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From Semantic Communication to Semantic-aware
Networking: Model, Architecture, and Open

Problems
Guangming Shi, Yong Xiao, Yingyu Li, Xuemei Xie

Abstract—Existing communication systems are mainly built
based on Shannon’s information theory which deliberately ig-
nores the semantic aspects of communication. The recent iteration
of wireless technology, the so-called 5G and beyond, promises
to support a plethora of services enabled by carefully tailored
network capabilities based on contents, requirements, as well
as semantics. This sparkled significant interest in semantic
communication, a novel paradigm that involves the meaning
of message into communication. In this article, we first review
classic semantic communication frameworks and then summarize
key challenges that hinder its popularity. We observe that
some semantic communication processes such as semantic de-
tection, knowledge modeling, and coordination, can be resource-
consuming and inefficient, especially for communication between
a single source and a destination. We therefore propose a novel
architecture based on federated edge intelligence for supporting
resource-efficient semantic-aware networking. Our architecture
allows each user to offload computationally intensive semantic
encoding and decoding tasks to edge servers and protect its
proprietary model-related information by coordinating via inter-
mediate results. Our simulation result shows that the proposed
architecture can reduce resource consumption and significantly
improve communication efficiency.

Index Terms—Semantic Communication, Semantic-aware Net-
working, Knowledge Graph, Federated Edge Intelligence.

I. INTRODUCTION

Shannon introduced classical information theory in 1949
which first proved reliable communication is possible in
noisy channels. In his seminal work [1], Shannon defines
the fundamental problem of communication as “that of re-
producing at one point either exactly or approximately a
message selected at another point”. He argued that the “se-
mantic aspects of communication should be considered as
irrelevant to the engineering problem”. The reason is that the
meaning of message can be correlated with “certain physical
and conceptual entities” and involving the meaning into the
mathematical model may affect the generality of the theory
[1]. Motivated by this principle, most existing communica-
tion technologies are developed to maximize data-oriented
performance metrics such as communication data rate, while
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ignoring the service/content/semantic-related information or
only considering these information in the upper layers (e.g.,
the application layer).

In the recent development of wireless technology, the ser-
vice diversity and service-level optimization solutions based
on the content of the message have been embraced by both
industry and academia. More specifically, the latest iteration
of wireless technology, the so-called fifth generation (5G), has
been transformed from the traditional data-oriented architec-
ture to the service-based architecture (SBA) which promises
to support a diverse set of services and verticals, some of
which can only be enabled by carefully tailored network
resources and capacities based on the contents, requirements,
as well as semantics of communication. Furthermore, it is
commonly believed that 6G will enable more human-centered
services and applications such as the Tactile Internet, inter-
active hologram, and intelligent humanoid robot, which will
rely more on the human-related knowledge and experience-
based metrics [2]. This raises the question of whether or not
the principle of “semantic is irrelevant” is still necessary for
the next generation wireless technology. In particular, a novel
paradigm, referred to as the semantic communication, which
allows the meaning of the message to be sensed and exploited
during communication [3]–[6], has attracted significant in-
terest recently. Compared to the classic communication the-
ory, semantic communication draws inspiration from human
language communication focusing on delivering the meaning
(e.g., interpretation) of the message which has the potential to
fundamentally transform the existing communication architec-
ture towards a more generally intelligent and human-oriented
system.

Compared to the traditional data-oriented communication
frameworks, semantic communication will bring the following
unique advantages:
Improved Communication Efficiency and Reliability: It
is known that the traditional discrete-channel-based model
suffers from low efficiency in some cases. For example, as
Shannon argued in [1], “transmitting a continuous source
such as speech or music with exact recovery will require a
channel with infinite capacity” and the solution is to discretize
the signal within a certain tolerance of information loss,
i.e., satisfying certain fidelity requirements. In other words,
Shannon theory has a limited efficiency when continuous
signal source, especially human-oriented source, is involved.
Instead of converting the continuous source signal (e.g., a
speech signal) into discrete form with a certain loss of fidelity,
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semantic communication allows transmission of the meaning
of the signal (e.g., the transcript of the speech) which will
have the potential to achieve lossless (semantic) information
delivery with a significantly reduced demand on communi-
cation resource. For example, delivering a one-hour speech
recorded in the form of the voice signal at a rate of 64 kbit/s
will require transmitting a voice file with around 230 MB
storage. In contrast, transferring the main idea (e.g., summary)
of the speech transcript could only need to send a few kbits
of text messages. The reliability of communication can also
be improved by allowing the decoder to infer the missing part
of a corrupted message based on the semantics of the context.
Furthermore, it has been shown in [6] that if the encoding and
decoding can be coordinated based on the semantic-related
side information such as context and intention of users, the
semantic error (difference in the meaning of the source signal
and that of the recovered signal) can be significantly reduced.
Enhanced Quality-of-Experience (QoE) for Human-
oriented Services: Traditional communication systems mainly
focus on data-oriented metrics including data rate and prob-
ability of error, none of which reflect the subjective view of
the human users. In semantic communication, however, the
main objective is to deliver the intended meaning which will
depend on both the physical content of the message as well
as the intention, personality, and other human-oriented factors
that could reflect the real QoE of human users. Consider the
hypothetical example in [5] where a child asks her father what
is a “Tweety”. In response to the query, the father will send
the answer which may correspond to a yellow canary bird,
the client of social media website Twitter, or a character in a
cartoon show. By observing the environment that child asks the
question as well as the fact that the child may not understand
“canary”, the father may choose to send the answer “Twitter
is a bird” to maximize the probability of successful delivery
of semantic information.
Protocol/Syntex-independent Communication: It is known
that contemporary communication systems consist of many
incompatible communication protocols, e.g., TCP/IP, HTTP,
FTP, etc., resulting in continuously growing complexity of
the network. Significant effort has been adopted to ad-
dress the incompatibility-related issues such as designing
protocols that are backwards compatible and introducing
new interfaces enabling interoperability as network system-
s continuing to evolve. Semantic communication built on
the common knowledge shared among all the devices as
well as human users will lay the foundation for a more
robust and upgrade/evolution-friendly and protocol/syntax-
independent communication framework for future wireless
systems. For example, suppose signals transmitted with mul-
tiple incompatible protocols can be arrived at each receiv-
er. In this case, a receiver does not have to know which
protocol associated with each received signal, but can apply
different protocols to recover the signal and select the most
semantically correct message. It has already been proved
in [4] that by allowing the communication participants to
sense the difference between the received signal and the final
goal of communication, it is possible to achieve universal
communication between any source and destination without

requiring a common language/protocol in data communication.
Although promising, practical implementation of semantic

communication has been hindered by several challenges. In
particular, semantic information can be difficult to detect,
extract, and represent due to its close relation with background,
personality, interaction history, as well as other factors such
as the semantic ambiguity (i.e., polysemy) and nuances. Also,
detecting and extracting semantic information such as ob-
ject classification, knowledge entity recognition, and relation
inference, often require a significant amount of computing
power and storage space, as well as a large number of labeled
training data samples, most of which are unavailable in today’s
network infrastructure. In addition, the semantic information
not only consists of explicit information (e.g., color and shape
of an object), but also involves unobservable state of the
system such as knowledge relations, properties of objects,
implicit meaning of statements, etc., which makes it difficult
to present and communicate in a simple and elegant form.
Also, since the semantic information can be closely related
to some highly sensitive human-related information, data and
privacy protection will be of critical importance. How to
design a simple and general data protection mechanism that
can still support collaborative learning and training of a shared
knowledge model is still an open problem.

In this article, we first review the classic semantic commu-
nication model and then propose a novel architecture based
on federated edge intelligence (FEI). In our architecture, users
offload resource-consuming semantic processing tasks to the
edge servers. Two or more edge servers can also collaborate in
training a shared model for processing the common semantic
knowledge. To protect the local semantic data from leakage,
we employ a federated learning-based framework in which
each edge server cannot expose its local semantic data but
can only coordinate with others using intermediate model
training results. We conduct extensive simulations to evaluate
the performance of our proposed architecture.

II. CLASSIC SEMANTIC COMMUNICATION MODEL

A. A Basic Semantic Communication Model

Inspired by Shannon’s classic information theory [1],
Weaver and Shannon proposed that a more general definition
of communication theory should involve three levels of prob-
lems listed in sequential order as follows [3]:
P1. Technical Problem: How accurately can the symbols of

communication be transmitted?
P2. Semantic Problem: How precisely do the transmitted

symbols convey the desired meaning?
P3. Effectiveness Problem: How effectively does the re-

ceived meaning affect conduct in the desired way?
Classic information theory introduced by Shannon addresses

the technical problem by targeting particularly at the accurate
transference of source signals to the destination receiver. The
semantic and effectiveness problems must take into consider-
ation much wider research areas including the philosophical
content of the communication [3], i.e., the participating parts
in the communication must share the same or similar philo-
sophical worldview such as ontology, limits of knowledge,
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epistemology, logic, and aesthetics. In this article, we mainly
focus on the semantic problem of communication.

A semantic communication model needs to recognize and
transform the meaning of the source signal into the form that is
understandable for both source and destination. For example,
suppose the source signal corresponds to an image showing
“a kid named Michael is riding a bicycle”, as illustrated in
Figure 1. A technical encoder will ignore the meaning of
the image and encode every pixel of the source signal into
a message to be recovered by the decoder as accurately as
possible. Semantic encoder however will infer the meaning of
the source image and coordinate with the destination to make
sure the meaning that is desirable for the destination can be
delivered. In particular, if the source is able to identify the
name of the kid (Michael) which, it believes, is also known
by the destination, it will first recognize the entities (e.g.,
“Michael” and “bicycle”) as well as their relationship (e.g.,
“is riding”) and then generate the coded message. On another
case that the destination does not know the name of the kid,
the source will have to encode message “a kid named Michael
is riding a bicycle” because, in this case, entity “kid” is the
shared knowledge of both source and destination.

B. Semantic Communication Components

Weaver argued in [3] that Shannon’s classic information
theory is “general enough to be extended to address the se-
mantic and/or the effectiveness problems of communication”.
This motivates a series of work [4]–[6] focusing on improving
the communication efficiency, e.g., compress the transmit
signal and improve the successful rate of the information
reception, by introducing additional semantic communication
components.
Semantic (Source) Encoder detects and extracts semantic
content (e.g., meaning) of the source signal and compresses
or removes the irrelevant information. Consider the semantic
communication example in Figure 1. The encoder needs to
first identify the entities in the source image based on the
local knowledge at the source and destination and then infer
possible relationship according to a common world model,

e.g., it makes more sense for a kid to “ride” a bicycle instead
of the reverse.
Semantic Decoder interprets the information sent by the
source and recovers the received signal into the form that
is understandable by the destination user. The decoder also
needs to evaluate the satisfactory of the destination user and
decide whether or not the receipt of the semantic information
is successful.
Semantic Noise is the noise introduced during the commu-
nication process that causes misunderstanding and incorrect
reception of the semantic information. It can be introduced in
the encoding, data transportation, and decoding processes.

III. KEY CHALLENGES FOR SEMANTIC COMMUNICATION

A. Semantic Information Detection and Processing

One of the key prerequisites for semantic communication
is to accurately and quickly recognize and extract intended
semantic information such as various types of entities and
their possible relations and present these information into de-
sired forms. Unfortunately, the state-of-the-art data clustering,
classification, image and voice recognition, and object identi-
fication algorithms heavily rely on large deep learning models
that are typically computational intensive and require a large
number of high-quality human-labeled data to perform model
training. Actually, a recent report suggests that the resource
consumption of AI solutions is growing in an unprecedented
speed and the cost for training an advanced AI algorithm has
been doubled every few month and increased over 300,000
times from 2012 to 2017 [7]. There is still lacking a simple
and general solution for quick semantic information detection
and processing that can be implemented in resource-limited
devices [8].

B. Semantic Knowledge Modeling

Source and destination need to maintain and constantly
update its local knowledge models to capture the rich meaning
of knowledge entities as well as their complex relationship.
One potential solution is to adopt a graphical structure, e.g.,
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Fig. 2. FEI-based architecture for semantic-aware networking.

a semantic knowledge graph, to model the semantic relation-
ships between different entities. However, a knowledge graph
with a large number entities and multi-relational edges can be
highly complex and difficult to manipulate. The lack of basic
understanding of various semantic structures and meanings
of contents further exacerbate the challenge for adopting the
semantic knowledge graph in communication systems.

C. Knowledge Coordination and Data Protection

Depending on the background and interaction history, dif-
ferent devices or users may have different knowledge bases
and structures. It is therefore important for different commu-
nication participants to coordinate during the communication
process. However, how to developing a effective coordination
mechanism that can enable quick and smooth coordination a-
mong communication participants without causing any private
data exposure is still an open problem.

IV. A SEMANTIC-AWARE NETWORKING ARCHITECTURE

In this section, we propose a novel architecture based on
federated edge intelligence (FEI) with knowledge/model shar-
ing [9]–[12] that has the potential to address some challenges
mentioned in Section III.

A. Architecture

Our architecture consists of the following components as
shown in Figure 2:
Users correspond to communication participating devices
(users) with limited on-board resources. They can either cor-
respond to the low-cost information generators/data collectors
(source user), e.g., IoT devices, sensors, and wearable, or be
the receivers (destination user) trying to present the recovered
signal consisting of the intended semantic information to
the associated user (e.g., a machine or a human-oriented
user). For each source user, it will first sense the specific
communication scenario and then upload both the sensing
results and the source signal to the closest edge server for
knowledge extraction and encoding message generation. For

the destination user, it will consult its associated edge server
about interpretation of the received signal.
Knowledge Base consists of elements in real-world knowl-
edge including facts, relations, and possible ways of reasoning
that can be understood, recognized, and learned by all the
communication participants. Note that the source and des-
tination users do not have to access the same knowledge
base. However, the knowledge elements involved in their
communication must be known by both users. Consider the
example in Section I, although the size of the knowledge base
of the father is larger than that of the child, the knowledge
involved in their communication about the meaning of a
Tweety, e.g., a bird, must be involved in the knowledge base
of both users. The knowledge base can consist of commonly
known facts and relations, e.g., “Albert Einstein is an expert
in physics” as well as private knowledge shared between a
specific pair of source and destination users, e.g., “Michael is
riding a bicycle yesterday”.
Edge Servers perform encoding and decoding based on the
commonly shared knowledge base as well as the private signal
uploaded from the local users. Generally speaking, each edge
server should have already a certain number of well-trained
models for object identification and relation inference. In the
FEI-based architecture, multiple edge servers can coordinate
to train and update the same machine learning model without
exposing their local data samples.
Coordinators coordinate the model training and learning
among collaborative edge servers. They can be deployed at one
of the edge server or the cloud data center. In our architecture,
different edge servers can establish and maintain shared AI
models without exposing any of their local data uploaded
from the users. For example, if we adopt FedAvg algorithm
introduced in [13], each edge server will first train a local
model using data collected by its associated users. A selected
group of edge servers will then upload the locally trained
model parameters to a coordinator for model aggregation.

B. Key Procedure

In our architecture, all the above components will interact
by performing the following procedures as shown in Figure 3.
(1) Sensing: Each user (source or destination) first senses
the surrounding environment to obtain a partial observation
signal about the communication environment and scenarios.
This signal can be the location (e.g., road, residential, factory,
office, etc.) and time stamp (e.g., day or night, peak or idle
hour) as well as other information related to the content
or semantics of message. As will be shown later in this
section, allowing both source and destination to sense these
information has the potential to significantly reduce the search
spaces of knowledge entities and relations (the number of
possible knowledge entities and the associated relationship)
associated with the content of communication.
(2) Communication: Each source (or destination) user will
upload its sensing result together with the source signal (or
received signal) to the edge server for semantic encoding (or
decoding). The edge server will search for a suitable model
to detect the meaning of the signal, e.g., adopt image/voice
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recognition algorithms to identify the knowledge entities and
employ a common/private knowledge graph to estimate the
relations among entities. The edge server will also generate
the encoded (or recovered) message to be sent by the source
user (or destination user for semantic information delivery).
(3) Inference: Instead of directly detecting entities and re-
lationship from the signal, encoder and decoder should also
have the ability to learn and reason about the possible form of
relationship and implications based on the relevant information
such as observed environment and scenario, time, locations
and social relationship of source and destination as well as
their communication history. As will be shown later in this
section, due to the high correlation among some semantic
knowledge entities, adopting inference at the destination will
have the potential to reduce over 90% of data volume to be
transmitted in the networks under certain conditions.
(4) Model Updating: It is possible that some semantic
knowledge terms in the signals uploaded from the users cannot
be perfectly recognized and processed by the edge servers,
e.g., the entities or the relationship identified by the existing
models has low likelihood to be correct or reasonable. In
this case, the edge server can first extract features from
the unknown elements and then adopt clustering solution
(e.g., deep embedded clustering (DEC)) to divide signals into
different classes. Each class of signals will be assigned with a
new label to be added to the knowledge base and the element
recognition model will also be updated.

C. Performance Evaluation

To evaluate the performance of our proposed architecture,
we consider the following examples to demonstrate the bene-
fits and costs of semantic communication.
Example 1 – Source Signal Corresponds to an Image: We
first consider a simple scenario in which the source signal is

in the form of an image file. In this case, the source user can
recognize and send the semantic information of the source
signal, instead of transmitting the entire image file to the
destination user. We use a standard image dataset MNIST as
an example. MNIST dataset consists of total 60,000 images
of handwritten digits, each has 28 × 28 pixels corresponding
to 6.3 kbit per image. If the semantic information corresponds
to the digit in each image which can be encoded with a 8-bit
ASCII code, we can observe a significant reduction in transmit
file size by using semantic encoding. However, as mentioned
earlier in Section III, the reduction in communication overhead
does not come at no cost. In other words, the source user
needs to invest extra infrastructure and resource to perform the
image processing. In Figure 4, we evaluate the consumption
of three types of resources, running time, local storage, and
labeled training data samples, for training a simple CNN
model consisting of two 5 × 5 convolutionary layers for
recognizing image of handwritten digits based on a standard
dataset MNIST. We use cross entropy as the loss function
and the training process terminates when the target accuracy
level (98.8%, 98.9%, and 99.0% as shown in Figure 4) is
achieved. Our result shows that, even running on a high-
performance GPU server (TITAN X GP102 GPU and Intel
i9-9900K CPU@3.6GHz), the time duration for training the
AI model would reach up to 345 seconds, surpassing the time
duration for directly transmitting a high-resolution image file
over a wireless channel via any existing wireless technologies
including 4G, 5G, and Wi-Fi. We also compare the resource
requirement for each individual edge server when two or more
edge servers can collaborate in training a shared model with
the target accuracy levels [9]. Our result shows that both the
required storage and the number of training samples per edge
server decrease with the number of model-sharing edge servers
and the total running time reduces to less than one fourth of
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the time with eight collaborative edge servers. This verifies the
effectiveness of our proposed FEI architecture on reducing the
resource consumption and achieve the model sharing among
edge servers.
Example 2 – Semantic Represented as a Knowledge Graph:
We consider the scenario that the knowledge base of each user
is a large knowledge graph consisting of knowledge entities
(e.g., each entity can corresponds to an item/article in an
encyclopedia) and relations (e.g., citation relations among dif-
ferent items/articles in an encyclopedia) [14] and the semantic
information in a source signal can be represented as a subgraph
of the knowledge graph. We assume the knowledge entities in
the subgraph has already been identified by the source user and
the main objective is to deliver the correct relations among the
entities to the destination. We investigate the distortion rate of
the communication channel when a shared knowledge base is
available at the source and destination users, compared to the
scenario without shared knowledge in which the source user
needs to send all the relation information between different
entities.

One of the unique feature of the semantic knowledge graph
is that strong correlation may exist among some knowledge en-
tities and the relations. For example, the fact “Albert Einstein
introduced the theory of relativity” is closely related to the
fact that “Albert Einstein is an expert in physics”. This feature
can be exploited to further compress the semantic information
of the source signal. Suppose the destination can infer the

types of all the knowledge entities of a complete knowledge
graph from a limited number of labeled entities using a semi-
supervised graph neural network (GCN)-based algorithm [15].
In this case, instead of sending all the information of the
knowledge subgraph, the source should only transmit a subset
of labeled data and the destination can infer the rest of the
label information using the semi-supervised GCN approach.
We compare the compression rate of the GCN-based solution
using three citation network datasets: Citeseer, Cora, and
Pubmed consisting of documents associated with different
areas and citation links between any two documents in Figure
5. Our results show that the compression rate is closely related
to the structural correlation of the dataset. In particular, for
Cora and Citeseer, transmitting 18.872 KB and 22.308 KB
of labeled data (counting around 24.89% and 27.94% of the
total labeled dataset corresponding to compression rates of
75.11% and 72.06%, respectively) are sufficient to recover the
relevant areas of all the documents with accuracy of recovery
at 90%. In Pubmed, however, to achieve the same accuracy of
recovery, it needs to send 135.47 KB of labeled data which
is 57.25% of total labeled dataset resulting in around 42.75%
compression rate. We also present the distortion rate when the
destination user does not have any knowledge base but need to
receive more relation-based information from the source user
to minimize the distance (measured by Hamming distance)
between the signal at the source and that recovered by the
destination user. We can observe that semantic communication
is able to achieve much lower distortion rate in signal recovery
at the destination.

V. OPEN RESEARCH TOPICS

Knowledge Evolution Tracking: The human knowledge can
evolve over time. Modeling and keeping track of temporal
variation, e.g., aggregating new knowledge entities and re-
lations and discard obsolete information, of each individual
knowledge are helpful to further improve communication
efficiency and reduce the probability of error in semantic
information delivery.
Network-level QoE Quantification: It is known that peo-
ple with different ages, genders, personalities, and cultural
backgrounds, may have different focuses on their personal
experience under different conditions. Developing novel com-
positional experience metrics covering essential experience
indices for diverse types of peoples is an interesting problem
worth further investigating.
Capacity of Semantic-aware Network: The capacity of
semantic networking is more complex and should be closely
related to the knowledge sharing among users. Developing
an elegant and comprehensive mathematical framework to
evaluate the performance limits of a semantic transportation
network is an important direction for future research.

VI. CONCLUSION

This article proposes a novel architecture based on federated
edge intelligence for semantic-aware networking. In this ar-
chitecture, users can offload the resource-consuming semantic
processing tasks to edge servers and two or more edge servers
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can collaborate in training a shared model for processing the
common semantic knowledge based on a federated learning-
based framework. Numerical results show that our proposed
architecture can significantly improve the communication per-
formance without causing any local semantic data leakage.
Potential topics for future research have also been discussed.
The architecture proposed in this paper is far from a complete
solution for semantic communication. The main objective
however is to identify the potential and challenges to stimulate
innovations and developments in semantic-aware networking
and applications. We hope our work will spur interests and
open new directions on the future evolution of semantic-based
networking systems.
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