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Abstract—The increasing demand of data computing and
storage for cloud-based services motivates the development and
deployment of large-scale data centers. This paper studies the re-
source allocation problem for the data center networking system
when multiple data center operators (DCOs) simultaneously serve
multiple service subscribers (SSs). We formulate a hierarchical
game to analyze this system where the DCOs and the SSs
are regarded as the leaders and followers, respectively. In the
proposed game, each SS selects its serving DCO with preferred
price and purchases the optimal amount of resources for the
SS’s computing requirements. Based on the responses of the
SSs’ and the other DCOs’, the DCOs decide their resource
prices so as to receive the highest profit. When the coordination
among DCOs is weak, we consider all DCOs are noncooperative
with each other, and propose a sub-gradient algorithm for the
DCOs to approach a sub-optimal solution of the game. When
all DCOs are sufficiently coordinated, we formulate a coalition
game among all DCOs and apply Kalai-Smorodinsky bargaining
as a resource division approach to achieve high utilities. Both
solutions constitute the Stackelberg Equilibrium. The simulation
results verify the performance improvement provided by our
proposed approaches.

Index Terms — Data center, hierarchical game, game

theory, resource management.

I. INTRODUCTION

Cloud computing attracts significantly interest in recent

years due to the popularity of data services and applications.

To meet the demand for the data-intensive cloud computing

applications, huge investments have been made by companies,

commonly referred to as the data center operators (DCOs) to

build large-scale data centers [1]. Each data center consists of

a large amount of facilities and computing resources, which

can be accessed and shared by multiple service subscribers

(SSs) at the same time. For example, companies such as eBay,

Facebook, Google, Microsoft, and Yahoo [2]–[7] nowadays are

able to provide data computing or data storage services for SSs

with large-scale data centers, which significantly improve the

SSs’ efficiency and convenience.

As more and more companies join the cloud computing mar-

ket, the competition among different DCOs becomes intense.

How to optimize their services and prices so as to attract more

SSs and maximize the revenues is one critical problem for

DCOs. From the SS’s perspective, different SSs have different

expectations in price, delay, etc., of various cloud computing

services provided by the DCOs. Therefore, how to choose

DCO o1 DCO o2 DCO oM

SS s1 SS s2 SS s3 SS sN

Fig. 1: The game structure

the optimal DCO that meets its requirements is an important

problem for each SS.

Nevertheless, the existing works didn’t consider any rela-

tionship among multiple DCOs, which motivates the work of

this paper. In this paper, we investigate resource allocation

among multiple competitive or cooperative DCOs, each of

which processes resources that can be accessed by SSs at a

certain price. The main objective of each DCO is to maximize

its profit by adjusting the price offered to the SSs. Since each

SS has its own service requirement and price affordability,

the SS should decide the appropriate DCO and the number

of resource blocks to procure based on the offered price.

Therefore, we formulate a hierarchical game model to analyze

the joint optimization of the decision making processes for

both DCOs and SSs. In this game, all DCOs are the leaders

that decide the prices first, and all SSs are the followers

that can make their decisions based on the prices declared

by the leaders. When the coordination among all DCOs is

weak, we consider all DCOs to be noncooperative with each

other and propose the sub-gradient algorithm for the DCOs to

approach a sub-optimal solution of the game. When all DCOs

are sufficiently coordinated with each other, we formulate a

coalition game among all the DCOs. In order to guarantee

fairness and avoid the competition among all DCOs in the

coalition game, each DCO should obtain revenue proportional

to its capability. Accordingly, Kalai-Smorodinsky bargaining

is adopted as a resource division approach to achieve fair and

efficient utilities. Based on the above, the contribution of this

paper can be summarized as follows,
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• A multi-DCO multi-user scenario with cooperative and

competitive behaviors among DCOs is analysed in the

paper.

• Based on the proposed scenario, a hierarchical game-

based model has been established to analyze the interac-

tion between the DCOs and the SSs. In the hierarchical

game, the interaction between the DCOs and SSs are

modeled as a Stackelberg game, and the cooperation and

competition behaviors among the DCOs are modeled as

a coalition game and non-cooperative game, respectively.

To our best knowledge, it is the first paper to adopt a

hierarchical game model in the data center networks.

• In the scenario where all DCOs are competitive with

each other, a sub-gradient algorithm is adopted to reach

a Stackelberg equilibrium solution where no DCO or

SS can further improve their performance by unilaterally

deviating from their decisions.

• In the scenario where all DCOs are coordinated with each

other, Kalai-Smorodinsky bargaining is applied to achieve

fair sharing of their utility among all DCOs.

• Simulation results have been presented to verify the

performance improvements of our proposed approaches.

The rest of this paper is organized as follows. We de-

scribe the system model in Subsection II-A and formulate

the problems in Subsection II-B. According to the formulated

problem, we further analyze the game in Section III and

present simulation results in Section IV. Finally, we show

related works in Section V and summarize our work in Section

VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a cloud computing system consisting of M
DCOs, labeled as o1, o2, . . . , oM with different amounts of

computing facilities that can be accessed to and shared by N
SSs, labeled as s1, s2, . . . , sN . The computing facilities can

be massive data centers built by each DCO or any public

data centers rent and shared by DCOs. We suppose that all

the DCOs offer computing resources over the Internet [34]

to all SSs at the same time. We use the term “computing

resource block” to denote the unit of time and computing

speed measured by service rate that can be allocated to each

SS. Let Si be the total number of computing resource blocks

allocated by DCO oi. We use µi to denote the service rate

of each computing resource block of DCO oi. Let λj be the

workload arrival rate of sj . Let λij be the workload arrival

rate generated from SS sj , which will be processed using the

resources of DCO oi. We have λj =
∑M

i=1
λij .

In this paper, we focus on the delay-sensitive applications

in which quality of service (QoS) of each SS is relative with

both the data rate and the total delay during the service. ∀i ∈
{1, 2, . . . ,M}, DCO oi charges price pi to each SS for using

one computing resource block. The main objective of each SS

is to choose the DCO that can provide the highest QoS at

the lowest price. Specifically, the cost incurred by the queuing

delay for each SS sj when served by DCO oi is given by [35],

[36],

TABLE I: List of Notations

Symbol Definition

M Total number of DCOs
N Total number of SSs
Si Number of computing resource blocks for the DCO

oi
µi Service rate of computing resource blocks in the

DCO oi
λj Workload arrival rate for the SS sj
pi Price per unit of computing resource block of the

DCO oi
pmax
i Maximum service price of the DCO oi
wij Cost of queuing delay of SS sj at DCO oi

d
z1z2...zN
j Cost of network delay of SS sj when each SS sj

is served by DCO ozj
rij Cost of total delay of SS sj at DCO oi
mij Number of computing resource blocks from DCO

i to SS sj
ei Energy cost of DCO oi
kj Weight factor between the benefits from the work-

load and the total cost of SS sj
c Cost of purchasing one watt power
qi Power requirement of each computing resource

block in DCO oi
αij Probability for SS sj to choose DCO oi
bzjj Motivation of price reduction on one unit of net-

work delay for the SS sj
ui Utility of DCO oi

umax
i Maximum utility of DCO oi
vj Utility of SS sj
rth Upper bound of total delay cost
qij,s Static power requirement when DCO oi serves SS

sj
qij,c Computing power requirement when DCO oi

serves SS sj
xij Speed of computing workloads when DCO oi

serves SS sj
α Pairing outcomes between DCOs and SSs
m Strategies of all SSs
p Prices set by all DCOs

wij =
λj

µi − λj

mij

, (1)

where mij is the number of computing resource blocks offered

by DCO oi to SS sj . This work can be easily extended to other

delay models in DCOs.

The cost of total delay can be expressed as the summation

of the delay in data processing by the DCOs plus the delay in

data transmission in the network, i.e.,

rij = wij + dz1z2...zNj , (2)

where dz1z2...zNj is the cost of network delay for SS sj when

each DCO ozk serves each SS sk, ∀k ∈ {1, 2, . . . , N}. The

network delay can be affected by the time spent on uploading

the computing data from SS sj to DCO oi, as well as that

spent on a feedback of the computing results from the DCOs

to the SSs. As we can obtain the value of the network delay

by sending training sequence timely, in this paper, we assume

the value of dz1z2...zNj , ∀j ∈ {1, 2, . . . , N} is known.

Furthermore, we consider resource allocation for each data

center where each DCO needs to take into account its power

consumption when providing services to SSs. Specifically, we

model the energy cost of each DCO as the total amount of
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power required by all the computing resource blocks as follows

[37]:

ei = c
N
∑

j=1

αijβijmij , (3)

where βij is the energy consumption for each computing

resource block, satisfying,

βij =

{

qij,s + qij,c(xij)
λj

xij
, if xij > 0,

0, if xij = 0.
(4)

qij,s is the static power requirement regardless of workloads

as long as the corresponding computing resource block mij

has been used by an SS. qij,c(xij) is the computing power

when the computing resource block mij has been applied to

compute workloads xij . c is the cost of purchasing each unit

of power, and αij is the probability for SS sj to choose DCO

oi, where αij = 1 (or αij = 0) means that SS sj is (or is not)

served by DCO oi.

Accordingly, the profit of DCO oi, ∀i ∈ {1, 2, . . . ,M}, is

the total revenue obtained by selling resources to SSs minus

the cost of power consumption, which can be written as

ui(pi|α,m,p−i) =
N
∑

j=1

αijmijpi − ei, ∀i ∈ {1, 2, . . . ,M},

(5)

where α = 〈αij〉, i ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N} is

the pairing probability between DCOs and SSs, m = 〈mij〉,
i ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N} contains the strategies of

all SSs, p∗

−i contains the optimal prices set by all other DCOs

except DCO oi, and p = 〈pi〉, i ∈ {1, 2, . . . ,M} contains the

prices charged by the DCOs. pi > 0, ∀i.
Each SS tries to achieve a high utility from the service while

minimizing both the service delay and payment to DCOs. We

hence can define the utility of SS sj as

vj(mj |m−j ,p) = kjλj −
M
∑

i=1

αijmijpi −
M
∑

i=1

αijrij ,

∀j ∈ {1, 2, . . . , N},
(6)

where mj is the strategy of purchasing computing resources

from all DCOs for SS sj , m−j is the strategy of purchasing

computing resources for all the other SSs, and kj is the

weight factor. Accordingly, the first term kjλj represents the

weighted revenues achieved by each SS sj from the services.

The second term
M
∑

i=1

αijmijpi is the amount of money that

SS sj is required to pay the DCO oi for the service. The

third term
M
∑

i=1

αijrij is the cost of the total delay in service. If

the delay is large, the user experience of the SSs is poor,

and the corresponding utilities are small. Let rth be the

maximum delay that can be tolerated by SSs. Thus, rij > 0
and rij 6 rth.

B. Problem Formulation

In the cloud computing with multiple DCOs and multiple

SSs, when each DCO sets its price for each computing

resource block, the DCO needs to consider the prices offered

by other DCOs as well as the strategies of all SSs. Therefore,

the optimization problem for each DCO oi is,

max
pi

ui(pi|α,m∗,p∗

−i), ∀i ∈ {1, 2, . . . ,M},

s.t. pi > 0,
(7)

where p∗

−i is the optimal prices of all other DCOs except the

DCO oi. m
∗ is the optimal strategies of all SSs.

Based on the price declared by the DCOs, each SS needs

to compete with other SSs when choosing their optimal

DCO. Each SS also decides the optimal number of computing

resource blocks procured from its chosen DCO. Therefore, we

can define the optimal problem for SS sj as

max
mj

vj(mj |m∗

−j ,p
∗), ∀j ∈ {1, 2, . . . , N},

s.t.

{

rij > 0,
rij 6 rth,

(8)

We assume that each of the DCOs or SSs is rational and

autonomous when making its decision in a distributed fashion.

To make full use of the resource provided by the DCOs and

meet the computing requirements of all SSs, we model the

scenario as a multi-leader multi-follower Stackelberg game.

The DCOs act as the leaders, and the SSs act as the followers.

In the following section, we will discuss and explore the

optimal strategies for each player of the game, based on

different settings and objectives.

III. GAME ANALYSIS

According to the formulated problems in the modeled multi-

leader multi-follower Stackelberg game, the optimal solutions

can be achieved when the Stackelberg Equilibrium can be

achieved between the DCOs and SSs. The concept of Stacekel-

berg Equilibrium can be defined as follows.

Definition 1. [38] Let ((X,A), (g, f)) be the multi-leader

multi-follower Stackelberg game with m leaders and n follow-

ers. X = X1×X2× . . .×Xm and A = A1×A2× . . .×An

are the strategy profiles of leaders and followers, respectively.

g = (g1(x), . . . , gm(x)) is the payoff function of leaders for

x ∈ X, and f = (f1(α), . . . , fn(α)) is the payoff function of

followers for α ∈ A. Let xi be a strategy profile of leader i,

x−i be a strategy profile of all the leaders except leader i, αj

be a strategy profile of follower j, and α−j be a strategy profile

of all the followers except leader j. A set of strategy profiles

x∗ ∈ X and α
∗ ∈ A is the equilibrium of the multi-leader

multi-follower game if ∀i, ∀j, xi ∈ Xi,αj ∈ Aj ,

gi(x
∗

i ,x
∗

−i,α
∗) ≥ gi(xi,x

∗

−i,α
∗) ≥ gi(xi,x−i,α

∗),

fj(x,α
∗

j ,α
∗

−j) ≥ fj(x,αj ,α
∗

−j).

In following parts of this section, we first consider a

simplified version of our problem and analyze the Stackelberg
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Equilibrium for a single-DCO and single-SS cloud computing

system, in order to analyze the basic relationship between

the DCO and SS. We then extend our model to the case

with multiple DCOs and SSs, and discuss the competition or

coalition among all DCOs.

A. Single-DCO single-SS Stackelberg game

Consider the scenario where there is only one DCO and one

SS in the game, i.e., M = 1 and N = 1. Based on the cost

of the SS, we have the following lemma.

Lemma 1. In a single-DCO single-SS scenario, for a given

price p1 of the DCO, the optimal number of computing

resource blocks chosen by the SS is given by

m∗

11
=

λ1

µ1

√
p1

+
λ1

µ1

. (9)

Proof: The proof is provided in Appendix A.

The optimal strategy for each SS has a closed form solution

under the given price of the DCO, which can be pre-calculated

and pre-stored in a table in the SS. In real scenarios, the SS can

then use a simple table searching method to obtain its optimal

solution with low implementation complexity. Therefore, for

the SS in the game, the computation requirement is very low.

Furthermore, because of the first-move advantage in the

Stackelberg game, the DCO is able to predict the optimal

strategy of the SS. Therefore, we substitute (1) into (5), and

the profit of the DCO can be derived as

u1 =
λ1

µ1

√
p1 +

λ1

µ1

p1 − cβ11

λ1

µ1

√
p1

− cβ11

λ1

µ1

. (10)

The utility of the DCO u1 is a monotonically increasing

function with respective to p1. Furthermore, according to the

constraint that the delay of the SS cannot exceed rth, i.e.,

r11 =
λ1

µ1

√
p1 +

λ1

µ1

+ λ1d
1

1
6 rth. (11)

Thus in the single-DCO single-SS scenario, when the DCO

sets price

pmax
1

= (rth − 1− µ1d
1

1
)2, (12)

the profit of the DCO is maximized.

In the single-DCO single-SS scenario, the Stackelberg E-

quilibrium can be achieved. Both the DCO and the SS have

their optimal utilities, respectively, and neither of them is able

to change their strategy to achieve higher values.

B. Multi-DCO multi-SS hierarchical game

In a multi-DCO and multi-SS scenario, each SS has multiple

choices on its serving DCOs, and each DCO may also be able

to serve multiple SSs to receive higher profits. Accordingly,

there exists the competition or coordination among DCOs and

SSs. In this section, we analyze and propose strategies for each

SS and DCO so as to receive the optimal utility.

We consider the data center network system with N SSs
which can choose service from M DCOs. When SS sj chooses

DCO ozj , ∀j ∈ {1, 2, . . . , N}, following the results in the

single-DCO single-SS scenario, each SS makes its decision

on the optimal number of computing resource blocks m∗

zjj
,

where

m∗

zjj
=

λj

µzj

√
pzj

+
λj

µzj

. (13)

Accordingly, the utility of SS sj is denoted as vz1z2...zNj , i.e.,

vz1z2...zNj = kjλj −
λj

µzj

(
√
pzj + 1)2 − λjd

z1z2...zN
j . (14)

Based on the utility of each SS in different situations,

we assume that each SS sj , ∀j ∈ {1, 2, . . . , N} is able to

determine the probability to be served by each DCO ozj , i.e.,

αzjj , ∀zj ∈ {1, 2, . . . ,M}. Therefore, in order to achieve high

utilities with low service price and network delay for each SS

sj , we refer the incentive mechanism method in [39] and set

the probability for each SS sj to choose DCO ozj as

αij =
bzjj

M
∑

zj=1

bzjj

, (15)

where bzjj is the motivation of price reduction on unit network

delay, i.e.,

bzjj =
(pmax

zj
− pzj )

dz1z2...zNj

. (16)

Following the results of the single-leader single-follower sce-

nario, in order to satisfy the service delay requirements of all

served SSs, the maximum setting price of DCO ozj is

pmax

zj
= min{(rth − 1− µzjd

z1z2...zN
j )2}, ∀j ∈ {1, 2, . . . , N}.

(17)

Based on the above, if SS sj experiences small network

delay and relatively small service price compared with its

maximum price constraint pzj ≤ pmax

zj
, then the value of

bzjj is small. When the value of bzj′ j′ for other SS sj′ is

relatively small, the probability for SS sj to be served by

the DCO ozj is large. Therefore, in order to attract more

SSs, each DCO oi, ∀i ∈ {1, 2, . . . ,M}, is motivated to set

the price maximizing the gap pmax

i − pi for each SS sj ,

∀j ∈ {1, 2, . . . , N}. Compared with the behaviors of other

DCOs o−i, if the corresponding value of bij served by DCO

oi is relatively large, then the value of αij is large, and thus

SS sj is more likely to be served by DCO oi. On the other

hand, each DCO needs to keep a high value of pzj to receive

high revenues from the service. Accordingly, there is a tradeoff

for setting prices of DCOs. Considering the behaviors of all

other DCOs, if DCO oi set a high service price for SS sj , the

revenues when SS sj is served by DCO oi is high, but the

probability when SS sj is served by DCO oi is low. On the

other hand, if the DCO set a low service price for SS sj , SS

sj is more likely to choose the service of DCO oi, but the

revenues when SS sj is served by DCO oi are low.
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(a) Utility of DCO o1 with different prices set by DCOs

(b) Utility of DCO o2 with different prices set by DCOs

Fig. 2: Utilities of the DCOs with different pricing behaviors

With the prediction of all SSs’ behaviors, each DCO expects

to set its service price so as to receive the optimal utility.

Therefore, substitute (13) into (5) and the utility of DCO oi
can be denoted as

ui =
N
∑

j=1

αij

(

λj

µi

√
pi +

λj

µi

pi − cβij

λj

µi
√
pi

− cβij

λj

µi

)

.

(18)

In (18), αij is related to the setting price of all DCOs.

Accordingly, in order to obtain high utility, each DCO should

also consider the behaviors of other DCOs. For ease of

demonstration, we take an example of a two-DCO two-SS

scenario and illustrate the relationships of setting prices from

both DCOs in Fig. 2.

With different prices, the utilities of both DCOs are shown

in Fig. 2. When the price of DCO o2 is fixed and DCO

o1 increases its service price, the probability for the SSs to

choose DCO o1 unilaterally decreases, but the utility of DCO

o1 firstly increases and then decreases. Similarly, when the

price of DCO o1 is fixed and DCO o2 increases its service

price, the utility of DCO o2 firstly increases, then decreases.

In order to better analyze the problem, we separate the figures

into three regions.

R1 In the region 1, the price of DCO o2 is relatively high,

while the price of DCO o1 is relatively low. Because

of the large gap in price between both DCOs, even

though DCO o2 with a higher price is able to serve

SSs with a lower delay and better performance, both

SSs still prefer to choose DCO o1, considering the total

cost of the service. Accordingly, in order to serve the

SSs and receive the highest revenues given strategies

of the others, there are tradeoffs for both DCOs when

they set their service prices. For DCO o2, setting a high

price allows it to receive high payment from serving

the SSs. However, it should avoid setting a price far

higher than that of DCO o1. Otherwise, the probabilities

for the SSs to choose DCO o2 are low, and DCO o2
cannot gain high revenues. For DCO o1, setting low

prices may help it serve more SSs, and receive more

revenues. Nevertheless, as the service price is low, even

though the amount of payment from SSs to DCO o1 is

large, DCO o1 can only achieve limited revenue from

a single SS. In general, the DCO may not receive high

revenues.

R2 The price set by both DCOs at each point in this region

is competitive. Accordingly, neither of the DCOs is able

to be chosen by both SSs, and each DCO will serve

one SS at the same time. In this situation, as the prices

of both DCOs are competitive and each DCO needs to

predict the behavior of the other DCO, and to set their

serving prices optimally. On one hand, if the DCO is

setting a price that is too high, its served SS will leave

the service, resulting in a low revenue for the DCO. On

the other hand, if the DCO sets a low price for its served

SS, although the SS stays, the revenue of serving the SS

is not maximized.

R3 In region 3, the price of DCO o1 is relatively high, while

the price of DCO o2 is relatively low. With the same

reason as in the case of region 1, even though DCO

o1 with a higher price is able to serve the SSs with

a lower delay and better performance, both SSs still

prefer to choose DCO o2, considering the total costs of

the service. Therefore, on one hand, with prediction and

estimation of the prices from DCO o2, DCO o1 should

avoid setting the price that is too high falling into the

region 3. On the other hand, DCO o2 should compare

and evaluate the total revenues, balancing the expected

number of served SSs and setting a price.

Therefore, when setting the price for the SSs, there is the

competition between DCO o1 and DCO o2. Either DCO should

estimate the behavior of the others, balance the setting price

and number of the expected SSs and make decisions so as to

achieve high revenues. In the general situation with M DCOs

and N SSs, the figures become M +1 dimensions, which can

be separated into M + 1 regions. In each region, the tradeoff

among DCOs’ decisions works in a similar way.

However, for each DCO in the game, it is hard to predict the

behaviors of other DCOs, causing unstable and unsatisfying
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results for each other. In the following sections, based on the

different benefits of the SSs and DCOs, we propose both the

competitive and the coordinated strategies for the DCOs to

achieve the highest utility given the actions of other DCOs.

In the real situations where some DCOs coordinate with some

other DCOs, and some still compete with other DCOs, the

DCOs that can cooperate with each other will coordinated

with each other first. Then, each coordinated DCOs can be

regarded as a coalition and compete with other DCOs outside

of the coalition using the competitive algorithm.

1) The competitive behavior among DCOs: In the nonco-

operative scenario where each DCO only considers its own

revenue, in order to regulate the behaviors of the DCOs and

obtain a stable and optimal solution, we propose a sub-gradient

algorithm for DCOs of the game.

When DCOs adopt the sub-gradient algorithm, each DCO

initially assumes that there is no competition with other DCOs

and sets its service price at the maximum value to receive

high utility. When the DCO discovers that there exist other

DCOs trying to attract SSs with lower prices, the DCO predicts

the reactions of the other DCOs on its own price and the

tradeoff on its pricing strategy should be considered. If the

DCO decreases its service price and competes with other

DCOs, SSs are more likely to be served by the DCO. Thus, the

expected number of served SSs increases. However, because of

the low service price, the revenue the DCO obtain from each

SS decreases. Similarly, when the DCO increases its service

price, even though the DCO receives higher revenues from

each served SS, as other DCOs serve SSs with lower prices

and good performance, the number of SSs choosing the DCO

decreases. Accordingly, in order to make optimal decisions

based on the prediction other DCOs’ strategies, we propose

an iterated process for the DCOs to adjust their behaviors

so as to receive optimal utilities. At each iteration, the DCO

tries to increase or decrease its price with a small step and

predict the resulting utility, if the adjustment increases its

utility, the DCO will increase or decrease its price in the next

iteration. Otherwise, the DCO will keep the current service

price unchanged. Within finite number of iterations, all DCOs

are able to determine the best decisions with the highest

utilities. We assume that p = 〈pi〉 is the pricing profile of all

DCOs in the previous iteration, pold = 〈poldi
〉 is the pricing

profile of all DCOs in the previous iteration, and pold−i
is the

pricing profile of all DCOs except DCO oi in the previous

iteration. Accordingly, the detailed algorithm is shown as in

Algorithm 1. Then, the following Lemma 2 holds for the

proposed algorithm.

Lemma 2. When the starting price and step size of DCO oi
∆i, ∀i ∈ {1, 2, . . . ,M} are fixed, the game can always con-

verge to a unique outcome, which is also the Nash equilibrium

of the game.

Proof: The proof is provided in Appendix B.

For the proposed sub-gradient algorithm, it is not necessary

for all the players to be strictly synchronized when they

Algorithm 1 Strategy of each DCO in a multi-DCO multi-SS

scenario.

1: Initially, each DCO ignores the existence of other DCOs,

and sets its price at the maximum value to receive the

highest revenue from all SSs.

2: while at least one DCO adjusts its price do

3: for SS sj do

4: Based on the prices set by all DCOs, each SS

determines the probability to be served by each DCO

and purchases the optimal amount of resource blocks

from each DCO.

5: end for

6: for DCO oi do

7: Each DCO stores the current value of service prices.

pold = p;
8: Each DCO adjusts its price with a small step ∆i and

calculate its own payoff based on the prediction of

the followers’ optimal strategies.

9: if ui(poldi
,pold−i

) ≤ ui(poldi
+∆i,pold−i

) then

10: pi = min{pmax
i , poldi

+∆i}; % Increase the price

11: else

12: if ui(poldi
,pold−i

) ≤ ui(poldi
−∆i,pold−i

) then

13: pi = max{0, poldi
−∆i}; % Reduce the price

14: else

15: pi = poldi
; % Keep the price unchanged

16: end if

17: end if

18: end for

19: end while

make decisions. More specifically, for each SS, based on the

observation of the announced prices from all DCOs, each SS

determines the optimal amount of computing resource block

to purchase. In this case, all the SSs do not have to make

decisions at the exactly same time. For each DCO, based on

the observation of the announced prices of other DCOs and the

observation of current behaviors of all SSs, it is able to follow

our proposed algorithm to set its price to improve its utility. In

other words, all the DCOs also do not need to make decisions

at the same time, and the algorithm can still converge to the

same Stackelberg equilibrium.

Based on the results of the iterated approaches, the comput-

ing resource blocks are allocated afterwards. Therefore, the

utilities or revenues received by all DCOs and SSs follow

the results of the iterated approaches. After one period, all

the DCOs will perform the sub-gradient algorithm and do the

resource allocation again. Therefore, for the iterative approach

ahead of one period, the resulting Nash Equilibrium is still an

equilibrium solution for a static game, not dynamic one.

2) Coalition formation in DCOs: Even though all DCOs

are able to achieve Nash equilibrium outcomes with the

proposed sub-gradient algorithm, the revenue of each DCO

is still low due to the competition with all other DCOs. To

improve their benefits, DCOs may seek to cooperate with

each other and jointly decide the price offered to the SSs.

Accordingly, in the upper layer of multi-leader multi-follower
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hierarchical game, we propose the coalition game among all

DCOs, in order to improve the utilities of the DCOs. However,

some DCOs may be unwilling to cooperate with each other

because of the unfair results within the coalition. We evaluate

the capability of served SSs for each DCO as the revenue

that the DCO receives when all the other DCOs stop serving

SSs. Therefore, in order to guarantee fairness and avoid the

competition among all DCOs in the coalition game, each DCO

should set its price in the feasible region and obtain revenue

proportional to its capability. In order to achieve the fair

results and high revenues for all DCOs in the coalition game,

we consider the Kalai-Smorodinsky bargaining as a resource

division approach within all DCOs.

Definition 2. [41] [42] We denote U = [u1, u2, . . . , uM ]⊤ as

the feasible utility set, and let h = [h1, h2, . . . , hM ]⊤ be the

disagreement point set, which are the expectations of operators

by joining the game without cooperation. Y∗ = F (U,h) is

regarded as a Kalai-Smorodinsky bargaining solution if the

following six axioms, i.e., individual rationality, feasibility,

pareto optimality, individual monotonicity, independence of

linear transformations, and symmetry, are satisfied.

According to the conclusions of [43] and [44], u∗ =
[u∗

1
, u∗

2
, . . . , u∗

M ]⊤ can be a unique solution satisfying all

axioms in Definition 2, if the solution meets the following

condition

u∗
1
− h1

umax

1
− h1

=
u∗
2
− h2

umax

2
− h2

= . . . =
u∗M − hM

umax

M − hM

, (19)

where umax

i , ∀i ∈ {1, 2, . . . ,M}, is the maximum utility of

DCO oi when all SSs are served by the DCO oi with the

highest price pmax
i , i.e.,

umax

i =
N
∑

j=1

umax
ij , (20)

where

umax
ij =

(

λj

µi

√

pmax

i +
λj

µi

pmax

i − cβij

λj

µi

√

pmax

i

− cβij

λj

µi

)

.

(21)

When all DCOs are noncooperative, the DCOs compete

with each other by reducing their prices. Accordingly, we

suppose that in the competition, the corresponding utility of

each DCO oi is zero, i.e., hi = 0, ∀i ∈ {1, 2, . . . ,M} [42].

Based on the utilities of DCOs, we have the following

lemma.

Lemma 3. For each DCO oi in the coalition formation,

∀i ∈ {1, 2, . . . ,M}, when all DCOs adopt Kalai-Smorodinsky

bargaining as a resource division approach, the setting price

of the DCO oi satisfies

p∗i = (pmax

i )
−
, (22)

where (·)− approaches the limit from the negative side. Cor-

respondingly, the utility of each DCO oi, ∀i ∈ {1, 2, . . . ,M}
is

u∗

i =
N
∑

j=1

1

N
umax
ij , (23)

where

umax
ij =

λj

µi

√

pmax

i +
λj

µi

pmax

i − cβij

λj

µi

√

pmax

i

− cβij

λj

µi

.

(24)

Proof: The proof is provided in Appendix C.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present the simulations to evaluate the

performances of the proposed approaches with MATLAB.

Without loss of generality, we follow the settings in [36] and

assume that there are two DCOs accessible to three SSs at

the same time. We set the service rate of each computing

resource block in both DCOs as 0.3 (ms)−1. The workload

arrival rates for SS s1, SS s2 and SS s3 are 0.7 (ms)−1, 0.6
(ms)−1, and 0.6 (ms)−1, respectively. We model the distance

between source and data center, divided by the transmission

speed of 200km/ms, resulting in delay ranging in [0, 8] ms,

and the delay tolerance of all SSs is set to 8 ms. The above

settings are reasonable for the existing data center networks.

[36] In the proposed sub-gradient method, we assume that the

price step sizes for both DCOs are 0.01 dollar.

In Fig. 3, we compare our proposed sub-gradient algorithm

with the ordinary noncooperative behavior where each DCO

sets its optimal price based on the observation of other

DCOs’ behaviors in the previous iteration. The noncooperative

behavior cannot guarantee the convergence of the game. In

the simulation, we performed 1000 iterations and took the

average of 10 latest results as an expected social welfare

value. Moreover, we compare the proposed algorithm with the

cooperative behavior, where each DCO can increase its served

price regardless of the number of served SSs. Accordingly,

in order to achieve the high utilities for all DCOs, each

DCO sets its price as the maximum possible value. In our

proposed Kalai-Smorodinsky bargaining method, both DCOs

form a coalition with each other based on the bargaining

strategy to achieve fair revenues. The social welfare achieved

by the Kalai-Smorodinsky bargaining follows the results of

cooperative behaviors. As shown in Fig. 3, with the increased

delay tolerance rth of SSs, all DCOs are able to set a high

price to meet the service requirements of the SSs, and the

performance of the SSs deteriorates. Therefore, the social

welfare generally reduces with rth increasing. Furthermore,

at each value of rth, the social welfare is always higher than

the expected social welfare of the noncooperative strategy

when the DCOs adopt the proposed sub-gradient algorithm.

The social welfare when both DCOs are cooperative is the

lowest, because when the DCOs cooperate with each other,

even though the DCOs receive high revenues, all SSs suffer

more because of the high service price and low quality of

service. Based on the above results, from the perspective of

SSs or the management of data center services, in order to

achieve high social welfare, both DCOs should compete with
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Fig. 3: Social welfare vs delay tolerance of SSs with different

approaches

each other, and the proposed sub-gradient algorithm is a good

tool to achieve stable and high revenues.

From the perspective of DCOs, the situation is different.

In Fig. 4, we compare the utility of each DCO in coalition

formation with Kalai-Smorodinsky bargaining, noncooperative

scenario with sub-gradient algorithm, ordinary noncooperative

behavior, and the situation where only DCO o1 or DCO o2
monopolizes the market. As shown in Fig. 4, we discover that

when the DCOs form a coalition and adopt Kalai-Smorodinsky

bargaining, the utilities of both DCOs are higher than the util-

ities when DCOs employ the proposed sub-gradient strategy

or take the noncooperative behaviors. As both DCOs form

a coalition, they do not need to compete with each other

in order to achieve high revenues. They set their prices at

high values to increase the total utilities for the DCOs so

as to obtain high utilities through bargaining. The utilities of

both DCOs when adopting the proposed sub-gradient strategy

are also higher than the utilities in noncooperative behaviors.

Furthermore, we discover in the single DCO situation, where

all SSs have no choice on their serving DCOs, the DCO

is able to receive higher utility than that when there are

multiple DCOs. However, compared with the proposed Kalai-

Smorodinsky bargaining strategy, it is hard to coordinate one

DCO to give up all its services to the other DCO if only one

DCO serves the SSs, and the quality of service of SSs is lower.

In Fig. 5, we evaluate the impact of the step size in the

proposed sub-gradient strategy. In the simulation, we fix the

step size of DCO o2 as 0.01, and change the step size of

DCO o1 to 0.005, 0.01, 0.015, 0.02, respectively. According

to the algorithm of the proposed sub-gradient strategy, with

a different step size of DCO o1, both DCOs compete with

each other and gradually reduce their prices in the game. The

game finally converges to the similar results, within different

range to the same sub-optimal point of the game. Furthermore,

when the step size increases, with the same starting point, the

convergence speed of the corresponding DCO is faster, but

the range of the sub-optimal point increases. As the starting

KS-Bargaining Sub-gradient Noncooperative DCO o1 only DCO o2 only
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Fig. 5: The converge route in the proposed sub-gradient

strategy with different steps

price of the proposed sub-gradient strategy is the maximum

possible value of each DCO, we discover that when the step

size increases, the service price of the DCO after convergence

is higher, causing a lower utility for its served SSs. Therefore,

there is a tradeoff for the SSs’ choices. When the step size

is large, the convergence time of service is small, but the gap

between the optimal value and achieved value is large. When

the step size is small, the gap between the achieving value

and the optimal value is small, but the delay is large because

of the slow convergence time with sub-gradient algorithm.

Accordingly, if the SSs is more sensitive to the time delay

of the service, it may require fast convergence of the DCO’s

strategies. However, the DCO may be able to set higher prices

for the SSs for higher utilities. On the other hand, if the SSs

expect lower prices from the DCO, the SSs may prefer a small

step size of the DCO and tolerate higher convergence time in

order to purchase the services with optimal prices.

In Fig. 6 and Fig. 7, we evaluate the impacts of the workload

requirements of SSs and the service rates of both DCOs,
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Fig. 6: Utility of DCO o1 vs the workload requirements of SS

s1 and SS s2

respectively, for the proposed sub-gradient strategy. As shown

in Fig. 6, without loss of generality and for better presentation,

we fix the workload requirements of SS s3 as 0.6 Mbps and

consider the utility of DCO o1 with different workload values

of SSs s1 and s2. When we consider the same workload value

of SS s1 (or s2) and increase the workload value of SS s2
(or s1), DCO o1 is able to serve SS s2 (or s1) with more

computing resources, so the utility of DCO o1 increases, even

though there is the competition between the DCOs. In Fig. 7,

we consider the performance of SS s1 with different service

rate of both DCOs. When the service rates of both DCOs are

small, even though the delay of the service is large for SS
s1, both DCOs set low prices for the service, and the utility

of SS s1 reaches the maximum value. However, when both

DCOs increase their service rate simultaneously, the DCOs

set higher prices for the service of SS s1. Accordingly, the

utility of SS s1 decreases. Moreover, when DCO o1 (or DCO

o2) has a low service rate, but DCO o2 (or DCO o1) improves

its service rate, the utility of SS s1 first increases and then

decreases. Because when the service rate of DCO o1 (or DCO

o2) is low, its price is set at a low value. When DCO o2 (or

DCO o1) improves its service rate, because of the competition

of both DCOs, the utility of SS s1 first increases because of

the low price and high quality of service. However, when DCO

o2 (or DCO o1) continues to improve its service rate, DCO

o1 (or DCO o2) also increases its price to receive high utility.

Therefore, the utility of SS s1 decreases.

V. RELATED WORKS

The resource allocation problem has been widely studied for

data center networking systems. [8] performed a comprehen-

sive analysis of energy efficiency in a general infrastructure

supporting the cloud computing paradigm. The authors first

defined a systematic approach for analysis, then utilized the

approach to analyze data centers and finally extracted existing

challenges and future works. In [9], the authors overviewed

data center networks for cloud computing and evaluate con-
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Fig. 7: Utility of SS s1 vs the service rate of both DCOs

struction prototypes for future works in order to improve the

agility for multi-tenant demands in the cloud, responsiveness

and scalability.

Specifically, in [10], the authors studied various problems

for large-scale data centers including task assignment, data

placement, and data movements. An optimization algorithm

that could minimize the total cost during the big data comput-

ing services was proposed. To ensure all users to efficiently

and securely share the network resources, authors in [11]

evaluated the performance of several popular network sharing

policies, such as SecondNet [12], Oktopus [13], Gatekeeper

[14], Seawall [15], NetShare [16], and FairCloud [17], in a

data center with multiple users. In [18], the authors showed

a class of data center network structures based on hypergraph

theory and combinatorial block design theory. Compared with

the classic fat-tree model, the new structures of constructing

large data center networks are more flexible and scalable.

In [19], the authors made comprehensive comparison study

for typical data center networks with regard to their Network

Power Effectiveness (NPE). The results showed that Flattened

Butterfly [20] network topology achieved high NPE in most

of the cases, and the NPE of the server-centric architectures

was usually higher than the NPEs of Fat-Tree [21] and VL2

[22] architectures.

In order to reduce the power consumption of network

elements, the authors in [23] designed a two-level, pod-level,

and core-level power optimization model, namely, Hierarchical

EneRgy Optimization (HERO). The HERO optimized the

way of shutting down network switches and links while

guaranteeing full connectivity and maximizing link utilization

of the network. A novel framework was proposed in [24],

where high energy efficiency could be achieved by assigning

virtual machines to servers and reducing the number of active

switches and balance traffic flows. In order to achieve high

energy efficiency, the authors in [25], took advantage of the

application characteristics and topology features and proposed

TE-VMA and TER algorithms to assign virtual machines and

routing traffic flows, respectively. In [26], a novel architecture
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of Cloud-integrated Cyber-Physical System was proposed and

the enabling technologies for Complex Industrial Applications

(CIA) was outlined. The paper provided solutions for the

virtualized resource management techniques, the scheduling of

cloud resources and life cycle management from the perspec-

tive of CIA. In [27], the authors focused on the performance-

guaranteed energy-saving schemes. Based on the constraint

that the transmission of every flow has to be accomplished

before a rigorous deadline, the authors explored the most

energy efficient way of scheduling and routing flows on

the network, as well as determining the transmission speed

for every flow. [28] explored the benefit of electricity price

variations across time and locations for the data centers.

The authors proposed a GreFar algorithm to optimizes the

energy cost and fairness among different organizations subject

to queueing delay and maximum server inlet temperature

constraints. In [29], the authors considered a QoS-constrained

resource allocation problem with game theory. In the game,

each participant first solved its optimization problem with

binary integer programming. Then an evolutionary mechanism

was designed to consider the relationships of different partici-

pants and minimize their efficiency losses. In [30], the authors

considered the adaptive and stable application deployment

in clouds with a multi-objective evolutionary game-theoretic

framework. In the proposed framework, resource allocation

strategy to applications was analyzed based on the location

and the operational conditions in a cloud.

In [31], the authors considered the efficiency of water usage,

and optimized a framework for the workload management of

data centers. In order to design a new, upgraded and expanded

data center network, the authors in [32] proposed a data

center network design framework. By searching the space

of all networks that are feasible under a user-specified data

center model, the proposed framework maximized bisection

bandwidth and minimized end-to-end latency of the designed

network. In [33], the authors analyzed the management prob-

lem of data centers with multiple layers or heterogeneous

devices. A new simulation tool, called Data Center Simulator

with small scale operating system and storage, was proposed.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the resource allocation

problem when multiple data center operators (DCOs) and

service subscribers (SSs) coexist in the networks. In order to

analyze the relationships among multiple DCOs and SSs, we

have modeled the scenario as a multi-leader multi-follower

hierarchical game, where the DCOs act as leaders and the SSs

act as followers. With the prediction of behaviors of all SSs

and reactions of other DCOs, we have discussed the utilities

of the DCOs in different situations and proposed the sub-

gradient algorithm in the noncooperative game and coalition

game with Kalai-Smorodinsky bargaining strategies to gain

the benefits in terms of social welfare and the utilities of the

DCOs, respectively. Simulation results have demonstrated that

for the benefits of SSs, all DCOs compete with each other and

all DCOs adopt the proposed sub-gradient strategies to achieve

high social welfare of the game. On the other hand, for the

benefits of DCOs, DCOs form a coalition and perform Kalai-

Smorodinsky bargaining behaviors so as to achieve high and

fair revenues. The game analysis of the relationship between

DCOs and SSs provides an outlook for the future work in the

multi-DCO multi-SS scenarios. Future work is in progress to

consider the resource allocation problem including both the

massive and edge data center networks.

APPENDIX A: PROOF OF LEMMA 1

Proof: As the cost of the SS is continuous, we take the

second derivative of v1 with respect to m11,

∂2v1
∂m2

11

= − 2λ2

1
µ1

(µ1m11 − λ1)
3
. (25)

Since the second derivative of v1 with respect to m11 is less

than zero, v1 is a concave function of m11. By setting the first

derivative of v1 with respect to m11 as zero, i.e.,

∂v1
∂m11

=

(

λ1

µ1m11 − λ1

)2

− p1 = 0, (26)

we can obtain the optimal strategy for the SS, which is given

by,

m∗

11
=

λ1

µ1

√
p1

+
λ1

µ1

. (27)

APPENDIX B: PROOF OF LEMMA 2

Proof: The convergence of the sub-gradient algorithm has

been proved in [45] and [46].

According to [45] and [46], the sub-gradient algorithm is

able to achieve a sub-optimal solution with small ranges.

Therefore, with a given moving step size, each DCO is unable

to unilaterally adjust its price in order to receive higher utility

when the sub-gradient algorithm converges to a sub-optimal

solution.

Furthermore, when the starting price and step size ∆i, ∀i ∈
{1, 2, . . . ,M} are fixed, the results in the second iteration are

fixed. According to the mathematical induction, we suppose

that at the Qth iteration, the prices of both DCOs are fixed.

Then in the (Q+1)th iteration, according to the proposed sub-

gradient algorithm, the step size is fixed and the direction from

the current iteration to the next iteration is unique. Therefore,

the prices of both DCOs in the (Q + 1)th iteration are also

fixed. Therefore, based on the above, the game can converge

to a unique outcome, when the starting price and step size ∆i,

∀i ∈ {1, 2, . . . ,M} are fixed.

APPENDIX C: PROOF OF LEMMA 3

Proof: According to the definition of Kalai-

Smorodinsky bargaining, the optimal prices for DCOs

p∗ = [p1
∗, p2

∗, . . . , pM
∗]⊤ satisfy

p∗ = argmax u∗
1

s.t.
u∗
1

umax

1

=
u∗
2

umax

2

= . . . =
u∗M

umax

M

.
(28)
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When the prices offered by the DCOs satisfy

pi = (pmax

i )
−
, (29)

the corresponding utility of each DCO oi, ∀i ∈ {1, 2, . . . ,M},

is

ui =

N
∑

j=1

1

N
umax
ij , (30)

where

umax
ij =

λj

µi

√

pmax

i +
λj

µi

pmax

i − cβij

λj

µi

√

pmax

i

− cβij

λj

µi

.

(31)

Furthermore, as the maximum utility of each DCO oi, ∀i ∈
{1, 2, . . . ,M}, equals

umax

i =
N
∑

j=1

umax
ij , (32)

where

umax
ij =

(

λj

µi

√

pmax

i +
λj

µi

pmax

i − cβij

λj

µi

√

pmax

i

− cβij

λj

µi

)

.

(33)

We discover

u1

umax

1

=
u2

umax

2

= . . . =
uM

umax

M

=
1

N
. (34)

According to the utility function of each DCO oi, ∀i ∈
{1, 2, . . . ,M}, ui is monotonically increasing with the im-

provement of pi. Therefore, when pi approaches its maximum

value, the corresponding utility of DCO oi can also achieve

the highest value. The highest utility of DCO oi follows the

constraint in (28). Accordingly, when the price of DCO oi is

p∗i = (pmax

i )
−
, (35)

the utility of each DCO oi, ∀i ∈ {1, 2, . . . ,M} achieves

u∗

i =

N
∑

j=1

1

N
umax
ij . (36)
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