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Abstract—This paper studies an edge intelligence-based IoT
network in which a set of edge servers learn a shared model using
federated learning (FL) based on the datasets uploaded from
a multi-technology-supported IoT network. The data uploading
performance of IoT network and the computational capacity
of edge servers are entangled with each other in influencing
the FL model training process. We propose a novel framework,
called federated edge intelligence (FEI), that allows edge servers
to evaluate the required number of data samples according
to the energy cost of the IoT network as well as their local
data processing capacity and only request the amount of data
that is sufficient for training a satisfactory model. We evaluate
the energy cost for data uploading when two widely-used IoT
solutions: licensed band IoT (e.g., 5G NB-IoT) and unlicensed
band IoT (e.g., Wi-Fi, ZigBee, and 5G NR-U) are available to
each IoT device. We prove that the cost minimization problem
of the entire IoT network is separable and can be divided into a
set of subproblems, each of which can be solved by an individual
edge server. We also introduce a mapping function to quantify the
computational load of edge servers under different combinations
of three key parameters: size of the dataset, local batch size, and
number of local training passes. Finally, we adopt an Alternative
Direction Method of Multipliers (ADMM)-based approach to
jointly optimize energy cost of the IoT network and average
computing resource utilization of edge servers. We prove that our
proposed algorithm does not cause any data leakage nor disclose
any topological information of the IoT network. Simulation
results show that our proposed framework significantly improves
the resource efficiency of the IoT network and edge servers with
only a limited sacrifice on the model convergence performance.

Index Terms—6G, edge intelligence, federated learning, IoT.

I. INTRODUCTION

Data is at the heart of next generation IoT networks.

With the dramatic growth in demand for smart services and

applications that rely on cross-domain data processing and

analysis, data privacy has become one of the key issues

when deploying data-driven AI-based solutions in large-scale

IoT networks. Traditional cloud-based solution in which IoT

devices must upload all the data into a cloud data center for

a centralized process is known to be difficult to meet the

increasingly stringent requirements in service responsiveness

as well as data security and privacy protection.

Edge intelligence has been recently promoted as one of

the key solutions to unleash the full potential of data-driven

IoT networks. It inherits the decentralized nature of edge

computing and emphasizes more on performing and delivering

AI-functions and solutions closer to the data source, e.g.,

IoT devices. One of the key challenges for applying edge

intelligence in IoT networks is to implement distributed data

processing and learning across a large number of decentralized

datasets owned or managed by different user devices with

privacy protection requirements. Federated learning (FL) is an

emerging distributed AI framework that enables collaborative

machine learning (ML) across decentralized datasets. It offers

a viable solutions for data-driven learning and model training

across privacy-sensitive datasets.

Despite of its huge potential, implementing FL in edge

intelligence-based IoT networks is hindered by several chal-

lenges. In particular, edge intelligence relies on a large number

of low-cost edge servers to perform AI tasks and solutions. The

geographical distributions and data processing capabilities of

edge servers can vary significantly causing highly unbalanced

service demands and resource utilization. Also, the quality and

size of dataset available at each edge server directly affects

the performance of the model training. Unfortunately, the

random nature of the wireless links connecting IoT devices and

edge servers can exhibit high temporal and spatial fluctuation

which may result in different numbers of data samples being

uploaded from the IoT network to different edge servers.

Currently, there is still a lack of a comprehensive framework

that can coordinate and jointly optimize the data collection

and transportation of the IoT network and the data processing

and model training at edge servers.

In this paper, we investigate an edge intelligence-based IoT

network in which an edge computing system consisting of a

set of edge servers trains a shared model based on the data

samples uploaded from an IoT network. We propose a novel

framework, referred to as federated edge intelligence (FEI), to

allow jointly optimization of IoT networks and edge servers.

In FEI, each edge server will only request a limited amount of

data to be collected and uploaded from the IoT network as long

as the requirement of model can be met. We consider a multi-

technology-supported IoT network in which each IoT device

can use licensed band IoT (LB-IoT) (e.g., NB-IoT) as well as

unlicensed band IoT (UB-IoT) (e.g., Wi-Fi, 5G NR-U, Zigbee,

LoRa, etc.) technologies to upload data. The main objective is

to maximize the utilization of computational resources of edge

servers and at the same time minimize energy cost of the IoT

network. We propose a distributed algorithm that can address

both problems. More specifically, to minimize the energy cost

of IoT network, we evaluate the energy cost for uploading



data samples with both LB-IoT and UB-IoT and prove that

the energy cost minimization problem of the IoT network

is separable and can be divided into a set of subproblems

each can be solved by an individual edge server. For the

edge computing system, we introduce a mapping function

to quantify the convergence performance of model training

under different combinations of three key parameters: size

of the dataset, local batch size, and number of local training

passes. We finally adopt an Alternative Direction Method of

Multipliers (ADMM)-based approach to jointly optimize both

energy cost minimization problem of the IoT network and

computing resource utilization of the edge computing system.

We prove that our proposed algorithm does not cause data

leakage of any local dataset nor reveal any network-related

information such as topological information about the IoT

network. Numerical results show that our proposed framework

can significantly reduce energy cost of the IoT network and

at the same time improve the resource utilization of the

edge computing system with only a slight degradation of the

convergence performance of FL model training.

The remainder of this paper is organized as follows. Existing

work that is relevant to this paper is reviewed in Section

II. We introduce our system model and formulate the joint

optimization problem in Section III. The FEI framework and

a distributed optimization algorithm are proposed in Section

IV. Numerical results are presented in Section V and the paper

is concluded in Section VI.

II. RELATED WORK

Edge computing-based IoT: Edge computing has already

been recognized as one of the key components in the next

generation IoT network to perform low-latency data processing

and analysis. Most existing works focus on optimizing the

communication resource (e.g., spectrum) allocation of IoT

and computational load distribution of edge computing. For

example, in [1], the authors studied the joint allocation of

computing and networking resources for application provi-

sioning in edge computing-enabled IoT networks requiring

QoS guarantees. The task offloading and resource allocation

problems for distributed edge computing networks have also

been investigated under various time-varying scenarios [2], [3].

FL for Networking Systems: As mentioned earlier, two major

challenges that are obstructing the wide spread implementation

of FL in wireless networks are heterogeneity of datasets and

highly unbalanced data processing capabilities between edge

servers. Many recent works have already introducing solutions

to address each of these challenges. For example, solutions

such as user data sharing [4] and user selection for model

updating [5] have been shown to be effective to reduce the

adverse effect caused by the first challenge under certain

scenarios. To address the second challenge, the authors in

[6] have proposed to allow discarding and offloading of data

among edge servers to balance the computational load among

edge servers.

In this paper, we focus on addressing both of the above

challenges simultaneously by investigating the relationship

between the energy cost minimization of IoT network and

resource utilization optimization of edge servers. We observe
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Fig. 1. System model for federated edge intelligence.

that these two problems are closely related to each other.

A distributed and privacy-preserving framework that can op-

timize both of these problems is proposed. To the best of

our knowledge, this is the first work to investigate the joint

optimization and coordination of data collection and uploading

of IoT and the computational resource utilization of edge

servers for edge intelligence-based IoT.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We propose federated edge intelligence (FEI) for an IoT

network to upload data samples to a set K of edge servers

for training a share model, as shown in Figure 1. The data

uploading configuration of the IoT network and the data

processing and training capability of the edge computing

system are entangled with each other to influence the accuracy

and convergence of the model training process.

A. IoT Network

Let M be the set of IoT devices in the considered IoT net-

work. Suppose the data collected by each IoT device consists

of propriety information and therefore must be encrypted and

uploaded to its associated edge server. Let Mk be the set of

IoT devices associated with edge server k for k ∈ K that

satisfies Mk ⊆ M and ∪k∈KMk = M. We assume each IoT

device can adopt two types of widely adopted IoT solutions,

LB-IoT and UB-IoT, to upload its data to the associated edge

server.

LB-IoT including 5G NB-IoT and its evolution towards B5G

and 6G. In LB-IoT, each IoT device can pay for a dedicate

channel in the licensed spectrum from a mobile network

operator (MNO) to send its data samples. Let βm be the

price charged by the MNO to send each data sample from IoT

device m to the associated edge server. We consider energy-

sensitive IoT network and let ρm be the cost for IoT device m
to consume each unit of energy in data uploading. This energy



cost can be related to the real money spent by the IoT service

operator to provide energy supplies for IoT nodes, e.g., the

cost of replacing the battery or the electricity price charged

by the utility company. Suppose each IoT device m uploads

n′′
m data samples in LB-IoT. The total cost for the IoT devices

to upload the required data samples to edge server k can then

be written as

clk (n
′′
k) =

∑
m∈Mk

(
ρmνlm (n′′

m) + βmn′′
m

)
, (1)

where n′′
k = 〈n′′

m〉m∈Mk
and νlm(n′′

m) is the total number of

energy units required for IoT device m to upload n′′
m data

samples using LB-IoT.

UB-IoT including 5G New Radio-Unlicensed (NR-U), LoRa

and ZigBee as well as their future evolution variants. In UB-

IoT, all the IoT devices share the same unlicensed band for

free. In this case, each IoT device only needs to pay for the

energy cost for data uploading. We can write the cost for

uploading n′
k = 〈n′

m〉m∈Mk
data samples from set Mk of

IoT devices to edge server k as

cuk(n
′
k) =

∑
m∈Mk

ρmνum(n′
m), (2)

where νum(n′
m) is the number of energy units consumed by

IoT device m using UB-IoT. Note that, since the unlicensed

band is open to various wireless technologies, successful data

delivery cannot always be guaranteed due to the possibility of

collision between multiple coexisting devices.

The main objective for IoT network is to solve the following

problem.

(P1) Energy Cost Minimization Problem: Each edge server

has limited computational resource and can only process a

limited number of data samples during a given time duration.

If the volume of received data exceeds the computational

capacity of an edge server, IoT network can reduce the

data collection and uploading rate to reduce costs. Based on

this observation, in our framework, edge servers will first

evaluate their required size of dataset (the number of local data

samples) according to the model training requirement. Each

edge server will then decide the suitable data uploading config-

uration for its associated IoT devices including the number of

data samples sent from each IoT device in each available IoT

solution (LB-IoT or UB-IoT). Motivated by the fact that, in

most large IoT networks, managing the energy efficiency of the

entire network is more important than minimizing the energy

cost of an individual IoT device, we focus on minimizing

the total energy cost of an IoT network. Suppose there is the

maximum energy constraint ε (the maximum number of energy

units) for the IoT network, i.e., we have ν(n′,n′′) ≤ ε where

ν(n′,n′′) =
∑

m∈M
(
νum(n′) + νlm(n′′)

)
is the total energy

consumption of the IoT network. We can then write the energy

cost minimization problem of IoT network as

(P1) min
n′,n′′

c(n′,n′′) =
∑
k∈K

(
cuk(n

′
k) + clk(n

′′
k)
)

(3a)

s.t. ν(n′,n′′) ≤ ε and n′
m + n′′

m ≤ n̄m, (3b)

where n′ = 〈n′
m〉m∈M, n′′ = 〈n′′

m〉m∈M, and n̄m is the

maximum number of data samples that can be collected by

each IoT device m.

B. Edge Computing System

Recent results [7], [8] as well as our own experiments

have suggested that for a given type of dataset (e.g., MNIST,

CIFAR, etc.), the computational load in each edge server k to

train an FL model is closely related to three key parameters:

(1) size of the local dataset, denoted as nk, (2) the number

of local training passes in each coordination round, denoted

as ek, and (3) the minibatch size of each local training pass,

denoted as bk. Motivated by this observation, we introduce

an empirical-based mapping function μk to quantify the re-

lationship between computational load and combinations of

parameters ek, bk, and nk under a given model convergence

requirement, i.e., there exists a computational load function

for each edge server k given by μ̃k = μk (bk, ek, nk|t, r)
where t denotes the type of dataset and r is the convergence

requirement of the model training (minimum required model

accuracy under a given number of rounds of model updating).

We will give a more detailed discussion in Section IV.

We investigate the following problem for edge computing

system.

(P2) Resource Utilization Maximization of Edge Comput-
ing System: Let μ̄k be the maximum computational load

that can be supported by the local computational resources

of edge server k, i.e., we have μ̃k < μ̄k. Suppose the

number of data samples arrived at edge server k is given

by nk =
∑

m∈Mk
(n′

m + n′′
m). We can then define the

average resource utilization maximization problem for an edge

computing system as

(P2) min
b,e,n

μ (n) =
1

K

∑
k∈K

(μ̄k − μ̃k) (4a)

s.t. nk < ñk and μ̃k ≤ μ̄k, ∀k ∈ K, (4b)

where b = 〈bk〉k∈K, e = 〈ek〉k∈K, n = 〈nk〉k∈K, and ñk is

the maximum number of data samples that can be received

and processed by edge server k.

C. Joint Optimization of Resource Efficiency

It can be observed that problems (P1) and (P2) are closely

related to each other. To investigate the joint optimization of

these problems, we introduce a weighing factor γ specifying

the relative weights between energy cost of the IoT network

and computational resource utilization of the edge computing

system. In this paper, we focus on solving the following

problem:

(P3) min
n′,n′′

μ (n) + γc(n′,n′′) (5a)

s.t. ν(n′,n′′) ≤ ε (5b)

n′
m + n′′

m ≤ n̄m, ∀m ∈ M (5c)

nk < ñk and μ̃k ≤ μ̄k, ∀k ∈ K, (5d)

Solving problem (5) requires the full knowledge of both

the IoT network and edge computing system which may not

always possible, especially in a distributed networking system
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Fig. 2. Proposed framework and procedure of the FEI.

where the data information of each edge server cannot be

revealed to others. In the rest of this paper, we introduce a

novel distributed framework that can jointly coordinate edge

servers to train a FL model across edge servers and at the same

time minimize the energy cost of IoT network by optimizing

the data uploading traffic distribution between UB-IoT and

LB-IoT across all the IoT devices. Our framework will not

disclose any data-relevant information.

IV. FEI FRAMEWORK AND RESOURCE EFFICIENCY

OPTIMIZATION

A. Framework Overview

The detailed procedure of the FEI framework is illustrated

in Figure 2. In FEI, each edge server will first evaluate the

required size of dataset to be uploaded from the IoT network.

We propose a distributed coordination approach based on

distributed ADMM for edge servers to coordinate via FEI

coordinator and jointly decide the size of data samples to

be uploaded from each IoT device. In this approach, each

edge server will initially randomly generate a number of data

samples to be uploaded from the IoT network. The generated

number needs to satisfy the data collection constraint of IoT

devices as well as its data processing limit. Edge servers

will then submit their randomly selected numbers to the FEI

coordinator. FEI coordinator will calculate an intermediate

result based on the received numbers and send the result back

to the edge servers. Each edge server will use this intermediate

result to calculate an updated solution about the number of data

samples to be requested from the IoT network. The above

process will be repeated and the result will converge to the

global optimal solution of dataset sizes to be uploaded from

IoT devices with each IoT solution (UB-IoT or LB-IoT). We

will give a more detailed discussion in Section IV-B).

After receiving the required number of data samples, each

edge server will then proceed to the FL model training

procedure. In this procedure, edge servers will first decide

whether to register with the FEI coordinator to join the next

round of model training. FEI coordinator will select a subset

of edge servers to participate in the training and will send

the detailed configuration information, such as data structure,

sharing state, and model parameters, to each participating

edge server. Each participating edge server will perform local

training computations based on the received configuration

information as well as its local dataset. After the local training,

edge servers will send their updates to the FEI coordinator

for model aggregation. Once FEI coordinator receives enough

updates, it will send the aggregation result back to participating

edge servers. The edge servers will update their respective

models using the received results. The above process will be

repeated in the next round with a newly selected subset of

edge servers until the trained model converges nor the stopping

criteria have been met.

As will be proved in Section IV-B, our proposed framework

allows distributed coordination and collaborative model train-

ing between edge servers without requiring any exchange of

datasets between edge servers or disclosing any information

related to the IoT network including the topological informa-

tion, spectrum usage, etc.

1) Computational Load and Resource Demand Mapping:
We follow a commonly adopted setting [7], [8] and consider an

FL process with synchronized model updating in which all the

edge servers will use the data collected during the same period

of time with duration τ to train a globally shared machine

learning model. We assume the data samples collected by

each individual IoT device at different time within each

considered duration are equally important for model training.

Let xk be the dataset collected by edge server k during τ .

Suppose for a given τ , the number of model updating rounds

among edge servers can be considered as fixed and the model

convergence performance can then be specified by the model

accuracy that can be achieved under a fixed number of model

updating rounds. We use r to denote the model convergence

requirement, i.e., r is the minimum model accuracy required

for training within a fixed number of updating rounds. As

mentioned earlier, the computational load in each edge server

k to train an FL model with a certain requirement r is closely

related to three key parameters, including size of the local

dataset nk, the number of local training passes ek in each

coordination round, and the minibatch size bk of each local

update.

It has been shown in [7] that FL can only converge to an

unbiased solution if all the edge servers have equal probability

to participate in the model training. We therefore assume the

probability for each edge server to participate each round of

model update can be regarded as a constant, denoted as C. The

value of C is closely related to the communication cost among

edge servers to train the model. How to optimize the value of

C is out of the scope of this paper and will be our future

work. Suppose the size of dataset xk (number of samples) is

nk. The number of local updates performed by edge server

k for each round is given by eknk

bk
, e.g., if each edge server

uses all the received dataset for model training per pass, we

have nk = bk and, in this case, edge server k will perform

ek local passes for each coordination round. It is known that

the values of ek and bk affect not only the computational load

at edge server k, but also the convergence performance of

the entire model training process. In particular, increasing ek
or decreasing bk will generally result in more computational

load at edge server k. The impact of ek and bk on the

convergence of FL model training is more complicated and

will also depend on the type of the dataset. For example, for

some document recognition dataset consisting of samples with

highly correlated features, such as MNIST [9], reducing bk
and increasing ek will accelerate the convergence performance.



However, for some other types of datasets with more complex

features, e.g., Shakespeare LSTM dataset [7], increasing ek
may result in diverged result due to the over-optimization.

In this case, it is better to adopt a larger bk and a smaller

ek. We present the average computational time of Federated

Averaging algorithm proposed in [7] for each round of model

updating using MNIST dataset under the same computation

environment and setup in Table I.
To simulate the data generated by IoT network during

multiple periods, we assume each edge server receives the

different subsets of samples for training different FL models

at different time periods. We can observe that for a given

size of the dataset, different combinations of parameters result

in different convergence rate and computational load, e.g.,

a small bk and a large ek achieve the fastest convergence

speed with the highest computational load requirement. In

this paper, we focus on a finite set T of dataset types for

IoT networks. We assume data samples from the same type

of dataset can be considered as independent and identically

distributed and contribute equal to the model training. We

also assume, for a given type of dataset, there exists a one-to-

one mapping from each possible combination of bk, ek, and

nk to the computational load μ̃k at each edge server k, i.e.,

we have μ̃k = μk (bk, ek, nk|t, r) for μ̃k < μ̄k, where μ̄k is

the maximum computation power that can be offered by edge

server k. We also assume for each given type of dataset t ∈ T
with a fixed size nk, there exists an optimal pair of bk and ek
that offers the fastest convergence performance for FL model

training, denoted as 〈b∗k, e∗k〉 = F (nk, t, r) for all k ∈ K.

TABLE I
COMPUTATION TIME COMPARISON UNDER DIFFERENT PARAMETERS

nk ek bk
Accuracy

(in 50 rounds)
Accuracy

(in 200 rounds)
Time per round

(sec)
100 5 10 97.12% 98.39% 0.1216
100 5 50 95.34% 97.72% 0.0655
100 20 10 97.22% 98.47 % 0.4772
100 20 50 95.98% 97.81% 0.2610
200 5 10 98.00% 98.73% 0.2386
200 5 20 97.74% 98.67% 0.1693
200 5 50 96.98% 98.36% 0.1299
200 20 10 98.04% 98.85 % 0.9571
200 20 20 97.88% 98.74% 0.6784
200 20 50 97.60% 98.44% 0.5200
400 5 10 98.58% 99.01% 0.4775
400 5 20 98.27% 98.89% 0.3383
400 5 50 97.87% 98.78% 0.2597
400 20 10 98.61% 99.16% 1.9128
400 20 20 98.39% 98.97% 1.3539
400 20 50 98.22% 98.83% 1.0409

2) Energy Consumption of IoT Network: Due to the dif-

ferent spectrum sharing regulations, LB-IoT and UB-IoT have

different characteristics in terms of spectrum access, energy

consumption, as well as data uploading performance. In this

paper, we adopt a commonly used formulation to model the

energy consumption of IoT data uploading.
UB-IoT: Since unlicensed band is shared by all the devices

without coordination, a certain channel access mechanism

must be imposed to avoid collision among spectrum sharing

devices. For example, Carrier Sense Multiple Access with Col-

lision Avoidance (CSMA/CA) mechanism has been adopted

in 2.4 GHz and 5 GHz unlicensed bands for supporting UB-

IoT such as Wi-Fi, ZigBee, Thread, Z-Wave, and Wi-SUN

[10]. In this mechanism, each IoT device must first sense the

vacancy of the channel and can only start transmission if the

channel is sensed idle. If the channel is busy, it will go through

a random backoff procedure and will only be able to send

data if all the procedure is finished and the channel is clear.

According to [11], [12], the probability of channel access is

closely related to the topology (relative location) of all the

spectrum sharing devices as well as the channel contending

parameters adopted by each IoT device. If the topology and

parameters of IoT devices are fixed, the probability for each

IoT device to successfully occupy the channel to transmit data

can be considered as fixed. Similarly, in the duty-cycle-based

mechanism adopted in 433 MHz and 800 MHz bands, IoT

devices do not have to sense the channel but will have to send

its data packets according to a fixed duty-cycle specifying the

maximum fraction of time that can be occupied by each device

to access the channel, e.g., depending on the frequency bands,

the maximum duty-cycle is generally between 0.1% and 10%.

Let Pu
m be the probability for IoT device m to success-

fully occupy unlicensed band to send data. If IoT node m
needs to upload n′

m bits of data to edge server k within

time duration τ , it will need to send the data at a rate of
n′
m

τ = Pu
mBu log2

(
1 + hu

m
ν̃(1)
m

σu
m

)
where Bu is the bandwidth

of unlicensed channel, hu
m is the channel gain between IoT

node m and the associated UB-IoT access point (AP)1, and

σu
m is the received noise level at the AP. The energy consumed

by IoT device m for sending n′
m data bits via a UB link can

then be written as

νum(n′
m) =

σu
m

hu
m

(
2

n′
m

τBuPu
m − 1

)
. (6)

LB-IoT: Each IoT device can purchase IoT connectivity

service from an MNO to upload its data through the licensed

band. In this case, a dedicate frequency band will be allocated

to each IoT device for data transmission. Let βm be the price

paid by IoT device m for sending each bit of data via LB-

IoT network infrastructure, i.e., the price paid by IoT m for

sending n′′
m bits of data is given by βmn′′

m. Similar to the

previous case, we can write the energy consumed by IoT node

m to upload n′′
m bits of data to edge server k as

νlm(n′′
m) =

σl
m

hl
m

(
2

n′′
m

τBl − 1

)
, (7)

where Bl is the bandwidth of each licensed channel, hl
m is the

channel gain between IoT node m and the associated LB-IoT

base station (BS), and σl
m is the received noise level at the

BS.

B. Resource Efficiency Optimization Algorithm Design

We propose a joint optimization algorithm to address

Problem (P3) under the above framework based on an FEI

coordinator. In this algorithm, we divide the global traffic

allocation problem into K subproblems each of which can

1In this paper, we assume the major bottleneck for data transmission
between IoT devices and edge servers is the wireless link connecting the
IoT device and AP.



be solved by an edge server, and the intermediate calculation

results will be sent to the FEI coordinator that can perform

coordination among all edge servers.

To make our description clearer, we define nk =
〈n′

m, n′′
m〉m∈Mk

to include all the data sample optimization

variables of the IoT nodes associated to each edge server, i.e.,

n′
k = Aknk and n′′

k = Bknk, where Ak and Bk are matrices

in RMk×2Mk with elements

Ak(p, q) =

{
1, q = 2p− 1,

0, otherwise,
and Bk(p, q) =

{
1, q = 2p,

0, otherwise,
(8)

for all p = 1, 2, ...,Mk and q = 1, 2, ..., 2Mk, where Mk is

the number of IoT devices in Mk.

It can be proved that by substituting (6)-(8) into (5), it

becomes a convex optimization problem in which the ob-

jective function (5a) and constraints (5c)-(5d) are completely

separated, while constraint (5b) is coupled across all the

edge servers. In order to distributively solve problem (5)

distributively without requiring each server to disclose any

data or network information, we first introduce the following

indicator functions to incorporate the inequality constraints

(5b)-(5d) into the objective function (5a):

ID(n) =

{
0, n ∈ D,

∞, n /∈ D,
IDk

(nk) =

{
0, nk ∈ Dk,

∞, nk /∈ Dk,
(9)

where n = (n1;n2; ...;nK), D = {n|∑k∈K νk(nk) ≤ ε},

and Dk = {nk|nk satisfies (5c-5d)}. The objective function

for each subproblem to be solved by an edge server can be

rewritten as:

fk(nk) =
1

K
(μ̄k − μ̃k) + cuk(Aknk) + clk(Bknk). (10)

We can then reformulate problem (5) in a standard ADMM

form as

min
n,w

∑
k∈K

(fk(nk) + IDk
(nk)) + ID(w), (11a)

s.t. n−w = 0, (11b)

where w = 〈w1;w2; ...;wK〉 is the introduced auxiliary

variable. We can therefore adopt the following updates to solve

problem (11) iteratively:

{ni+1
k }k∈K = argmin

nk

(fk(nk) + IDk
(nk)

+
η

2
‖nk −wi

k + θi
k‖22

)
, (12a)

wi+1 = argmin
w

(
ID(w) +

η

2
‖ni+1 −w + θi‖22

)
,

(12b)

θi+1 = θi + ni+1 −wi+1, (12c)

where i is the iteration index, θ = (θ1;θ2; ...;θK) is the

dual variable, and η is the augmented Lagrangian parameter.

We summarize the details in Algorithm 1 where the stopping

criteria follow the same line as that in [13].

Theorem 1: Algorithm 1 converges to the optimal solution

of Problem (P3) without requiring any exchange of local

datasets among edge servers nor disclosing any IoT network

topological information.

Algorithm 1 Resource-Efficiency Optimization Algorithm

Initialization: n0 ∈ R2M×1, η > 0;

for i = 0, 1, 2, ... do
1. Each edge server k executes the following steps using

its local information:

1) Calculate ni+1
k according to (12a);

2) Broadcast n′
m and n′

m to each IoT device m ∈ Mk,

so it can allocate its traffic distribution accordingly;

3) if Stopping criteria have been met then
Break;

else
Report ni+1

k to the FEI coordinator;

end if
2. When the FEI Coordinator receives all the updates of

ni+1
k , it will execute the following steps:

1) Update the wi+1 and θi+1 according to (12b) and

(12c);

2) Feedback wi+1
k and θi+1

k to each edge server k.

end for

Fig. 3. Simulation setup.
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Proof: We briefly describe our proof as follows:

1) The FEI coordinator only receives the intermediate traf-

fic allocation results from edge servers which cannot

be used to reveal any content information of their local

datasets.

2) Each edge server only receives subvectors wi+1
k and

θi+1
k from the FEI coordinator. It cannot derive any

information about other edge servers and IoT devices.

3) Each IoT device only receives traffic allocation results

n′
m and n′

m from its associated edge server which do

not contain any information about other IoT devices or

edge servers.

V. NUMERICAL RESULT

To evaluate the performance of our proposed framework,

we simulate an IoT network that can upload data samples to

4 edge servers using the real locations of Starbuck’s coffee



shops in the city center of Dublin city as shown in Figure 3.

We assume that each edge server can receive data from 10 IoT

devices. We use the data samples from the EMNIST dataset to

simulate the data uploaded from each IoT device to an edge

server. We equally divide 341873 training examples and 40832

test examples among 4 groups of IoT devices and in each

round of data uploading, each IoT device randomly selects data

samples from its local training example pool to upload to the

associated edge server. The average sample size of EMNIST is

0.67 KB. We assume each IoT device can use Zigbee or NB-

IoT to submit data samples with transmit powers 63 mW and

100 mW, respectively. We simulate each edge server with a

TITAN X GPU running on Ubuntu 16.04. The training process

among 4 edge servers is simulated using Federated-Tensorflow

framework 0.16.1. Each edge server trains a four-layer CNN

model locally.

We first evaluate the impact of the data uploading perfor-

mance of IoT network on the convergence rate of the FL model

training. In Figure 4, we consider a fixed computational ca-

pacity of each edge server (computational time for each round

of training is less than 0.25s, 0.5s, and 2s, respectively) and

compare the total cost under different model accuracies when

the IoT network can use only LB-IoT, only UB-IoT, and opti-

mal data uploading configuration with both IoT technologies.

We can observe that the optimal data uploading scheme signif-

icantly reduces the total cost. The LB-IoT however results in

the highest cost among all the IoT solutions. We then present

the model accuracy under different communication rounds in

the same setup in Figure 5. In this case, we can observe that

LB-IoT achieves the best convergence performance among all

three solutions. This is because LB-IoT can always upload the

required amount of data samples to edge servers during every

round of training. The optimal uploading scheme however tries

to balance the update uploading performance and the cost and

therefore results in slightly reduced convergence performance.

We can also observe that, with only a small degradation of

convergence performance of the training process, the cost of

the IoT network can be significantly reduced. In other words,

our proposed optimal uploading scheme is more suitable for

cost-sensitive IoT network that is not very sensitive to the

accuracy or convergence of the model.

To evaluate the impact of the computational capacity of

edge servers on the model training performance, we compare

the convergence performance under different upper limits of

the computational load (maximum computational time per

round of training) in Figure 6. We can observe that the

increasing speed of the model training performance in terms

of convergence speed and accuracy improvement reduces with

the computational capacity. Therefore, for IoT networks with

limited model accuracy requirements, deploying low-cost edge

servers with limited computational capacity may be sufficient

for most FL model training tasks.

VI. CONCLUSION

This paper has introduced the FEI framework to jointly

optimize the data collection and transportation of an IoT

network and resource utilization of an edge computing sys-

tem. FEI allows edge servers to first evaluate the required

number of data samples according to its local data processing

capacity and requirements of the FL model and will request a

sufficient amount of data with minimized energy cost for the

IoT network. The energy cost of the IoT network has been

evaluated when the data uploading of each IoT device can be

supported by two widely-used IoT solutions, LB-IoT and UB-

IoT. The relationship between the convergence performance

and accuracy of FL model training and the impact of three

key parameters, size of the dataset, batch size, and number

of local training passes, has also been investigated. A joint

optimization problem that can maximize the utilization of the

computational resources at edge servers and also minimize

the energy cost of the IoT network has been formulated. A

distributed algorithm based on ADMM has been proposed to

address the formulated problems. We have proved that the

proposed algorithm will not cause any data leakage of local

dataset and will preserve the private information related to

the topological property of IoT network. Simulation results

have been presented to show that the proposed framework can

significantly reduce the cost with only a limited degradation

in model convergence.
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