where α∗j has the following closed-form solution:

α∗j =





1, if µj <
λj

τf+1
,

1
λj

(
wS

j ej

η̄j−ejwD
j

)
, if µj ≥ χj

2χj−λj(1−τf )
,

µj

λj
− µj

λj

√
1− λj

µj
(1− τf ), Otherwise ,

(5)

where χj ,
wS

j ej

η̄j−ejwD
j

is the maximum amount of workload
that can be processed by fog node j under power efficiency
constraint ηj(αj) ≤ η̄j .

B. Tradeoff between Response Time and Power Efficiency

In Figure 2(a), we consider a single fog node serving 5
users, and we compare the response time under different
amounts of workload (number of requests) processed by the
fog node. There exists an optimal amount of workload to be
processed by fog node j that minimizes the response time. As
observed in (1), the power consumption for the fog node to

process one unit of workload decreases with the total amount
of processed workload. In many practical applications, there is
a maximum tolerable response time for users. We can therefore
observe that the power efficiency maximization solution for
the fog node in this case will be achieved when the response
time approaches the maximum tolerable service response
time θ. In Figure 2(a), we use a solid line to highlight the
segment between the response time minimization solution and
the power efficiency maximization solution at the maximum
tolerable response time θ. We can observe a fundamental
tradeoff between the response time and the power efficiency of
the fog node. This tradeoff can be characterized by substituting
(4) into (2), as shown in Figure 2(b). We can observe that
starting from the power consumption minimization point, the
response time decreases with the power consumption for the
fog node to process each unit (request) of workload. As the
power consumption of the fog node continues to grow, the
rate of reduction in the response time decreases. This means
that, for non-delay-sensitive applications such as voice/image
processing services (e.g., voice/image recognition), the fog
node can choose a low power consumption solution as long
as the resulting response time is tolerable for the users. On
the other hand, for delay-sensitive applications such as online
gaming and virtual reality (VR), it is ideal for the fog node
to choose a high power consumption solution to satisfy users’
low latency requirement. In Figure 2(b), we also present the
tradeoff solutions with different workload arrival rates at fog
node j. We can observe that the response time increases with
the workload arrival rate under a given power efficiency. The
higher the workload arrival rate, the smaller the changes in
the response time. As the amount of workload processed by a
fog node approaches its maximum processing capability, the
response time approaches infinite. In other words, allowing
the fog node to handle all its arriving workload cannot always
reduce the response time for end-users especially when the
amount of workload to be processed by the fog node cannot
be carefully chosen.

V. COOPERATIVE FOG COMPUTING

A. Response Time Analysis for Cooperative Fog Computing
with N Fog Nodes

In cooperative fog computing network, We introduce a fog
node cooperation strategy, referred to as offload forwarding.
In this strategy, each fog node can forward a part or all of
its offloaded workload to multiple neighboring fog nodes in
the fog and/or help multiple other fog nodes process their
workloads. Each node j divides its received workload into
N + 1 partitions: ϕj1, ϕj2, . . . , ϕjN , ϕjc where ϕjc is the
workload forwarded to the remote CDC and ϕji, i ∈ F\{j},
is the workload forwarded to fog node i (this includes ϕjj ,
the workload processed by node j itself). We denote ϕj• ,
〈ϕjk〉k∈F. Note that it is not necessary for each fog node
to always forward a non-zero workload to other fog nodes,
i.e., ϕji = 0 means that fog node i does not process any
workload for fog node j. We refer to ϕj• as the request vector
of fog node j. We also refer to ϕ•i = 〈ϕji〉j∈F as the service
vector of fog node i. Let ϕ = 〈ϕji〉i,j∈F be the workload
processing matrix for the entire fog. We have 0 ≤ ϕjk ≤ 1



and
∑
k∈F

ϕjk ≤ 1, ∀j ∈ F. The response time of fog node

j ∈ F can then be written as

RCj
(
ξj ,φj•

)
= τuj +

1∑
i∈F λi

∑

i∈F

φji


τji +

1

µi −
∑
k∈F

φki


+ ϕjcτ

c, (6)

where ϕjc = 1 −∑i∈F ϕji, φjk = λjϕjk is the amount of
workload processed by fog node k for fog node j. Please see
[1] for more detailed explanation of (6). Note that if fog node
j cannot help other fog nodes to process their workload, but
forward its own workload to other fog nodes to process, we
have φkj = 0 and φji 6= 0 ∀k, i ∈ F \ {j}.

We can rewrite the optimization problem in (3) as follows:

min
φ1•,...,φN•

N∑

j=1

RCj
(
ξj ,φj•

)
(7)

s.t.
∑

k∈F

φjk + φjc = λj , (8)

∑

k∈F

φkj ≤ χj and 0 ≤ φjk ≤ λj ,∀k, j ∈ F.(9)

It can be observed that, in order for each fog node j to
calculate the portions of workload to be forwarded to other
fog nodes, fog node j needs to know the workload processing
capabilities and the workload arrival rates of all the other
fog nodes, which can be private information and impossible
to be known by fog node j. In the next section, we will
propose a distributed optimization framework to allow all the
fog nodes to jointly optimize the average response time of the
fog without disclosing their private information.

B. Response Time and Power Efficiency Tradeoff for Cooper-
ative Fog Computing Networks

In Figure 3(a), we present the minimum response time of
the fog in a cooperative fog computing network derived from
solving problem (7). Note that the workload processed by each
fog node can consist of both its own received workload and
the workload sent from other fog node. We can observe that
the response time of the fog is closely related to the amount of
workload processed by each fog node. We also use black grid
to highlight the area between the response time minimization
solution and the power efficiency maximization solution with
a given maximum tolerable response time in Figure 3(a). By
substituting the power efficiency defined in (1) into (7), we
can also present the relationship between the fog’s response
time and each fog node’s power efficiency for a two-node
cooperative fog computing network with offload forwarding
in Figure 3(b). Similar to the single-node fog computing, we
can observe a fundamental tradeoff between the response time
of all the users served by the fog and the power efficiency of
each fog node. In addition, we can observe that by allowing
offloading forwarding, even if the power consumption of each
fog node to process each unit of workload has been limited to
a very small value, it is still possible to achieve the response
time constraint if there exist other nearby fog nodes with users
that are more delay tolerant.

Fig. 3. Response time under different amounts of processed workload and
power consumptions (PC) for each fog node to offload one unit of workload.

VI. DISTRIBUTED OPTIMIZATION FOR COOPERATIVE FOG
COMPUTING

As mentioned previously, deciding the proper amount of
workload to be processed by each fog node is essential
to achieve the optimal response time and power efficiency
tradeoff for fog computing networks. Unfortunately, solving
problem (7) involves carefully deciding the amounts of work-
load processed and forwarded by every individual fog node
according to global information such as the computational
capacities of all the fog nodes and the round-trip workload
transmission latency between any two fog nodes as well as
that between fog nodes and cloud. Deploying a centralized
controller to collect all these global information and calculate
the optimal service and request vectors for all the fog nodes
may result in a huge communication overhead and intolerably
high information collection and processing delay. In addition,
it can also be observed that (7) is non-smooth and therefore
cannot be solved by traditional optimization approaches that
can only handle smooth objective functions.

To address the above challenges, we need to develop a
distributed framework that can solve problem (7) with the
following two main design objectives:
O1) Distributed and Scalable: we would like to develop a
framework that can separate the optimization problem in (7)
into N sub-problems each of which can be solved by each fog
node using its local information. The framework should also
be scalable in the sense that the computation complexity for
each fog node to solve its sub-problem should not increase
significantly with the number of fog nodes that have the
potential to cooperate with each other.
O2) Privacy Preserving: Each fog node may not be willing to
reveal its private proprietary information such as the maximum
computational capacity and the round-trip workload transmis-
sion latency to others.

We propose a novel distributed optimization framework
based on dual decomposition in which problem (7) will be
first converted into its Lagrangian form and then the converted
problem will be decomposed into N subproblems each of
which can be solved by an individual fog node using its
local information. The optimization of all the subproblems
will be coordinated through dual variables sent to a workload
forwarding coordinator (WFC) which can be established by the
cloud data centers or deployed as one of the virtualized com-
ponents in the cloud. We propose two distributed algorithms:



subgradient method with dual decomposition and distributed
ADMM-VS, both of which can achieve the global optimal
solution of problem (7) and satisfy objectives O1) and O2).

A. Subgradient Method with Dual Decomposition

Before we introduce the algorithm, we need to first remove
the inequality constraints in problem (7) by introducing a set
of indicator functions. In particular, let us introduce N + 1
indicator functions that include each of separable inequality
constraints in (9) and incorporate these indicator functions into
the objective function of problem (7). More specifically, we
define Gi = {φ•i :

∑
k∈F φki ≤ χi, 0 ≤ φki ≤ λk, ∀k ∈ F}

as the polyhedra of each constraint corresponding to fog node
i in problem (3) where φ•i = 〈φki〉k∈F\{i} is the vector of
amounts of workload to be processed by fog node i for other
fog nodes. We define an indicator function IGi

(φ•i)

IGi (φ•i) =

{
0, φ•i ∈ Gi,

+∞, φ•i /∈ Gi.
(10)

By including the above indicator functions into the objective
function of our optimization problem, we can convert the orig-
inal problem (3) with inequality constraints into the following
optimization problem without inequality constraints.

min
φ1•,...,φN•

∑

i∈F

RCi (ξi,φi•) +
∑

j∈F∪{c}

IGj

(
φ•j
)

(11)

s.t.
∑

k∈F∪{c}

φik = λi,∀i ∈ F.

We can then write the Lagrangian form of problem (11) as

L (φ1•, . . . ,φN•,Λ)

=
∑

i∈F

RCi (ξi,φi•) +
∑

j∈F∪{c}

IGj

−


 ∑

j∈F∪{c}

Λφ•j −Λλ†


 (12)

where Λ is the vector of dual variables, λ = 〈λi〉i∈F and ·†
is the transpose.

We can therefore write the optimization of the Lagrangian
form as follows:

〈φ1•, . . . ,φN•〉 = arg min
φ•j

L
(
φ1•, . . . ,φN•,Λ

t
)
. (13)

The dual variable Λ can be updated using

Λt+1 = Λt − %t


 ∑

j∈F∪{c}

Λφ•j −Λλ†


 , (14)

where %t > 0 is the step-size of the iteration.
We can observe that (13) can be reduces to solving N

individual sub-problems each of which can be solved by an
individual fog node i by optimizing the vector of workloads
φ•i to be processed using its local computing resources, i.e.,
each fog node i decides values of φ•i and ϕic by solving the
following sub-problem:

〈φt+1
•i , ϕt+1

ic 〉 = arg min
〈φ•i,ϕic〉

LSi

(
φ•i, ϕic,Λ

t
)
, (15)

where LSi

(
φ•i, ϕic,Λ

t
)

= Si (φ•i) + IGi (φ•i) − Λtφ•i −
Λtiϕic and Si (φ•i) is given by

Si (φ•i, ϕic) = τui +
1∑
i∈F λi

∑

j∈F

φji


τji +

1

ui −
∑
k∈F

φki




+ϕicτ
c. (16)

We can prove the following result.
Theorem 1: The Lagrangian form of the objective function

of our optimization problem in (7) is separable and convex.
Proof: We can directly prove the separability of the

Lagrangian problem in (12) by verifying L =
∑
i∈F LSi

. Let
us now prove that the objective function of problem (7) is also
convex. It can be directly shown that the domain of variables
in the objective function of (7) is a polyhedra which is a
convex set. We can also show that the second derivative of each
individual item in Si (φ•i) is always positive which means
that it is a convex function with respect to each individual
variable. Following the property that a nonnegative weighted
sum of convex function f =

∑N
i=1 cifi, f : RN → R is

convex if and only if fi is convex and ci is a constant for all
i ∈ {1, 2, . . . N}, we can prove that the objective function of
problem (3) is convex. This concludes the proof.

It has been proved that if step-size %t satisfies the following
diminishing conditions

∑∞
t=1 %

2
t <∞ and

∑∞
t=1 %

2
t =∞, the

subgradient method with dual decomposition is guaranteed to
converge to the optimal solution [30]. A common choice of
step-size is %t = %̄/

√
k where %̄ is a constant. One of the main

advantage of the subgradient method is its low computational
complexity for each fog node. However, it has been proved
that the convergence rate of subgradient method is given by
O
(
1/
√
t
)

2 which is slow.

B. Distributed ADMM via Variable Splitting

In this section, we propose a distributed optimization frame-
work based on distributed ADMM-VS.

Similarly, we introduce an indicator function IGc (ψ) to
characterize the inseparable constraint in (8)

IGc
(ψ) =

{
0, ψ ∈ Gc,

+∞, ψ /∈ Gc,
(17)

where ψ = [ψ1,ψ2, . . . ,ψN ], Gc = {ψ :
∑N
i=1 INψi ≤ 1},

IN is an identity matrix with size N , ψ ∈ RN×N , ψi ∈ RN .
We can show that the solution of the optimization problem
in (11) is equivalent to solving the optimization problem
with the following augmented Lagrangian form with two
blocks of random variables. We can write the φ-optimization
subproblem as

φt+1 = arg min
φ

Lρ
(
φ•1,φ•2, . . . ,φ•N ,ψ

t,Λt
)

= arg min
φ

∑

i∈F

{
RCi (ξi,φi•) + IGi (φ•i)

+
ρ

2
‖φ•i − ψti + Λti‖22

}
, (18)

2We follows Bachmann-Landau notations: f = O(g) if lim
n→∞

f(n)
g(n)

<

+∞.



where ρ is the augmented Lagrangian parameter and Λ is the
vector of the dual variables.

We can write the ψ-updating problem as

ψt+1 = arg min
ψ

ρ

2
‖φt+1 −ψt + Λt‖22 + IGc (ψ) . (19)

The dual variable update sub-problem can then be written
as follows

Λt+1 = Λt − ρ
(
φt+1 −ψt+1

)
. (20)

We can observe that the subproblem optimization in (18)–
(20) is equivalent to the form of the traditional ADMM with
two random variables: φ and ψ.

In D-ADMM-VS, each fog node i will calculate the optimal
service vector φ∗•i by solving the following sub-problem:

φt+1
•i = arg min

φ•i
L′Si

(
φ•i,ψ

t
i,Λ

t
i

)
(21)

We present the detailed description of ADMM-VS below.

Algorithm 2: Distributed ADMM-VS Algorithm

Initialization: Each fog node i chooses an initial service vector φ0
•i and

WFC chooses an initial dual variable Λ0.
WHILE t=0, 1, . . .
i) Fog node updating: Each fog node i calculates φt+1

•i by solving
(21) and then sends the resulting φt+1

•i and λk to the WFC,
ii) WFC Updating: WFC calculates ψt+1 by solving ψ-updating

problem in (19).
iii) Dual Variable Updating: WFC updates dual variables Λt+1 =

Λk − ρ
(
φt+1 −ψt+1

)
and sends φt+1

i and Λt+1
i to fog

node i.
ENDWHILE

We have the following result.
Theorem 2: Our proposed D-ADMM-VS algorithm con-

verges to the global optimal solution of Problem (3) with
convergence rate of O (1/t).

Proof: The convergence of Algorithm 2 follows directly
from the standard ADMM approach [31]. We omit the detailed
description due to limit of space.

We evaluate the the convergence performance of our pro-
posed algorithms in Figure 5. We can observe that both
our proposed algorithms can converge to the global optimal
solution within the first few iterations (less than 14 iterations
in both cases) as shown in Figure 5. We also present the
convergence rate when a centralized ADMM method in [31]
is applied to solve optimization problem (7). In this method, a
centralized controller can collect all the information from fog
nodes and calculate the amount of workload to be processed by
each fog node. We can observe that our proposed distributed
ADMM-VS presents a similar convergence performance as
the centralized ADMM approach and can approach the global
optimal solution within first 10 iterations which is much faster
than the subgradient method.

VII. CASE STUDY: A CITY-WIDE DEPLOYMENT OF FOG
COMPUTING-SUPPORTED SELF-DRIVING BUS SYSTEM

A. Simulation Setup for Traffics Generated by Self-driving Bus

In this section, we consider a possible implementation of a
fog computing-supported self-driving bus system in the city
of Dublin as a case study. A self-driving vehicle relies on

Area 

Num. 

Total  

Num. of 

Fog Nodes 

Ave. Num. of Fog 

Nodes Within 

Forwarding Distance  

1 53 6.40 

2 44 3.82 

3 31 2.39 

4 24 1.50 

5 12 1.00 

 (a)       (b)

Area 1 Area 2 Area 3 Area 4 Area 5

(c)

Fig. 4. (a) Distribution of fog nodes, bus routes, and considered areas, (b)
deployment density of fog nodes in each considered area, and (c) empirical
probability distribution of traffics generated by self-driving buses in each
considered area.
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a combination of sensors including cameras, sonars, radars,
light detection and ranging systems (LiDARs), etc., to sense
the surrounds and decide the driving behaviors. More specif-
ically, image and sensing data collected by the sensors will
be processed by a computer or processor to extract useful
information such as the types of objects as well as their specific
semantics that may affect the driving decisions in various
scenarios. For example, an autonomous vehicle must be able
to detect and recognize various types of unintelligent objects
such as traffic/road work signs and traffic lights as well as
intelligent objects including surrounding vehicles, animals, and
pedestrians. It is known that accurate and low-latency object
recognition require significant computing power and energy
supply [25]. How to develop effective object recognition
methods for autonomous driving vehicles is out of the scope
of this paper.

In this section, we focus on the scenario that each self-
driving bus relies on a fog node in proximity to process the
traffic image and feedback the driving decision. We focus on
the workload transmission and forwarding between vehicles
and the fog nodes. It is known that, for each self-driving
vehicle, the amount of data that needs to be collected and
processed is different when it drives into different areas.
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For example, the traffic condition in the city center will be
much more complex than that in the countryside. To take into
consideration of the geographical diversity of the traffic data
generated by each bus, we analyze the statistic feature of the
traffics generated by buses operated at 8 existing routes in the
city of Dublin. We generate driving videos from over 2500
stitched high-resolution street view images in the considered
bus routes extracted from Google street view [32]. We then
apply H.265 coding to compress the generated driving videos
and keep track of the recorded frame rates of the compressed
video to simulate the possible traffic data streaming of each
self-driving bus. H.265 is a high efficiency video coding
technique that can remove both temporal and spatial redun-
dancies between adjacent frames using the enhanced hybrid
spatial-temporal prediction model [33]. In other words, the
frame rates generated by H.265 can reflect different levels
of traffic complexity as well as the impact of the driving
speed and surrounding traffics at different locations. We fit
the recorded frame rates of each bus route using a Kernel-
based probability distribution function. The bus driving routes,
considered areas, and fog node distribution are shown in
Figure 4(a). The deployment densities of fog nodes are listed
in Figure Figure 4(b). The recorded frame sizes and fitted
probability distributions of traffic generated by the self-driving
bus when driving in different considered areas are presented
in Figure 4(c).

B. Simulation Setup for a Fog Computing Network

We simulate a possible implementation of fog nodes, e.g.,
mini-computing servers, over 200 BSs (including GSM and
UMTS BSs) deployed by a primary telecom operator in the
city of Dublin. The actual distribution and the deployment
density of fog nodes are shown in Figure 4. Each bus always
submits the traffic images (frame-by-frame) taken by its on-
board camera to its closest fog node. In this case, the fog node
installed at each BS will be responsible to receive and process
the images sent by each bus and feedback the driving decision
to each bus when the processing (e.g., objective recognition,
tracking, and prediction) is finished. We assume each fog node
can process at most 400 frames at the same time and the
maximum tolerable response time of each bus is 500 ms. We
consider two scenarios of offloading forwarding. In the first
one, each fog node can only forward its workload to its closest
fog node. In the second scenario, each fog node can forward
part of its received workload to other fog nodes within a 500-
meter range. We assume there exist local communication links
among fog nodes and the round trip workload forwarding time
between any two fog nodes within forwarding distance is the
same given by τij = 20ms.

C. Numerical Results

To evaluate the performance improvement that can be
achieved by allowing offload forwarding among fog nodes,
we first compare the number of frames that can be processed
by each fog node in the five areas highlighted in Figure
4(a). We can observe in Figure 6 that by allowing each
fog node to cooperate with all the other fog nodes within

a 500-meter range can significantly improve the numbers of
frames processed by fog nodes. We can also observe that even
when each fog node can only cooperate with its closest fog
node, the average number of frames processed by each fog
node can be almost doubled compared to the case without
cooperation among fog nodes. Note that in Figure 6, we can
also observe that in areas 4 and 5, allowing fog nodes within a
500-meter range cannot achieve a higher workload offloading
performance than only allowing each fog node to cooperate
with its closest neighboring fog node. This is because in both
of these two considered rural areas, some fog nodes cannot
have any other fog node located within the 500-meter range.

In Figures 7, we consider the average workload processing
capability of all 5 considered areas. We investigate the impact
of fog nodes’ workload arrival rates on the total amount of
workload to be offloaded by the fog computing network. We
can observe that the average number of frames that can be
offloaded by each fog node increases almost linearly when
the workload arrival rate is small. However, with the workload
arrival rate continuing to grow, the total amount of offloaded
workload that can be offloaded by fog computing network
approaches to a fixed value limited by the maximum response
time that can be tolerated by end-users.

In Figure 8, we present the average response time and power
efficiency tradeoff curves with and without offload forwarding.
We observe that our proposed offload forwarding significantly
reduces the response time of end-users especially when the
power efficiency constraint of fog node j is low. With the
increase of the power efficiency of fog nodes, the response
time that can be provided by the fog nodes approaches a fixed
value limited by the maximum workload processing capability
of the fog.

VIII. CONCLUSION

In this paper, the workload offloading problem was studied
for fog computing networks. We investigated the relationship
between users’ response time and fog nodes’ power efficiency.
The tradeoff between these two metrics was discussed for fog
computing network with and without fog node cooperation.
For cooperative fog computing networks, we introduced a
novel fog node cooperation strategy called offload forwarding.
In this strategy, each fog node can forward a part of its
workload to other neighboring fog nodes to further reduce
the response time. We quantify the response time and power
efficiency tradeoff for cooperative fog computing with offload
forwarding. A distributed optimization framework based on
dual decomposition has been proposed. We developed two
distributed algorithms under the proposed framework. The first
one is based on the subgradient method with dual decom-
position and the other algorithm is based on the distributed
ADMM-VS. We proved that both proposed algorithms can
approach the globally optimal workload allocation solution.
Finally, we have considered the possible implementation of a
city-wide self-driving bus system supported by a fog com-
puting network as a case study to verify the performance
of our proposed approach. Numerical results have shown
that our proposed framework can significantly improve the
performance of fog computing networks.
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