
1

Distributed Optimization for Computation
Offloading in Edge Computing

Rongping Lin, Zhijie Zhou, Shan Luo, Yong Xiao, Senior member, IEEE, Xiong Wang, Sheng Wang, and
Moshe Zukerman, Life Fellow, IEEE

Abstract—Edge computing is a promising technology that
offers data analysis and computing for Internet of Things (IoT)
services at the network edge. It has the potential to significantly
reduce the latency and improve the reliability of IoT services
by allowing computation workloads and local data generated
by IoT devices to be offloaded to edge nodes. This paper
aims to develop algorithms for efficient provision of both job
assignment and resource allocation for edge computing networks.
The main objective is to minimize the long-term average of
the response time delay subject to constraints on computation
resources and power consumption. We apply a drift-plus-penalty
based Lyapunov optimization approach to convert the original
problem into an upper bound optimization problem. We then
relax the latter to a convex optimization problem. Finally, a
distributed algorithm based on branch-and-bound approach is
provided and the gap between the distributed algorithm solution
and the optimal solution of the original problem is theoretically
analyzed. Numerical results based on extensive experiments have
demonstrated that our distributed algorithm can achieve the
required performance of edge computing that supports IoT
systems, under static traffic conditions as well as under dynamic
environments with time-varying traffic.

Index Terms—Edge computing, computation offloading, Lya-
punov optimization, branch-and-bound

I. INTRODUCTION

CLOUD computing provides efficient and on-demand ser-
vices for end users, including computation, storage, soft-

ware, and services by centrally sharing resources. However,
cloud computing has a fundamental limitation related to the
geographical distance between end users and datacenters that
provide its services. With the fast growing demand for Internet
of Things (IoT) services and the proliferation of intelligent
devices, cloud data centers face challenges in meeting the

This work was supported by grants from the National Natural Science
Foundation of China (NSFC) (61871097, 61701079, 61671130), by Sichuan
Science and Technology Program (2019YFG0086), by a grant from the
Research Grants Council of the Hong Kong Special Administrative Region,
China [CityU 11200318], and by National Key R&D Program of China
(2019YFB1803304).

Corresponding author, Shan Luo (luoshan@uestc.edu.cn).
R. Lin, Z. Zhou, X. Wang and S. Wang are with the School of

Information and Communication Engineering, University of Electronic
Science and Technology of China (UESTC), China, 611731 (e-mail:
linrp@uestc.edu.cn, Zhouzhijie868@foxmail.com, Wangxiong@uestc.edu.cn,
wsh keylab@uestc.edu.cn).

S. Luo is with the School of Astronautics and Aeronautic, UESTC, China,
611731 (e-mail: luoshan@uestc.edu.cn).

Y. Xiao is with the School of Electronic Information and Communications,
Huazhong University of Science and Technology, Wuhan, China, 430074
(email: xyong.2012@gmail.com).

M. Zukerman is with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong SAR (e-mail: m.zu@cityu.edu.hk).

service requirements of terminal devices (a.k.a. IoT devices)
due to the limited availability and locations, especially for
some latency-sensitive tasks requiring a low service response
time, e.g. as low as a few ms. Meanwhile, it is predicted
that the number of IoT devices (including all terminal devices
connected to the internet) will reach 34.2 billion in 2025, and
it is expected that this number will increase to 125 billion by
2030 [1], [2]. The network access from the massive scale of
IoT devices introduces novel challenges for network operators.
Specifically, the large number of IoT devices will generate a
huge amount of data straining the limited network capacity
and computation resources of cloud data center, which leads
to a long delay.

Edge computing is a promising solution to complement
cloud computing [3]–[7], where computation, storage and
other resources can be distributively deployed at the edge
nodes of the network, e.g. in base stations [8] and access
points [9]. This new computing paradigm brings computation
resources closer to end users avoiding sending data to the
network, and therefore can support ultra-low delay and high
computational applications [10]–[12]. In addition, because
less data is uploaded to the cloud through the Internet,
the security of the data can also be improved [13] under
this paradigm. Furthermore, in edge computing, edge nodes
provide distributed and limited computation resources to end
users. This gives rise to the challenging problem of how to
optimize resource allocation, especially, because more and
more computation resources are required by end devices due
to the emergence of computation demanding applications,
such as 3D games and video editing. As a result, because
of the increased demand, optimization of resource allocation
will lead to, either offloading to the edge (or cloud), or
efficient computation at the device level that will satisfy
QoS requirements. Therefore, various solutions focusing on
jointly addressing the above two challenges, namely, resource
allocation and computation offloading, have been introduced in
the content of edge computing (as shown in the next section).
However, to the best of our knowledge, there are still no
solutions that jointly optimize the long-term cost of resource
allocation and workload offloading subject to computational
resource and energy consumption constraints. Optimizing the
long-term performance measures of the edge computing is
important because such measures provide an aggregate of
short-term (stable or unstable) correlated measures over a
long period of time, and such aggregates have important
economic and business implications, e.g. long-term cost and
QoS measures. Such long-term considerations also introduce

2

complexity to the optimization problem because of the need to
consider the temporal fluctuation of the resource availability
and workload arrival rate as well as the long-term constraints
[14]. Such increase in complexity is significant as compared
to only optimizing the instantaneous resource allocation and
workload offloading under a stationary environment.

In this paper, we consider computation offloading and
resource allocation in an edge computing network with the
objective to minimize the long-term average response time
delay. We represent the response time delay as the combination
of data transmission delay, workload queueing and processing
delay (the propagation delay is ignored here because of the
short transmission distance between the device and the edge
node). We focus on the long-term average response time
delay minimization problem under two types of resource
constraints: the long-term average computation resource and
power consumption constraints. Such a perspective includes,
for example, considerations for adaptive resource allocation in
a long-term perspective to process peak traffic at low traffic
states, which is motivated by the fact that a short period
of performance degradation is tolerable for most practical
networks as long as the long-term performance is guaranteed.

Meanwhile, it is known that optimizing the long-term
average performance of a network with multiple continuous
variables is a notoriously difficult problem [15]. Most ex-
isting solutions simplify the problem by approximating the
continuous variables with discrete ones while ignoring the
fact that discretizing some key continuous variables results in
suboptimal and sometimes unconverged solutions [16]–[18].
To address the long-term average response time delay opti-
mization problem, we propose a new Lyapunov optimization-
based distributed algorithm. A virtual queue of Lyapunov
optimization method has been proposed to convert the original
continuous problem into subproblems at each time slot, and
short-term fluctuations are considered in terms of the variation
of virtual queues [14]. The time slots we considered include
time periods of the order of minutes or even hours as long as
it can capture traffic fluctuations. Accordingly, different time
slots may have different arrival rates. The main contributions
of this paper are as follows.

1) A mathematical model for the computation offloading
problem with multiple end devices is provided, where
the long-term average response time delay objective is
optimized under long-term computation and power con-
sumption constraints, and a perturbed technique-based
on the Lyapunov optimization approach is proposed to
convert the original problem into a deterministic upper
bound problem.

2) A distributed optimization algorithm is proposed to solve
the upper bound problem in each time slot, where each
IoT device exchanges a limited amount of information
with its associated edge node and decides the resource
allocation and computation offloading by itself.

3) Both upper and lower bounds of the gap between the
proposed distributed algorithm solution and the original
optimal solution are derived. We also analyze the con-
vergence of the algorithm, and provide a proof that the
algorithm solution satisfies the long-term computation

and power consumption constraints.
4) Results of extensive numerical experiments to evaluate

the performance of our proposed algorithm are provided.
They show that the proposed algorithm stabilizes the
virtual queues, achieves the required performance, and
is adjustable to the time-varying traffic.

The remainder of this paper is organized as follows. Section
II discusses existing work related to computation offloading
in edge computing. In Section III, we provide system model
and problem formulation for the computation offloading prob-
lem in an edge computing network with long-term average
objective and constraints. In Section IV, we derive an upper
bound for the computation offloading problem. In Section
V, a distributed algorithm is provided, and the gap between
the solution of the algorithm and the optimal solution is
derived. Section VI numerically evaluates and validates the
new algorithm. Section VII concludes this paper.

II. RELATED WORK

There are many potential scenarios and applications that can
benefit from edge computing, such as Tactile Internet [19],
IoT [20], internet of me [21], e-healthcare [22], autonomous
driving [23], virtual/augmented reality (VR/AR) [24], caching
and preprocessing [25]. For example, Cao et al. [26] proposed
a distributed analysis system to monitor falls of stroke patients
at real-time based on edge computing. Zao et al. [27] built
an augmented brain computer interaction game, where heavy
signal processing can be instantaneously processed by edge
computing. Zhu et al. [28] proposed a method to improve end
user web experiences, where edge computing reduces picture
resolution in case of network congestion to reduce the response
time.

The functionalities and performances of edge computing
applications are highly dependent on the efficiencies of com-
putation offloading and resource allocation, and various prob-
lems of the two issues (computation offloading is usually
used to denote the combination of computation offloading
and resource allocation) have been carried out to improve
network performance considering resource limitations, delay
and energy consumption [29]–[31]. For example, Xiao et al.
[32] addressed the computation offloading problem aiming to
improve the quality-of-experience (QoE) of end users consid-
ering the power efficiency, where a distributed algorithm was
proposed. The same research group [33] proposed a stochastic
overlapping coalition-formation game to achieve efficient net-
work slicing among edge nodes, where computation offloading
of various services with different quality-of-service (QoS)
guarantees and energy harvesting were considered at edge
nodes. However, both of these publications did not consider the
computation resources and power limitations at end devices.
Zhang et al. [34] proposed an online task assignment method
in a simple scenario with only one energy harvesting end
device, and the objective function was a weighted function
of energy consumption and execution delay. Mao et al. [35]
investigated the computation offloading problem with energy
harvesting devices, and a dynamic algorithm was proposed
to consider both execution latency and task failure. However,

3

both [34] and [35] did not consider multiple end devices,
which simplifies the resource allocation and computation of-
floading problems. Chen et al. [36] investigated the compu-
tation offloading problem in a scenario where multiple users
and multi-channel wireless interferences were considered, and
a distributed algorithm was proposed to decide computation
offloading and selection of wireless channels based on the
game theory. However, the computation resource sharing and
allocation problems are ignored there for simplicity. Sardellitti
et al. [37] investigated the computation offloading problem
across multiple radio access points, and a heuristic algorithm
was proposed for applications requiring high computation
resources and low energy consumption. However, a given
set of static requests was considered in the work, which
can not be applied in dynamic traffic scenarios. Chen et al.
[38] provided a mixed integer non-linear program with a
delay minimization objective for the computation offloading
problem, and converted the problem into two sub-problems
(task placement and resource allocation). However, the work
was based on software defined networks, where the central
controller of the network incurs scalability problems when the
network size becomes large. Zhu et al. [39] investigated user
grouping and resource allocation problems in the hybrid of
non-orthogonal multiple access and mobile edge computing,
and the balance between energy consumption and delay was
achieved. However, the work assumes all end devices offload
computation tasks and only the wireless network resource
allocation is considered. Wang et al. [40] investigated the
energy and task allocation problems in wireless powered
mobile edge computing networks, where the fluctuation of
wireless channel states and task arrivals were considered.
However, the work considered only one end user, and ignored
computation resources consumptions in the system.

To consider the methodology for long-term average opti-
mization problems, the Lyapunov optimization method has
been applied to convert the problem into a new optimiza-
tion problem at each time slot [14], where the latter has a
significantly lower complexity than the former because there
is no need to enumerate all system states. For example, Cui
et al. [15] investigated delay-aware resource control problems
in wireless systems, where the Lyapunov optimization was
applied to solve the problems that had the objectives of
throughput, delay and power consumption. He et al. [41]
applied the Lyapunov optimization to design a buffer man-
agement strategy for the mobile video streaming, where band-
width fluctuation and stochastic of wireless channels were
considered. Qiu et al. [42] applied the Lyapunov optimization
to design a transmission strategy in an energy harvesting
wireless communication system, where the long-term average
battery level and BER limitation were considered.

In this paper, we investigate the combination of computation
offloading and resource allocation problems in edge computing
networks, where multiple end users (IoT devices) generating
variable traffic loads are considered. The objective is to
minimize the long-term average response time delay, and the
constraints are on long-term average usage of computation and
power resources. By extending the Lyapunov optimization, we
convert the original problem into an upper bound problem and

design a distributed algorithm that is scalable. The notations
used in the paper are defined in Table I.

TABLE I
SUMMARY OF USED NOTATIONS

Notation Description
N Set of IoT devices
N Number of IoT devices
w Channel bandwidth
N0 Noise power in the channel
Hi(t) Channel gain from device i to the edge node at time slot t
λi(t) Computation request arrival rate of device i at time slot t
Ci(t) Transmission rate from device i to the edge node at slot t
Li Average data size of device i

Di Average computation requirement size of device i

σi Standard deviation of computation requirement of device i

DLi(t) Uplink queuing and transmission time of device i at slot t
DUi(t) Unoffloaded workload processing delay of device i at slot t
DOi(t) Offloaded workload processing delay of device i at slot t
Ri(t) Average response time delay of device i at time slot t
Fi Computation capacity of device i

Fe Computation capacity of the edge nodes
Pi Power limitation of device i

vi Power consumption for computation resource of device i

T Number of time slots
A Virtual queue for the edge node computation constraint
Bi Virtual queue for power constraint of device i

∆Θ(t) Lyapunov function drift
V Weight factor of average response time delay to the drift
αi(t) Offloading portion of device i at time slot t
fi(t) Computation allocated to device i at the edge node
pi(t) Transmission power of device i at time slot t
t1 ∼ t4 Artificial variables

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a scenario, where a set of N homogeneous
IoT devices are connected to an edge node for computation
offloading as shown in Fig. 1, where the number of IoT
devices is N = |N |. This edge node can be, for example, a
base station or a WiFi access point with limited computation
resources. In this scenario, the computation workload of an
IoT device is processed, either by itself, or by the edge
node, or by both. If the computation workload is offloaded,
uplink transmissions and computation resource allocations are
considered. In this paper, the computation workload of the IoT
device i ∈ N consists of a sequence of computation requests,
which are assumed to arrive according to a Poisson process
with arrival rate λi(t) during time slot t, t = 1, 2, 3,
Although the assumption of Poisson arrivals is applicable
to many scenarios including fog computing [32], [33], we
acknowledge that the statistical characteristics of the arrival
process of computation demands generated by a device are
very much application dependent. Our assumption of Poisson
arrivals will be adequate for applications when the arrivals
are generated by many independent sources measured by the
device. A currently relevant example of such arrivals will be

4

health assessments of ill people accessing an office building.
Information on people that are well can be processed by the
device but more complicated situations where a person has
fever, for example, may require more computations and are
done at the edge. Because arrivals of ill individuals are events
associated with a large population of independent individuals,
each of which has a small probability to be ill, so their
arrival process may be of a pure chance nature that follows
a Poisson process. Here we use M/G/1 as a model for the
computation workload processing, but for cases where the
arrival process does not follow a Poisson process, this model
(in particular, the Pollaczek Khinchine formula used here)
may be replaced by other models (and formulae) to improve
the accuracy of the results depending on the applications.
In such a case, the overall procedure of this paper can still
be used. Only the module representing the mean delay will
be replaced by another formula or numerical procedure. One
potential alternative to replace the M/G/1 model is the D/G/1
queueing model [43], [44] that models arrivals of deterministic
periodic nature [45]. We assume here time dependent arrival
rate to consider having more active time periods and down-
time periods during the day. We adopt the widely used task
model [36], [38] to describe computation requests, where the
computation request of device i includes the average data size
Li and the average and standard deviation of computation
requirement (Di, σi) (e.g. number of uniformed CPUs). The
offloaded computation workload at time slot t from the IoT
device i ∈ N is denoted by αi(t)λi(t), where the variable
αi(t) ∈ [0, 1], t = 1, 2, 3, . . ., is the ratio of the offloaded
computation workload to the total computation workload at
time slot t, and the remainder (1 − αi(t))λi(t) portion of
computation workload is processed by the IoT device locally.
It is noted that each entire computation request (computation
task) is either processed at the edge node or at the end
device. Accordingly, the value of αi(t) decides the amount
of offloaded workload αi(t)λi(t) out of the entire workload
λi(t) to be processed at the edge node.

Fig. 1. An edge node with IoT devices.

A. Uplink Transmission

The data is transmitted from the IoT devices to the edge
node through wireless uplink channels if the computation
workload is offloaded to the edge node for processing. Denote
Hi(t) as the channel gain from device i to the edge node
at time slot t, and w and N0 as the channel bandwidth
and the noise power in the channel, respectively. The uplink

transmission rate is given by

Ci(t) = w log
(
1 +

pi(t)Hi(t)

N0

)
. (1)

In (1), w and N0 are assumed to be constant, and pi(t) is
the transmission power of the IoT device, which is a deci-
sion variable constrained by the power limitation of the IoT
device. For simplicity, the interference among communication
channels and the limitation on the number of channels in this
paper are not considered. This simplifying assumption can be
justified by the fact that new technologies, e.g. 5G, will make
communication resources sufficiently large. Meanwhile, the
reception delay of uplink transmission at the edge node side is
also ignored, for ease of exposition because the edge node, like
base station, usually has fast signal receiving and processing
units, and in our scenarios, IoT devices usually generate
computation tasks with low data but with high computation
requirements. Considering the interference will add significant
complexity to the problem. However, to consider the reception
delay, a constant delay can be added to the uplink transmission
time which will not increase the complexity of the problem.

Consider the αi(t) portion of the total computation work-
load in device i offloaded to the edge node through the
uplink with transmission rate Ci(t), and assume that the
arrivals during a time slot follow a Poisson process, and
uplink transmission times are exponentially distributed. We
also assume that the time slots are sufficiently long so that
queueing steady-state conditions hold. Then, considering that
in the uplink the variance of the packet length is not very
large, and assuming an M/M/1 queueing system in the uplink
transmission, by the M/M/1 mean delay formula [46], the
uplink delay (including queuing and transmission time) of a
computation request is given by

DLi(t) =
1

Ci(t)
Li
− αi(t)λi(t)

. (2)

Without loss of generality, the specific packet size is not
considered. We only consider the total data to be transmitted
to obtain the service rate, but we do not consider the length of
individual packets. As long as the total data to be transmitted
does not change, the size of individual packets does not affect
the optimal decisions and the optimal solution.

B. Computation Workload Processing

An IoT device usually has a limited computation resource,
and runs a simple operation system with simple resource
management strategies. Accordingly, we assume that the full
computation capacity Fi of the IoT device i is applied in
the task processing without sophisticated resource slicing
strategies. To provide this computation capacity, the power is
assumed to be a constant value νi in the IoT device i. M/M/1
queueing system has been assumed in the uplink transmission
since most data has a limited variance. However, we consider
M/G/1 queueing system for the task processing because data
processing requests may have large variance because they may
be different in nature with significantly different processing
times, e.g. Firewall vs. image rendering. For the offloaded

5

computation workloads, two tandem queues (the first M/M/1
queue for uplink transmission and the second M/G/1 queue for
computation processing at edge node) are traversed, and the
input of the second queue is the output of the first queue. As
it is well known that the output process of M/M/1 is Poisson
which justifies the assumption of Poisson arrivals to the second
queue (modeled by M/G/1). The unoffloaded computation
workload is processed locally in the IoT device, then from the
mean delay formula of M/G/1 queueing system [46], we have
the processing delay of the unoffloaded computation workload
(1− αi(t))λi(t) is given by

DUi(t) =
(1− αi(t))λi(t)(σ

2
i +D2

i)

2[F 2
i − (1− αi(t))λi(t)DiFi]

+
Di

Fi
. (3)

In contrast, we assume that the edge node can efficiently
allocate computation resources for each computation work-
load. Hence, from the mean delay formula of M/G/1 queueing
system, the processing delay of the offloaded computation
workload αi(t)λi(t) is

DOi(t) =
αi(t)λi(t)(σ

2
i +D2

i)

2(f2
i (t)− αi(t)λi(t)Difi(t))

+
Di

fi(t)
, (4)

where fi(t) is the computation resource allocated to the IoT
device i for the workload processing.

C. Problem Formulation

As mentioned in Section I, the transmission distance be-
tween the IoT device and the edge node is relatively short;
hence, the propagation delay at the wireless transmission
is ignored. In the downlink transmission, the transmission
rate is usually sufficiently high, so that the delay (including
transmission delay, propagation delay and queueing delay) is
negligible. Then, the overall average response time delay is
given as

Ri(t) = αi(t)(DLi(t) +DOi(t)) + (1− αi(t))DUi(t)

=
αi(t)

Ci(t)
Li
− αi(t)λi(t)

+
α2
i (t)λi(t)(σ

2
i +D2

i)

2(f2
i (t)− αi(t)λi(t)Difi(t))

+
αi(t)Di

fi(t)
+

(1− αi(t))
2λi(t)(σ

2
i +D2

i)

2[F 2
i − (1− αi(t))λi(t)DiFi]

+
(1− αi(t))Di

Fi
.

(5)

According to (5), if there is no computation workload
offloaded from device i at time slot t, the entire computation
workload is processed locally at the IoT devices, which gives
the entire delay to be equal to

λi(t)(σ
2
i +D2

i)

2(F 2
i − λi(t)DiFi)

+
Di

Fi
,

and if all computation workload is offloaded to the edge node,
the delay becomes

1
Ci(t)
Li
− λi(t)

+
λi(t)(σ

2
i +D2

i)

2(f2
i (t)− λi(t)Difi(t))

+
Di

fi(t)
.

Here, the optimization problem of minimizing long-term
end-to-end response time delay for the IoT devices is in-
vestigated, and long-term average constraints on computation

and power resources are considered. The formulation of the
problem is as follows

P1: min lim
T→∞

1

T

T−1∑
t=0

N∑
i=1

Ri(t), (6)

s.t. lim
T→∞

1

T

T−1∑
t=0

N∑
i=1

fi(t) ≤ Fe, (7)

lim
T→∞

1

T

T−1∑
t=0

(pi(t) + νiI{αi(t)<1}) ≤ Pi ∀i ∈ N , (8)

0 ≤ αi(t) ≤ 1 ∀i ∈ N , (9)

0 ≤ pi(t) ≤ Pi ∀i ∈ N , (10)

0 ≤ fi(t) ≤ Fe ∀i ∈ N . (11)

The objective is to minimize the total long-term average of
response time delay of all IoT devices. The decision variables
are: offloading portion αi(t), computation resource allocation
fi(t), and transmission power pi(t) at each time slot, where
i ∈ N . In Problem P1, decision variables are based on the
arrival rate of computation requests during the time slot as
(5), if arrival rate changes, new decision variables should be
made for the new arrival rate. In this paper, we follow Neely’s
framework [14] and assume that all time slots are of equal
length.

The constraints in Problem P1 limit the resources allocated
to long-term average computation (7) and to long-term average
power (8). In (7), the long-term average computation resource
allocation is limited by the edge node computation capacity
Fe, which implies that more than resource capacity can be
allocated at a time slot.It also means that the workload
peak can be buffered to be processed in a later time slot.
Note that this long-term computation constraint allows the
summation of computation consumptions to be larger than the
computation capacity at an instant time slot, but from long-
term perspective, the average computation consumption must
be less than the computation capacity for feasibility. Similarly,
with power amplifier and battery life cycle considerations,
each IoT device has a long-term power limitation Pi, i ∈ N
at (8), where the power consumption consists of two parts:
from uplink data transmission and computation processing. If
there is no computation workload offloading, the transmission
power pi(t) should be zero; otherwise, pi(t) will decide the
transmission rate of the uplink according to (1). If IoT device
i has a portion or all of its computation workload processed
locally, i.e. αi(t) < 1, then, the indicator function I{αi(t)<1}
takes the value of 1. This makes the IoT device consume a
constant power νi to provide its computation resource Fi, and
νi is given to be no larger than the power limitation Pi.

We note that our long-term focus in this paper implies
that our optimization problem considers the aggregation of
system behavior in various network states over a long period of
time. These network states include: high traffic load states and

6

low traffic load states. This is different from an optimization
problem over a limited time interval, because the former takes
account of correlation between measures such as queue length
of tasks at the buffer at consecutive time slots. An optimization
that focuses only on a limited time interval, e.g. a single
time slot, such consideration of correlated measures cannot
be taken account of. The global optimization over a longer
time horizon is able to consider long-term effects of processes
and aggregation of all possible system states in the system
to achieve overall better performance. For example, optimal
decisions on buffering or offloading traffic during peak traffic
on certain devices will have long-term implications that cannot
be considered if the optimization is done over a limited time
period.

IV. LYAPUNOV OPTIMIZATION BASED PROBLEM UPPER
BOUND ANALYSIS

To solve the optimization problem P1 with a long-term
objective function and constraints, we will use the Lyapunov
optimization to convert the original optimization problem
into a new optimization problem, and then efficiently and
distributively solve the new one instead.

A. Virtual queues

In Lyapunov optimization, the satisfaction of a long-term
average constraint is equal to the rate stability of a virtual
queue. Specifically, in this paper, a virtual queue is provided
to replace the computation resource constraint (7) of the edge
node, and A(t) denotes the stochastic process of the length of
the virtual queue A at time t. The value of A(t) indicates how
much computation resources are allocated beyond the capacity
at t. Similarly, to replace power constraint (8), another virtual
queue is provided for the IoT device i, ∀i ∈ N . Bi(t) denotes
the stochastic process of this virtual queue and is equal to
the length of queue at t. The value of Bi(t) indicates how
much the computation power usage is beyond the capacity at
t. For convenience, we use the notations A and Bi, ∀i ∈ N
to name virtual queues, i.e. virtual queue A and virtual queue
Bi, ∀i ∈ N , and A(t) and Bi(t) are the size of virtual queue
A and virtual Bi at time t, respectively. The updates of virtual
queues are as follows

A(t+ 1) = max
[
A(t) +

N∑
i=1

fi(t)− Fe, 0
]
, (12)

Bi(t+1) = max
[
Bi(t)+pi(t)+νiI{αi(t)<1}−Pi, 0

]
∀i ∈ N .

(13)
From (12), we can see that if the total amount of allocated

computation resources exceeds the resources capacity, the
virtual queue length A(t) will increase, otherwise, the virtual
queue length will decrease. Similar behaviors can also be
observed in virtual queues Bi, ∀i ∈ N from (13) with respect
to the power consumptions and the power budget.

Lemma 1: If virtual queues A and Bi, ∀i ∈ N are rate
stable, i.e., lim

T→∞
A(T)
T = 0 and lim

T→∞
Bi(T)

T = 0, ∀i ∈ N ,
then the long-term constraints (7) and (8) are satisfied.

Proof: From (12), we have

A(t+1) =

A(t) +

∑N
i=1 fi(t)− Fe,

if A(t) +
∑N

i=1 fi(t)− Fe ≥ 0

0, if A(t) +
∑N

i=1 fi(t)− Fe < 0.

Then, we obtain

A(t+ 1)−A(t)

=

{∑N
i=1 fi(t)− Fe, if A(t) +

∑N
i=1 fi(t)− Fe ≥ 0

−A(t), if A(t) +
∑N

i=1 fi(t)− Fe < 0,

= max

{
N∑
i=1

fi(t)− Fe,−A(t)

}
≥

N∑
i=1

fi(t)− Fe.

For t = 0, 1, 2, ..., T −1, summing up both sides, we obtain

lim
T→∞

A(T)−A(0)

T
≥ lim

T→∞

1

T

T−1∑
t=0

N∑
i=1

fi(t)− Fe.

Assuming A(0) = 0, and if the virtual queue A is rate
stable, i.e. lim

T→∞
A(T)
T = 0, we have

lim
T→∞

1

T

T−1∑
t=0

N∑
i=1

fi(t) ≤ Fe.

Similarly, if the virtual queues Bi, i ∈ N are rate stable,
we can obtain

lim
T→∞

1

T

T−1∑
t=0

(pi(t) + νiI{αi(t)<1}) ≤ Pi ∀i ∈ N .

This completes the proof. �
Following Lemma 1, the optimization problem P1 is equiv-

alently converted to become the following problem.

P2: min lim
T→∞

1

T

T−1∑
t=0

N∑
i=1

Ri(t), (14)

s.t. A(t) is rate stable, (15)

Bi(t) is rate stable, ∀i ∈ N , (16)

(9), (10), (11), (17)

where (15) and (16) are equality constraints of (7) and (8)
based on the virtual queues defined in (12) and (13), respec-
tively.

B. Drift-plus-Penalty

We use the drift-plus-penalty [14] of the Lyapunov opti-
mization to approximately solve P2 with an upper bound.
According to the Lyapunov optimization theory, we first define
the vector Θ(t) as Θ(t) = [A(t), B1(t), B2(t), ..., BN (t)].
Then, the Lyapunov function can be written as L(Θ(t)) =
1
2 (A(t)

2+
∑N

i=1 Bi(t)
2). The drift ∆Θ(t) can be obtained as

∆Θ(t) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}.

7

The original problem with long-term average objective and
constraints can be approximately converted into a problem
with the drift-plus-penalty as follows

P3: min ∆Θ(t) + V E
{ N∑

i=1

Ri(t)|Θ(t)
}

s.t. (9), (10), (11),

(18)

where minimizing the drift ∆Θ(t) enforces rate stability of
the virtual queues A and Bi, i ∈ N , and the parameter V ≥ 0
represents the penalty weight of the objective function to the
drift.

At the following, we will provide an upper bound for
∆Θ(t). Next, we solve the optimization problem P3 with
its upper bound. We start by finding an upper bound of
A(t+ 1)2 −A(t)2 and of

∑N
i=1[Bi(t+ 1)2 −Bi(t)

2].

A(t+ 1)2 −A(t)2

=
{
max

[
A(t) +

N∑
i=1

fi(t)− Fe, 0
]}2

−A(t)2

≤
[
A(t) +

N∑
i=1

fi(t)− Fe

]2
−A(t)2

= 2A(t)
(N∑

i=1

fi(t)− Fe

)
+

[N∑
i=1

fi(t)− Fe

]2
≤ 2A(t)

N∑
i=1

fi(t) + (

N∑
i=1

fi(t))
2 − 2Fe

N∑
i=1

fi(t) + F 2
e

≤ (N2 + 1)F 2
e + 2(A(t)− Fe)

N∑
i=1

fi(t)

= G1 + 2(A(t)− Fe)

N∑
i=1

fi(t),

where G1 is a constant which equals to (N2 + 1)F 2
e , and

the first inequality is due to {max(a, 0)}2 ≤ a2, the third
inequality is due to 0 ≤ fi(t) ≤ Fe. Similarly, an upper bound
of

∑N
i=1[Bi(t+ 1)−Bi(t)] can be obtained as follows

Bi(t+ 1)2 −Bi(t)
2

=
{
max[Bi(t) + pi(t) + νiI{αi(t)<1} − Pi, 0]

}2 −Bi(t)
2

≤ 2Bi(t)(pi(t) + νiI{αi(t)<1} − Pi)

+ (pi(t) + νiI{αi(t)<1} − Pi)
2 ≤ 2Bi(t)(pi(t) + νi − Pi)

+ pi(t)
2 + 2pi(t)(νiI{αi(t)<1} − Pi) + (νiI{αi(t)<1} − Pi)

2

≤ 2Bi(t)(pi(t) + νi − Pi) + pi(t)
2 + 2pi(t)(νi − Pi)

+ ν2i + P 2
i

= P 2
i + ν2i + pi(t)

2 + 2pi(t)(Bi(t) + νi − Pi)

+ 2Bi(t)(νi − Pi),

and
N∑
i=1

[Bi(t+ 1)2 −Bi(t)
2] =

N∑
i=1

{
P 2
i + ν2i + pi(t)

2

+ 2pi(t)(Bi(t) + νi − Pi) + 2Bi(t)(νi − Pi)
}

= G2 + 2

N∑
i=1

{1

2
pi(t)

2 + pi(t)(Bi(t) + νi − Pi)

+Bi(t)(νi − Pi)
}
,

where G2 is a constant which is equal to
∑N

i=1(P
2
i + ν2i).

Accordingly, the upper bound of the objective function (18) is
expressed as

∆Θ(t) + V E
{ N∑

i=1

Ri(t)|Θ(t)
}

= E
{
L(Θ(t+ 1))− L(Θ(t))|Θ(t)

}
+ V E

{ N∑
i=1

Ri(t)|Θ(t)
}

=
1

2
E
{
A(t+ 1)2 −A(t)2 +

N∑
i=1

[Bi(t+ 1)2 −Bi(t)
2]|Θ(t)

}
+ V E

{ N∑
i=1

Ri(t)|Θ(t)
}

≤ G1 +G2

2
+ E

{
(A(t)− Fe)

N∑
i=1

fi(t)|Θ(t)
}

+ E
{ N∑

i=1

(1
2
pi(t)

2 + pi(t)(Bi(t) + νi − Pi)

+Bi(t)(νi − Pi)
)
|Θ(t)

}
+ V E

{ N∑
i=1

Ri(t)|Θ(t)
}
.

(19)

Based on the idea of opportunistically minimizing an ex-
pectation [14], we convert problem P3 to the upper bound
problem P4 with the drift-plus-penalty as follows. In this way,
the original problem P1 can be approximated as problem P4,
and we will show the relationship of the solutions between
these two different problems.

P4: min V
N∑
i=1

Ri(t) + (A(t)− Fe)
N∑
i=1

fi(t)

+

N∑
i=1

(1
2
pi(t)

2 + pi(t)(Bi(t) + νi − Pi) +Bi(t)(νi − Pi)
)

s.t. (9), (10), (11).
(20)

Lemma 2: If problem P4 is feasible and the objective value
C is obtained, the virtual queues A and Bi, ∀i ∈ N are rate
stable, i.e., lim

T→∞
A(T)
T = 0 and lim

T→∞
Bi(T)

T = 0, ∀i ∈ N .
Proof: From (19) and the objective function of problem P4,

we have

L(Θ(t+ 1))− L(Θ(t)) + V
N∑
i=1

Ri(t) ≤ C,

8

then, we obtain

L(Θ(t+ 1))− L(Θ(t)) ≤ C − V

N∑
i=1

Ri(t) ≤ C,

where V
∑N

i=1 Ri(t) ≥ 0. Given t = 0, 1, 2, ..., T − 1,
we do the summations at right-hand side and at left-hand
side of the above inequalities, and we obtain L(Θ(T)) −
L(Θ(0)) ≤ TC. Considering L(Θ(0)) = 0, we have
1
2 (A(T)

2 +
∑N

i=1 Bi(T)
2) ≤ TC, and given A(T) ≥ 0, we

have A(T) ≤
√
2TC, and

lim
T→∞

A(T)

T
≤ lim

T→∞

√
2TC

T
= 0.

Finally, we have

lim
T→∞

A(T)

T
= 0.

Similarly, we can obtain lim
T→∞

Bi(T)
T = 0 ∀i ∈ N .

Virtual queues A and Bi, ∀i ∈ N are rate stable. This
completes the proof. �

Lemma 3: If problem P4 is feasible, then the long-term
constraints (7) and (8) are satisfied.

Proof: From Lemma 2, the virtual queues are rate stable
if problem P4 is feasible, and from Lemma 1, the long-term
constraints (7) and (8) are satisfied if the virtual queues are
rate stable. This completes the proof. �

C. Approximation Analysis

In this subsection, we provide a mathematical proof for the
upper bound of the difference between the solutions derived
by the approximation P4 and by problem P1.

Theorem 1: The optimal long-term response time delay
obtained by problem P4 is limited by an upper bound that
is the optimal value R∗ of the original problem P1 plus a
constant ε, which is obtained as follows

lim
T→∞

1

T

T−1∑
t=0

N∑
i=1

R′
i(t) ≤ R∗ + ε, (21)

where R′
i(t), i ∈ N , t = 1, 2, ..., T − 1 is the delay of IoT

devices i in time slot t that is derived by problem P4, and

ε =
(N2 + 1)F 2

e + 2NAmaxFe

2V

+
1

2V

N∑
i=1

(2P 2
i + ν2i + 2BmaxPi + 2Piνi + 2Bmaxνi).

Proof: After solving problem P4, we obtain the optimal
solution (expressed by R′

i(t), f
′
i(t) and p′i(t)) that minimizes

the objective function value of P4. From (19), we obtain

∆Θ′(t) + V E
{ N∑

i=1

R′
i(t)|Θ(t)

}
≤ G1 +G2

2
+ V

N∑
i=1

R′
i(t) + (A(t)− Fe)

N∑
i=1

f ′
i(t)

+
N∑
i=1

(1
2
p′i(t)

2 + p′i(t)(Bi(t) + νi − Pi) +Bi(t)(νi − Pi)
)

≤ G1 +G2

2
+ V R∗ + (A(t)− Fe)

N∑
i=1

fi(t)

+
N∑
i=1

(1
2
pi(t)

2 + pi(t)(Bi(t) + νi − Pi) +Bi(t)(νi − Pi)
)

≤ G1 +G2

2
+ V R∗ +NAmaxFe

+

N∑
i=1

(1
2
P 2
i +BmaxPi + Piνi +Bmaxνi

)
,

where the second inequality is due to the fact that the minimal
of the left-hand side (the optimal objective function value of
P4) must be no larger than any solution of the right-hand side.
The formulas can be rearranged as follows

E
{ N∑

i=1

R′
i(t)|Θ(t)

}
≤ G1 +G2

2V
+R∗ +

NAmaxFe

V

+
1

V

N∑
i=1

(1
2
P 2
i +BmaxPi + Piνi +Bmaxνi

)
− 1

V
∆Θ′(t).

By taking the long-term average from time slot 0 to T − 1
on both sides of the inequality, and let T go to infinity, we

9

obtain

lim
T→∞

1

T

T−1∑
t=0

N∑
i=1

R′
i(t)

≤ R∗ − lim
T→∞

1

T

T−1∑
t=0

∆Θ′(t)

V
+

G1 +G2

2V
+

NAmaxFe

V

+
1

V

N∑
i=1

(1
2
P 2
i +BmaxPi + Piνi +Bmaxνi

)
= R∗ − lim

T→∞

L(Θ′(T − 1))− L(Θ′(0))

V T
+

G1 +G2

2V

+
NAmaxFe

V
+

1

V

N∑
i=1

(1
2
P 2
i +BmaxPi + Piνi +Bmaxνi

)
= R∗ +

G1 +G2

2V
+

NAmaxFe

V

+
1

V

N∑
i=1

(1
2
P 2
i +BmaxPi + Piνi +Bmaxνi

)
= R∗ +

(N2 + 1)F 2
e +

∑N
i=1(P

2
i + ν2i)

2V
+

NAmaxFe

V

+
1

V

N∑
i=1

(1
2
P 2
i +BmaxPi + Piνi +Bmaxνi

)
= R∗ +

(N2 + 1)F 2
e + 2NAmaxFe

2V

+

∑N
i=1(2P

2
i + ν2i + 2BmaxPi + 2Piνi + 2Bmaxνi)

2V
,

where the third equality is due to the fact that the virtual
queues are rate stable. Otherwise, we cannot obtain the optimal
solution of problem P4. This completes the proof. �

V. DISTRIBUTED ALGORITHM DESIGN

In the above section, the original long-term optimization
problem has been converted into the upper bound problem P4.
However, problem P4 is not a convex optimization problem
due to the non-convexity of the objective function. Meanwhile,
many IoT devices may connect to the edge node, which
introduces a large number of variables, making problem P4
intractable. In this section, we provide a distributed algorithm
to solve problem P4.

In the objective function of problem P4, there are three
summation terms for N IoT devices, and we can equally
convert the objective function into N objective functions for
the N IoT devices, and each has the following objective
function.

min
1

2
pi(t)

2 + (Bi(t) + νi − Pi)pi(t) + (A(t)− Fe)fi(t)

+Bi(t)(νi − Pi) + V Ri(t).
(22)

Specifically, each IoT device has the optimization problem
after substituting Ri(t) with (5) as follows. The acronym DIP
stands for distributed problem in this paper.

DIP1: min
1

2
pi(t)

2 + (Bi(t) + νi − Pi)pi(t) +Bi(t)(νi − Pi)

+ (A(t)− Fe)fi(t) +
V αi(t)

w
Li

log
(
1 + pi(t)Hi(t)

N0

)
− αi(t)λi(t)

+
V α2

i (t)λi(t)(σ
2
i +D2

i)

2
(
f2
i (t)− αi(t)λi(t)Difi(t)

) +
V αi(t)Di

fi(t)

+
V (1− αi(t))

2λi(t)(σ
2
i +D2

i)

2
[
F 2
i − (1− αi(t))λi(t)DiFi

] +
V (1− αi(t))Di

Fi
,

(23)

s.t. 0 ≤ αi(t) ≤ 1, (24)

0 ≤ pi(t) ≤ Pi, (25)

0 ≤ fi(t) ≤ Fe, (26)

w

Li
log

(
1 +

pi(t)Hi(t)

N0

)
− αi(t)λi(t) > 0, (27)

fi(t)− αi(t)λi(t)Di > 0, (28)

Fi − (1− αi(t))λi(t)Di > 0. (29)

There are three more constraints ((27) to (29)) added to
ensure that the denominators in (5) are positive, where (28)
and (29) are the denominators divided by fi(t) and Fi (both
are positive), respectively. Obviously, the objective function
is a non-convex function, so the problem is a non-convex
optimization problem. For this problem, we use fractional
programming [47] to convert the problem DIP1 into an equiv-
alent optimization problem. First, we introduce four artificial
variables t1, t2, t3, t4 as follows

V αi(t)
w
Li

log
(
1 + pi(t)Hi(t)

N0

)
− αi(t)λi(t)

≤ t1,

V α2
i (t)λi(t)(σ

2
i +D2

i)

2
(
f2
i (t)− αi(t)λi(t)Difi(t)

) ≤ t2,

V αi(t)Di

fi(t)
≤ t3,

V (1− αi(t))
2λi(t)(σ

2
i +D2

i)

2
[
F 2
i − (1− αi(t))λi(t)DiFi

] ≤ t4,

then we obtain an equivalent optimization problem as follows

DIP2: min
1

2
pi(t)

2 + (Bi(t) + νi − Pi)pi(t)

+Bi(t)(νi − Pi) + (A(t)− Fe)fi(t) +

4∑
j=1

tj ,

(30)

s.t. V αi(t)− t1

[w log
(
1 + pi(t)Hi(t)

N0

)
Li

− αi(t)λi(t)
]
≤ 0,

(31)

10

V α2
i (t)λi(t)(σ

2
i +D2

i)− 2t2
[
f2
i (t)−αi(t)λi(t)Difi(t)

]
≤ 0,
(32)

V αi(t)Di − t3fi(t) ≤ 0, (33)

V (1− αi(t))
2λi(t)(σ

2
i +D2

i)

− 2t4
[
F 2
i − (1− αi(t))λi(t)DiFi

]
≤ 0,

(34)

(24)− (29). (35)

Problem DIP2 is also a non-convex optimization problem
because of the non-convex constraints. We convert this prob-
lem into a lower bound convex problem which can be solved
efficiently. Constraints (31)-(34) are relaxed as shown in (36)-
(39), which make the terms of ti i = 1, 2, 3, 4 linear.

V αi(t)− t1

[w log(1 +
pu
i (t)Hi(t)

N0
)

Li
− αl

i(t)λi(t)
]
≤ 0, (36)

V α2
i (t)λi(t)(σ

2
i +D2

i)− 2t2
[
f̂2
i (t)−αl

i(t)λi(t)Dif̂i(t)
]
≤ 0,
(37)

V αi(t)Di − t3f
u
i (t) ≤ 0, (38)

V (1− αi(t))
2λi(t)(σ

2
i +D2

i)

− 2t4
[
F 2
i − (1− αu

i (t))λi(t)DiFi

]
≤ 0,

(39)

where αl
i(t) and αu

i (t) are the minimal and the maximal
values of αi(t), respectively, f l

i (t) and fu
i (t) are the minimal

and the maximal values of fi(t), respectively, and pli(t) and
pui (t) are the minimal and the maximal values of pi(t),
respectively. It is noted that in (32), the derivation of the
term f2

i (t) − αi(t)λi(t)Difi(t) to αi(t) is −λi(t)Difi(t),
which is non-positive. Then, the term has the largest value
when αi(t) is equal to αl

i(t). After αi(t) is set to αl
i(t),

the term is convex function, and the largest value can be
chosen from fi(t) = f l

i (t) and fi(t) = fu
i (t), and f̂i(t) =

argmax{f2
i (t) − αl

i(t)λi(t)Difi(t)|fi(t) ∈ {f l
i (t), f

u
i (t)}}

denotes the selection.
The optimal solution of the new optimization problem

becomes a lower bound of problem DIP2 due to a larger
search area that leads to a lower objective function value. After
relaxation, all the constraints are linear except (27) which is
convex, and the new convex problem DIP3 is the lower bound
of problem DIP2, which is as follows

DIP3: min
1

2
pi(t)

2 + (Bi(t) + νi − Pi)pi(t)

+Bi(t)(νi − Pi) + (A(t)− Fe)fi(t) +

4∑
j=1

tj ,

(40)

s.t. αl
i(t) ≤ αi(t) ≤ αu

i (t), (41)

pli(t) ≤ pi(t) ≤ pui (t), (42)

f l
i (t) ≤ fi(t) ≤ fu

i (t), (43)

(27)− (29), (36)− (39). (44)

A distributed algorithm is proposed based on the branch-
and-bound method to derive the solution of problem DIP1,
where only the lower bound problem DIP3 is solved. It is
noted that constraints (41)-(43), (27)-(29), and (36)-(39) define
the search area of problem DIP3. In the branch-and-bound
procedure, we divide and bound the variable ranges according
to the lengths of variable ranges expressed by constraints
(41)-(43), and include remaining constraints ((27)-(29) and
(36)-(39)) in the solution process of the convex optimization
problem DIP3. The specific algorithm is shown as Algorithm
1.

In Algorithm 1, the objective function value S is obtained,
and then the delay value Z is calculated by Z = S−g(S)

V ,
where function g(·) is as follows

g(·) =1

2
pi(t)

2 + (Bi(t) + νi − Pi)pi(t)

+Bi(t)(νi − Pi) + (A(t)− Fe)fi(t),
(45)

and g(S) is the function value where S is the value of the
objective function of DIP1. At line 3 of the algorithm, the
convex optimization problem DIP3 can be efficiently solved
by optimization solvers. In line 7, there are three variables
(αi(t), fi(t) and pi(t)) that can be selected and divided the
range, the variable that has the largest range is selected, and
its range is equally divided into two; then, together with other
two variable ranges, there are two new search regions, H1 and
H2. The reason for selecting the largest range is that a larger
range may have a larger variation of the objective function
value, which may speed the finding of a lower objective
value. We note that in line 8, where the convex optimization
problem is solved with two different search regions H1 and
H2, the relaxations of the four constraints (36)-(39) change
according to the ranges of variables. In lines 9 and 10, the two
solutions (X(H1) and X(H2)) of problem DIP3 are put into
the objective function of problem DIP1, where two solutions
are feasible solutions of problem DIP1 because the constraints
of problem DIP1 are contained by problem DIP3. From lines
12 to 14, some search regions are deleted from H , this is
because these regions will not generate better solutions than
the solution obtained already. Line 15 sets the LB value as
the minimal lower bound in the H . Line 16 decides the search
region H0 in the next iteration, where the region with the
minimal lower bound is selected, and will be equally divided
into two smaller regions. Then, the two new regions can
generate two new lower bounds, LB(H1) and LB(H2), and
they must be no smaller than the LB(H0) which is also the
minimal lower bound in H . This can increase the LB value
and reduce the gap between S and LB in the next iteration.
In the new iteration, the difference between S and LB is
checked, if the difference is no larger than ξ, the algorithm

11

Algorithm 1: Distributed algorithm for computation of-
floading
Input: Computation request arrival rate λi(t) of IoT
device, power limitation Pi, IoT device computation
capacity Fi, edge node computation capacity Fe, lengths
of virtual queues A(t) and Bi(t), accuracy parameter ξ.
Output: Solution X = {αi(t), fi(t), pi(t)}, objective
function value S, and delay value Z = S−g(S)

V .
1 H ← ∅.
2 H0 = {(αi(t), fi(t), pi(t)|0 ≤ αi(t) ≤ 1, 0 ≤ fi(t) ≤
Fe, 0 ≤ pi(t) ≤ Pi}.

3 Solve the convex problem DIP3 with constraints
(27)-(29), (36)-(38) and H0. The obtained objective value
of DIP3 is LB(H0), and the solution is X(H0).

4 Assign the values of X(H0) to the variables in the
objective function DIP1; obtain the objective function
value S = DIP1(X(H0)).

5 Set the minimal lower bound LB = LB(H0), and
X = X(H0).

6 while (S − LB) > ξ do
7 Choose one of the three variables (αi(t), fi(t), pi(t))

that has the largest range in H0, then equally divide
the range of the selected variable into two to obtain
two new search areas H1 and H2.

8 Solve the convex optimization problem DIP3 twice:
in the first time with constraints (27)-(29), (36)-(38)
and H1, and in the second time with constraints
(27)-(29), (36)-(38) and H2. The obtained objective
values are LB(H1) and LB(H2), and the solutions
are X(H1) and X(H2).

9 S = min{S,DIP1(X(H1)),DIP1(X(H2))}.
10 X = argmin{S,DIP1(X(H1)),DIP1(X(H2))}.
11 H = H ∪H1 ∪H2.
12 For Ω ∈ H
13 If S ≤ LB(Ω)
14 Delete Ω from H .
15 LB = min{LB(Ω)|Ω ∈ H}.
16 H0 = argmin{LB(Ω)|Ω ∈ H}.
17 Delete H0 from H .

18 Return.

stops, otherwise, the selected search region H0 are further
divided.

Theorem 2: Algorithm 1 is convergent, when ξ ≥ 0.
Proof: For a search region H0 = {αi(t), fi(t), pi(t)|αl

i(t) ≤
αi(t) ≤ αu

i (t), f
l
i (t) ≤ fi(t) ≤ fu

i (t), p
l
i(t) ≤ pi(t) ≤ pui (t)},

if all three variable ranges approach 0, that means |αu
i (t) −

αl
i(t)| → 0, |fu

i (t) − f l
i (t)| → 0, and |pui (t) − pli(t)| → 0,

the four relaxed fractional terms (36)-(39) are the same as the
original ones (31)-(34). Then, the objective value of problem
DIP3 is equal to the objective of problem DIP2 (which is also
equal to the objective of problem DIP1 due to the equivalent
problem), so (S − LB) → 0 is obtained. In a word, in
Algorithm 1, the branch-and-bound makes the variable ranges
small enough, then (S − LB) ≤ ξ will be obtained, and

Algorithm 1 converges. �
Theorem 3: The long-term delay obtained by Algorithm 1

is limited by an upper bound that is the optimal value R∗ of
the original problem P1 plus a constant δ, and limited by the
lower bound of the optimal value R∗, which is as follows

R∗ ≤ lim
T→∞

1

T

T−1∑
t=0

N∑
i=1

Zi(t) ≤ R∗ + δ, (46)

where Zi(t), i ∈ N is the delay value Z obtained by
Algorithm 1 for IoT device i at time slot t, and

δ =
(N + 1)2F 2

e + 4NAmaxFe + 2Nξ

2V

+

∑N
i=1(5P

2
i + ν2i + 6BmaxPi + 4Piνi + 4Bmaxνi)

2V
.

Proof: The proof of the lower bound is quite obvious as R∗

is the minimal value of the delay, and any other values with
the same search area are larger than R∗, this proves the lower
bound.

When Algorithm 1 stops, we have Si−LBi ≤ ξ, where Si

and LBi are the objective value and the minimal lower bound
obtained by the algorithm at IoT device i, i ∈ N , respectively.
Suppose S∗

i is the optimal objective value of problem DIP1
at IoT device i, i ∈ N , we have Si − S∗

i ≤ ξ because LBi ≤
S∗
i ≤ Si. Then we have

S∗
i ≥ Si − ξ. (47)

From Theorem 1, we have lim
T→∞

1
T

∑T−1
t=0

∑N
i=1 R

′
i(t) ≤

R∗ + ε, and the term at the left-hand side of the inequality
is the value obtained by problem P4. It is noted that problem
DIP1 at N IoT devices solve problem DIP1 distributively, so

lim
T→∞

1

T

T−1∑
t=0

N∑
i=1

R′
i(t) =

1

V

N∑
i=1

(S∗
i − g(S∗

i)),

where g(S∗
i) is the value of the function g(·) when the entire

objective value of DIP1 is S∗
i . Then from (47), we have

R∗ + ε ≥ 1

V

N∑
i=1

[Si − g(S∗
i)− ξ].

and we have

R∗ + ε ≥ 1

V

N∑
i=1

[V Zi + g(Si)− g(S∗
i)− ξ],

where Zi, i ∈ N is the delay obtained for IoT device i. Then,
we have

N∑
i=1

Zi ≤ R∗ + ε+
Nξ

V
+

1

V

N∑
i=1

[g(S∗
i)− g(Si)]

≤ R∗ + ε+
Nξ

V
+

1

V

N∑
i=1

[(1
2
P 2
i +BmaxPi + Piνi

+Bmaxνi +AmaxFe

)
− (−P 2

i −BmaxPi − F 2
e)
]

≤ R∗ +
(N + 1)2F 2

e + 4NAmaxFe + 2Nξ

2V

+

∑N
i=1(5P

2
i + ν2i + 6BmaxPi + 4Piνi + 4Bmaxνi)

2V
.

12

Finally, after taking the long-term average from time slot 0 to
T − 1 on both sides of the inequality, and let T go to infinite,
we have (46), and this proves the upper bound. �

According to Theorem 3, the gap between the final result
obtained by Algorithm 1 and the actual optimal result of the
original problem is lower and upper bounded by zero and δ,
respectively. However, the exact gap value cannot be obtained,
because the actual optimal result cannot be calculated due
to the non-convexity of the original problem. Nevertheless,
because δ can be controlled, the upper bound of the gap can
be limited.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed distributed algorithm by experimental runs of Algorithm
1. In the experimental scenarios, each IoT device executes
Algorithm 1 to obtain solution {αi(t), fi(t), pi(t)}, and all
IoT devices work asynchronously. The edge node collects
fi(t), i ∈ N of IoT devices and updates the virtual queue
A according to (12), then the length of the updated A(t) is
sent back to all IoT devices. It is noted that only the values
of fi(t), i ∈ N and the length of A(t) are exchanged between
the edge node and IoT devices, which achieves a low overhead
for the communication and the system management.

In the experimental scenarios, IoT devices are randomly
scattered around the coverage area of the edge node. As
in [36], we set the channel bandwidth w = 5 MHz, the
background noise N0 = −100 dBm. According to the wireless
channel model for IoT environment, we set the channel gain
equal to the path loss factor Hi(t) = d−4

i , where di is the
distance between IoT device i and the edge node [48]. The
parameter settings in the experiments are listed in Table II.

TABLE II
PARAMETER SETTINGS IN THE EXPERIMENTS

Parameter Value
N 5, 10, 20, 30, 40
w 5 MHz
N0 -100 dBm
λi(t) unif[1, 1.5], unif[1.5, 2], unif[2, 2.5]
di unif[10, 100] m

Hi(t) d−4
i

Li unif[5, 8] Kbit
Di unif[1, 2] CPU
σi Di, 5Di, 7Di

Fi unif[1, 8] CPU
Fe 30 CPU
Pi unif[1, 5] W
vi 0.9Pi W
V 1, 10, 50

Figures 2 and 3 demonstrate the performance of the algo-
rithm for three scenarios, where 10 IoT devices are considered,
the computation request arrival rate is uniformly chosen from
1 to 1.5 (unif[1, 1.5] for short), the weight parameter V = 1
and computation requirements have the same average as Table
II, but different standard deviations (i.e. σi = Di, σi = 5Di

0 5 10 15 20 25 30

0.08

0.10

0.12

0.14

0.16

0.18

A
ve

ra
ge

 d
el

ay
 (s

)

Time slot

 standard deviation=mean
 standard deviation=5*mean
 standard deviation=7*mean

Fig. 2. Average response time delay
per IoT device with different standard
deviations.

0 5 10 15 20 25 30
-0.15

-0.10

-0.05

0.00

0.05

0.10

A
ve

ra
ge

 d
rif

t

Time slot

 standard deviation=mean
 standard deviation=5*mean
 standard deviation=7*mean

Fig. 3. Average drift per IoT device
with different standard deviations.

and σi = 7Di). In Fig. 2, the average response time delays
per IoT device for the three scenarios are compared. It is
observed, as expected, that and the delay value increases when
the standard deviation is larger. It is well known from queueing
theory that increasing the variability of the demand causes high
queueing delay even if the average demand stays constant. This
is because high computation demands at certain heavy traffic
periods causes high congestion and delay that cannot be offset
during light or idle traffic periods as the queue and delay are
bounded below by zero. According to Theorem 2, Algorithm
1 converges, and Fig. 2 illustrates the distributed algorithm
convergence. Specifically, stable response time delays are
attained at three scenarios within 25 time slots, and in the
figure, delay values within 30 time slots are shown for brevity.
The average drift value per IoT device is shown in Fig. 3,
and the average drift value has the same trend as the average
response time delay in Fig. 2, where a larger standard deviation
leads to a larger average drift value. The effect here is related
to the effect of larger standard deviation on the response time
delay shown in Fig. 2. That is, a larger standard deviation
leads to a longer average queue length, and the drift value
is increased. We choose the standard deviation as σi = Di,
∀i ∈ N for the numerical experiments next for brevity.

Figures 4 to 7 demonstrate the performance of the algorithm
given three different numbers of IoT devices N associated
to the edge node, where the arrival rate is unif[1, 1.5], and
the weight parameter V = 1. Figure 4 shows the average
response time delay per IoT device for the three scenarios,
and the average response time delays are stable. In Fig. 4,
the scenario with more IoT devices has higher delay values,
where the scenario with 30 IoT devices has the highest delay
value, sequentially followed by the scenarios with 20 and with
10 IoT devices. This is because more IoT devices compete
for a limited computation resource at the edge node, which
leads to a higher queueing delay. Figure 5 shows the length of
the virtual queue A(t) during the experiments. In the figure,
all three scenarios have stable length values, which means the
virtual queue A are rate stable in three scenarios. The scenario
with 30 IoT devices has the highest virtual queue length value,
sequentially followed by the scenarios with 20 and with 10
IoT devices. This is because more IoT devices need more
computation resources, and the computation capacity of the
edge node is limited, which implies that more than the capacity
computation resources are needed and makes the length of the
virtual queue increase. It is noted that in the experiments, with

13

0 5 10 15 20 25 30

0.08

0.12

0.16

0.20

A

ve
ra

ge
 d

el
ay

 (s
)

Time slot

 N=10
 N=20
 N=30

Fig. 4. Average response time delay
with different numbers of IoT de-
vices.

0 5 10 15 20 25 30
0

2

4

6

8

10

A
(t)

Time slot

 N=10
 N=20
 N=30

Fig. 5. Length of virtual queue A
with different numbers of IoT de-
vices.

0 5 10 15 20 25 30
0.00

0.02

0.04

0.06

0.08

B
m
ax
(t)

Time slot

 N=10
 N=20
 N=30

Fig. 6. Value of Bmax(t) with
different numbers of IoT devices.

0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
eq

ue
nc

y

Offloading portion

 N=10
 N=20
 N=30

Fig. 7. Distribution of offloading
portions with different numbers of
IoT devices.

the limited computation resource, the number of IoT devices
can be served is decided by the delay tolerance, and compu-
tation request arrival rate. For example, if a high response
delay tolerance is granted, and computation request arrival
rate is low and there are sufficient computation resources, the
number of IoT devices served can be very large, otherwise,
it is small. In Fig. 6, the largest value of the virtual queues
Bmax(t) = max{Bi(t)|i ∈ N} among all N IoT devices is
compared in the three scenarios. In the figure, three scenarios
have limited lengths of the longest virtual queue, which also
means that all the virtual queues of the IoT devices are stable.
The scenario with 10 IoT devices has the highest virtual queue
length value, sequentially followed by the scenarios with 20
and with 30 IoT devices, and this is because more IoT devices
compete for the limited computation resources at the edge
node, which leads to the reduction of the workload offloaded
to the edge node and the reduction of transmission power.
Finally, it results in a lower power usage and a shorter length
of the virtual queue Bi(t), i ∈ N for IoT devices. In the
experiments, we calculate the average workload offloading
value of all IoT devices at each of the 30 time slots, then
we show the distribution of these 30 values as histograms in
Fig. 7. Specifically, for each scenario, we calculate the average
workload offloading values of all IoT devices at each time slot,
then we depict frequencies of the average workload offloading
values in 30 average offloading values as histograms. We
observe that there are three different distributions for the three
scenarios. Specifically, in the scenario with 30 IoT devices,
most average offloading values are from 0.52 to 0.7, and the
mean value is 0.605. In the scenario with 20 IoT devices,
most average offloading values are from 0.85 to 0.91, the
mean value is 0.868. In the scenario with 10 IoT devices, most
average offloading values are from 0.92 to 1, and the mean

value is 0.95. This is because more IoT devices compete for
a limited computation resource at the edge node, and a higher
queueing delay may incur, which in turn implies reduction of
the portion of the workload offloaded to the edge node and
compute more workloads locally.

0 5 10 15 20 25 30 35

0.08

0.10

0.12

0.14

0.16

A
ve

ra
ge

 d
el

ay
 (s

)

Time slot

 V=1
 V=10
 V=50

Fig. 8. Average response time delay
with different V values.

0 5 10 15 20 25 30 35

0.0

0.3

0.6

0.9

1.2

A
ve

ra
ge

 d
rif

t

Time slot

 V=1
 V=10
 V=50

Fig. 9. Average drift per IoT device
with different V values.

Fig. 10. Average response time
delay with different arrival rates.

0 50 100 150 200 250 300 350 400 450

0.084

0.087

0.090

0.093

A
ve

ra
ge

 d
el

ay
 (s

)

Time slot

Fig. 11. Average response time
delay with dynamic arrival rates.

We also investigate the performance of the algorithm given
different values of V in Figs. 8 and 9, where V is the weight
parameter of the response time delay and a larger value of
V implies a higher impact of the response time delay value
on the objective function value of problem DIP1. In the
experiments, 20 IoT devices are considered, and the arrival
rate is unif[1, 1.5]. In Fig. 8, the average response time delays
per IoT device are compared for three different V values,
1, 10 and 50. In the figure, when V is set to 1, it has the
largest average response time delay, followed by the scenarios
of V = 10 and V = 50. This is because when the value
of V increases, a small decrease of the delay incurs a large
reduction of the objective function value, then the optimization
procedure prefers to reduce the delay value leading to an even
lower objective function value. The average drift value per IoT
device is also shown in Fig. 9. The trend is just opposite to that
of the average response time delay, where a small value of V
means a high impact of the drift value to the objective function
value, then the optimization procedure reduces the drift that
brings more reductions of the objective function value than
the delay.

TABLE III
AVERAGE OFFLOADING PORTION

Arrival rate unif[1, 1.5] unif[1.5, 2] unif[2, 2.5]
Offloading portion 0.8718 0.8331 0.8234

Figure 10 shows the average response time delay for three
different arrival rates of computation workloads, where 20 IoT
devices are considered, and the weight parameter V = 1. In the

14

figure, a higher arrival rate leads to a larger average response
time delay, specifically, the scenario where the arrival rate
of computation requests is uniformly distributed within [2.0,
2.5] has the highest average response time delay, followed
by the scenarios with the arrival rates uniformly distributed
within [1.5, 2.0] and within [1.0, 1.5]. As expected, the
higher arrival rate leads to more computation tasks competing
for the limited network and computation resources, which
increases the queueing time of computation workload. The
average workload offloading portions after convergence in
three scenarios are also listed in Table III, where a higher
arrival rate shows a lower average workload offloading portion.
A similar reason as that of Fig. 7 is that more computation
requests at the same time incur a large queueing delay at
the edge node, which prefers more workload to be computed
locally.

We investigate the performance of the algorithm when the
arrival rate is dynamically changed. In Fig. 11, the average
response time delay is shown when the arrival rate of the
computation workload changes. In the figure, the arrival rate
is firstly uniformly distributed within [1.5, 2.0], at the 80th
time slot, the arrival rate is reduced by 0.5, so it is uniformly
distributed [1.0, 1.5], and as expected, we find that the average
response time delay is reduced. At the 230th time slot, the
arrival rate is increased by 0.5, so it is again uniformly dis-
tributed within [1.5, 2.0], and the average response time delay
returns back to its value at the beginning. This demonstrates
that the algorithm can handle dynamic traffic scenarios well.

TABLE IV
NUMBER OF TIME SLOTS FOR ALGORITHM CONVERGENCE

Number of IoT devices 5 10 20 30 40
Time slots 13 18 22 24 28

We also show the number of time slots required by the
distributed algorithm for convergence in Table IV. We observe
this required number of time slots increases when the number
of devices increases. This is because each device solves its
local problem (executes Algorithm 1) and communicates with
the edge node, and more devices incur more communications
with the edge node, more rounds are needed to adjust and
optimize resource allocations among devices.

VII. CONCLUSION

We have considered the combination of computation of-
floading and resource allocation optimization problem in an
edge computing network. The objective is to minimize the
long-term average delay under constraints of long-term av-
erages of computation and power usage. We have converted
the problem into an upper bound problem with the drift-
plus-penalty of the Lyapunov optimization. Then a distributed
algorithm has been proposed to solve the upper bound problem
using the branch-and-bound method. In the branch-and-bound
procedure, the problem is relaxed to be a convex optimization
problem, which can be solved efficiently and derives the
solution of the upper bound problem that has a limited gap
to the original solution. Theoretical analysis of the algorithm

has also been provided. Numerical results have demonstrated
that the proposed distributed algorithm efficiently achieves the
target long-term performance, balancing between the delay of
computation workload and the drift of the virtual queues.

REFERENCES

[1] IoT Analytics, “State of the IoT 2018: Number of IoT devices now
at 7B-Market accelerating,” 2018, [Online]. Available: https://iot-
analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices
-now-7b/. [Accessed: 10-Feb-2020].

[2] IHS Markit, “IoT Trend Watch 2018,” 2018, [Online]. Available:
https://ihsmarkit.com/industry/telecommunications.html. [Accessed: 10-
Feb-2020].

[3] M. T. Beck, M. Werner, S. Feld, and T. Schimper, “Mobile edge
computing: A taxonomy,” in Proc. the Sixth International Conference
on Advances in Future Internet, 2014, pp. 48–54.

[4] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, Dec
2016.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th quart. 2017.

[6] X. Hu, L. Wang, K. Wong, M. Tao, Y. Zhang, and Z. Zheng, “Edge and
central cloud computing: A perfect pairing for high energy efficiency
and low-latency,” IEEE Trans. Wireless Commun., pp. 1–1, 2019.

[7] C. Wang, Y. He, F. R. Yu, Q. Chen, and L. Tang, “Integration of
networking, caching, and computing in wireless systems: A survey, some
research issues, and challenges,” IEEE Commun. Surveys Tuts., vol. 20,
no. 1, pp. 7–38, 2018.

[8] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 16, no. 8,
pp. 4924–4938, Aug 2017.

[9] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint
radio and computational resource management for multi-user mobile-
edge computing systems,” IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 5994–6009, Sep 2017.

[10] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand acceler-
ating deep neural network inference via edge computing,” IEEE Trans.
Wireless Commun., vol. 19, no. 1, pp. 447–457, Jan 2020.

[11] C. Zhao, Y. Cai, A. Liu, M. Zhao, and L. Hanzo, “Mobile edge
computing meets mmWave communications: Joint beamforming and re-
source allocation for system delay minimization,” IEEE Trans. Wireless
Commun., pp. 1–1, 2020.

[12] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient
resource allocation in UAV-enabled mobile edge computing networks,”
IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4576–4589, Sep
2019.

[13] S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison, “The
extended cloud: Review and analysis of mobile edge computing and fog
from a security and resilience perspective,” IEEE J. Sel. Areas Commun.,
vol. 35, no. 11, pp. 2586–2595, Nov 2017.

[14] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” in Synthesis Lectures on Com-
munication Networks, San Rafael, CA, USA: Morgan & Claypool, 2010,
vol. 3, pp. 1-211, 1.

[15] Y. Cui, V. Lau, R. Wang, H. Huang, and S. Zhang, “A survey on delay-
aware resource control for wireless systems - large deviation theory,
stochastic Lyapunov drift, and distributed stochastic learning,” IEEE
Trans. Inf. Theory, vol. 58, no. 3, pp. 1677–1701, Mar 2012.

[16] P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic approach
to energy harvesting communication system optimization,” IEEE Trans.
Wireless Commun., vol. 12, no. 4, pp. 1872–1882, Nov 2013.

[17] A. Munir and A. Gordon-Ross, “An MDP-based dynamic optimization
methodology for wireless sensor networks,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 23, no. 4, pp. 616–625, Apr 2012.

[18] A. Minasian, S. ShahbazPanahi, and R. S. Adve, “Energy harvesting
cooperative communication systems,” IEEE Trans. Wireless Commun.,
vol. 13, no. 11, pp. 6118–6131, Nov 2014.

[19] G. P. Fettweis, “The Tactile Internet: Applications and challenges,” IEEE
Veh. Technol. Mag., vol. 9, no. 1, pp. 64–70, Mar 2014.

[20] A. A. Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A survey on enabling technologies,
protocols, and applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2347–2376, 4th Quart. 2015.

15

[21] Juniper, White Paper, “Smart wireless devices and the Internet
of me,” Mar 2015, [Online]. Available: http://itersnews.com/wp-
content/uploads/experts/2015/03/96079Smart-Wireless-Devices-and-the-
Internet-of-Me.pdf. [Accessed: 10-Feb-2020].

[22] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and
K. Mankodiya, “Towards fog-driven IoT eHealth: Promises and chal-
lenges of IoT in medicine and healthcare,” Future Generation Computer
Systems, vol. 78, pp. 659 – 676, 2018.

[23] AT&T Newsroom, “The cloud comes to you: AT&T to power
self-driving cars, AR/VR and other future 5G applications through
edge computing,” Jul 2017, [Online]. Available: http://about.att.
com/story/reinventing the cloud through edge computing.html. [Ac-
cessed: 10-Feb-2020].

[24] T. Dang and M. Peng, “Joint radio communication, caching, and
computing design for mobile virtual reality delivery in fog radio access
networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 7, pp. 1594–1607,
Jul 2019.

[25] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
“Fog computing: Principles, architectures, and applications,” arXiv e-
prints, Jan 2016.

[26] Y. Cao, S. Chen, P. Hou, and D. Brown, “FAST: A fog computing as-
sisted distributed analytics system to monitor fall for stroke mitigation,”
in Proc. IEEE International Conference on Networking, Architecture and
Storage, Aug 2015, pp. 2–11.

[27] J. K. Zao, T. T. Gan, C. K. You, S. J. R. Méndez, C. E. Chung, Y. T.
Wang, T. Mullen, and T. P. Jung, “Augmented brain computer interac-
tion based on fog computing and linked data,” in Proc. International
Conference on Intelligent Environments, Jun 2014, pp. 374–377.

[28] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu, and F. Bonomi,
“Improving web sites performance using edge servers in fog comput-
ing architecture,” in Proc. IEEE Seventh International Symposium on
Service-Oriented System Engineering, Mar 2013, pp. 320–323.

[29] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–
465, Feb 2018.

[30] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,” IEEE Commun. Surveys
Tuts., vol. 19, no. 3, pp. 1657–1681, 3rd quart. 2017.

[31] C. You, K. Huang, H. Chae, and B. Kim, “Energy-efficient resource al-
location for mobile-edge computation offloading,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397–1411, Mar 2017.

[32] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog com-
puting networks with fog node cooperation,” in Proc. IEEE INFOCOM,
May 2017, pp. 1–9.

[33] Y. Xiao and M. Krunz, “Dynamic network slicing for scalable fog com-
puting systems with energy harvesting,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 12, pp. 2640–2654, Dec 2018.

[34] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, “Energy-delay tradeoff
for dynamic offloading in mobile-edge computing system with energy
harvesting devices,” IEEE Trans. Ind. Informat, vol. 14, no. 10, pp.
4642–4655, Oct 2018.

[35] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec 2016.

[36] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct 2016.

[37] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Trans. Signal Inf. Process. Over Netw., vol. 1, no. 2, pp. 89–103,
Jun 2015.

[38] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar 2018.

[39] J. Zhu, J. Wang, Y. Huang, F. Fang, K. Navaie, and Z. Ding, “Resource
allocation for hybrid NOMA MEC offloading,” IEEE Trans. Wireless
Commun., pp. 1–1, 2020.

[40] F. Wang, J. Xu, and S. Cui, “Optimal energy allocation and task
offloading policy for wireless powered mobile edge computing systems,”
IEEE Trans. Wireless Commun., vol. 19, no. 4, pp. 2443–2459, Apr
2020.

[41] J. He, Z. Xue, D. Wu, D. Wu, and Y. Wen, “CBM: online strategies
on cost-aware buffer management for mobile video streaming,” IEEE
Trans. Multimedia, vol. 16, no. 1, pp. 242–252, Jan 2014.

[42] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, “Lyapunov optimization for energy
harvesting wireless sensor communications,” IEEE Internet Things J.,
vol. 5, no. 3, pp. 1947–1956, Jun 2018.

[43] T. J. Ott, “Simple inequalities for the D/G/1 queue,” Operations Re-
search, vol. 35, no. 4, pp. 589–597, 1987.

[44] J. P. Champati, H. Al-Zubaidy, and J. Gross, “Statistical guarantee
optimization for age of information for the D/G/1 queue,” in IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications
Workshops, 2018, pp. 130–135.

[45] F. Metzger, T. Hofeld, A. Bauer, S. Kounev, and P. E. Heegaard,
“Modeling of aggregated IoT traffic and its application to an IoT cloud,”
Proceedings of the IEEE, vol. 107, no. 4, pp. 679–694, 2019.

[46] M. Zukerman, “Introduction to queueing theory and stochastic tele-
traffic models,” 2019, [Online]. Available: http://www.ee.cityu.edu.hk/
∼zukerman/classnotes.pdf. [Accessed: 10-Feb-2020].

[47] P. Shen, T. Zhang, and C. Wang, “Solving a class of generalized frac-
tional programming problems using the feasibility of linear programs,”
J. Inequalities Appl., vol. 2017, no. 147, Jun 2017.

[48] T. S. Rappaport, Wireless communications: Principles and practice,
2nd ed. Prentice Hall, 2002.

Rongping Lin received the Ph.D. degree from the
School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore, 2013.
He is currently an Associate Professor with the
School of Information and Communication Engi-
neering, University of Electronic Science and Tech-
nology of China (UESTC), Chengdu, P.R. China.
From 2013 to 2014, he was a Senior Research Assis-
tant in City University of Hong Kong. His research
interests include optimization, machine learning, and
their applications in wire/wireless networks.

Zhijie Zhou is pursuing the M.S. degree with the
School of Information and Communication Engi-
neering, UESTC, P.R. China. His research interest
includes optimization and edge computing.

Shan Luo received the Ph.D. degree in information
engineering from Nanyang Technological University
in 2014. She is currently an Associate Professor
with the School of Aeronautics and Astronautics,
UESTC, P.R. China. Her research interests include
wireless communications and optimization.

16

Yong Xiao (S’09-M’13-SM’15) is a professor in
the School of Electronic Information and Commu-
nications at the Huazhong University of Science
and Technology (HUST), Wuhan, China. Before he
joins HUST, he was a research assistant profes-
sor in the Department of Electrical and Computer
Engineering at the University of Arizona where
he was also the center manager of the Broadband
Wireless Access and Applications Center (BWAC),
an NSF Industry/University Cooperative Research
Center (I/UCRC) led by the University of Arizona.

His research interests include machine learning, game theory, distributed op-
timization, and their applications in cloud/fog/mobile edge computing, green
communication systems, wireless communication networks, and Internet-of-
Things (IoT).

Xiong Wang is an Associate Professor with the
School of Information and Communication Engi-
neering, UESTC, P.R.China. His research interests
include network measurement, modeling and opti-
mization, algorithm analysis and design, network
management in communication networks.

Sheng Wang is a Professor with the UESTC. His
research interests include planning and optimization
of wire and wireless networks, next generation of
internet, and next-generation optical networks. He
is a Senior Member of the Communication Society
of China, a Member of the ACM, and a Member of
the China Computer Federation.

Moshe Zukerman (M’87-SM’91-F’07-LF’20) re-
ceived the B.Sc. degree in industrial engineering
and management, the M.Sc. degree in operations
research from the Technion-Israel Institute of Tech-
nology, Haifa, Israel, and the Ph.D. degree in engi-
neering from University of California, Los Angeles,
in 1985. He was an independent consultant with
the IRI Corporation and a Postdoctoral Fellow with
the University of California, Los Angeles, in 1985-
1986. In 1986-1997, he was with Telstra Research
Laboratories (TRL), first as a Research Engineer

and, in 1988-1997, as a Project Leader. He also taught and supervised graduate
students at Monash University in 1990-2001. During 1997-2008, he was with
The University of Melbourne, Victoria, Australia. In 2008 he joined City
University of Hong Kong as a Chair Professor of Information Engineering,
and a team leader. He has over 300 publications in scientific journals and
conference proceedings. He has served on various editorial boards such
as Computer Networks, IEEE Communications Magazine, IEEE Journal of
Selected Areas in Communications, IEEE/ACM Transactions on Networking
and Computer Communications.

