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Abstract—This paper analyzes the fundamental limit of the
strategic semantic communication problem in which a trans-
mitter obtains a limited number of indirect observations of
an intrinsic semantic information source and can then influ-
ence the receiver’s decoding by sending a limited number of
messages over an imperfect channel. The transmitter and the
receiver can have different distortion measures and can make
rational decisions about their encoding and decoding strategies,
respectively. The decoder can also have some side information
(e.g., background knowledge and/or information obtained from
previous communications) about the semantic source to assist its
interpretation of the semantic information. We focus particularly
on the case that the transmitter can commit to an encoding
strategy and study the impact of the strategic decision making on
the rate distortion of semantic communication. Three equilibrium
solution concepts including the optimal Stackelberg equilibrium,
robust Stackelberg equilibrium, as well as Nash equilibrium
are studied and compared. The optimal encoding and decoding
strategy profiles under various equilibrium solutions are derived.
We prove that committing to an encoding strategy cannot always
bring benefit to the encoder. We provide a feasible condition
under which committing to an encoding strategy can always
reduce the distortion of semantic communication. We consider
an example with a dictionary-based semantic information source
to verify our observation.

I. INTRODUCTION

Utilizing semantic information during the communication

process has been a long-term vision in information theory.

Shannon in his seminal work published in 1948 has already

noticed that most of the communication “messages have mean-

ing” [1]. However, in the development of the mathematical

theory of communication, the “semantic aspect of messages”

has been intentionally ignored because the semantic meaning

of a message can be correlated with “certain physical and

conceptual entities” and therefore making the meaning as

part of the communication may affect the generality of the

theory [1]. The concept of semantic communication problem

has been formally introduced in 1949 by Weaver where the

problems addressed by Shannon theory have been coined

into the technical problem of communication and the se-
mantic communication problems have been defined as “the

problems that are concerned with the identity, or satisfac-

torily close approximation, in the interpretation of meaning

by the receiver, as compared with the intended meaning of

the sender” [2]. Since then, many efforts have been made

to extend the Shannon theory to model the communication
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of semantic information [3]–[6]. For example, the authors

in [3] have replaced the statistical probability measure of

information in Shannon theory with the logical probability

measure between constants and predicates to analyze semantic

information carried by sentences in a given language system.

In [4], the authors observed that one of the unique features of

the semantic communication problems is that the background

knowledge can be available at both the transmitter and the

receiver to assist the interpretation of semantic meaning. Some

other works also suggested that environmental information as

well as background knowledge can some time play a key

role in improving the performance of semantic communication

[7]. Another result suggested that, unlike traditional source of

information, the semantic aspects of information may consist

of intrinsic features or states and may not always be directly

observable by the encoder [5].

Despite of the above progress, there are limitations to

directly extending the classic Shannon theory to investigate

the semantic communication problem. For example, in [3], the

authors have observed a contradiction, commonly referred to

as the Bar-Hillel-Carnap (BHC) paradox, when applying the

Shannon’s measure of information to quantify the volume of

semantic message. In the BHC paradox, it is observed that self-

contradictory or semantically-false sentences should have less

value or no meaningful information. These sentences, however,

often contain much more information than fact or common-

knowledge-based sentences when measured using entropy-

based metric due to their rarity. In [8]–[10], the authors

have studied the semantic information from the philosophical

perspective and observed that the semantic information should

not focus only on accurately reproducing the content-agnostic

data, but the interpretation of the key idea at the receiver.

Motivated by the above observations, we investigate, in

this paper, semantic communication problems from a strategic

communication perspective [11]–[13]. We argue that com-

bining game theory, a mathematical tool to model strategic

interaction among rational agents [14], with information theory

may have the potential to address the limitations of the

classical Shannon theory and obtain a more comprehensive

solution profile for semantic communication problems due to

the following reasons. First, game theory models interactions

and potential influence between rational users who focus on

maximizing their rewards based on mutually agreed rules and

common beliefs. A transmitter will have less incentive to send
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meaningless information that cannot bring any reward, e.g.,

less or no influence, to the receiver, and hence could have

the potential to avoid the BHC paradox. Second, different

from the classic Shannon theory focusing on maximizing

the total volume of data transported from one point to an-

other, strategic decision making allows game playing agents

such as transmitters and receivers to achieve more flexible

objectives, e.g., coordinated interpretation of the key idea

of semantic message and/or implicitly influencing semantic

interpretation, especially in capacity limited scenarios [11],

[12]. For example, in [15]–[18], the authors extended the

Bayesian persuasion problem into information theoretic setting

in which the transmitter, instead of transporting all the detailed

data symbols to the receiver, tries to persuade the receiver to

take an optimal action (from the transmitter’s point of view) by

sending a brief summary of the arguments. Finally, it is known

that in many practical semantic communication scenarios,

e.g., human communication, users with different objectives

and background knowledge can coordinate their encoding and

decoding strategies to achieve mutual understanding [19]. This

makes strategic communication an ideal tool to investigate

semantic communication problems between transmitters and

receivers with misaligned distortion measures and unbalanced

background knowledge.

In this paper, we investigate strategic semantic communica-

tion problems in which the transmitter can obtain a limited

number of indirect observations of a semantic information

source and can then influence the receiver’s decoding process

by sending a limited number of messages over a channel

with limits on capacity. We focus on the cases that the

transmitter and the receiver have different distortion measures

and can optimize their encoding and decoding strategies to

influence each other. This may correspond to the scenario that

a transmitter can have a personal understanding of a semantic

message based on its indirect observation results and the

receiver can then recover the full semantic information based

on its own background knowledge as well as interpretation

of the transmitter. We study the impact of strategic decision

making on semantic communication and focus particularly

on the case of the transmitter committing to an encoding

strategy. In this case, the encoder tries to design an optimal

strategy to persuade the receiver on a certain feature of the

semantic information source based on its indirect observa-

tion. We address the following questions: when and how
much a transmitter and a receiver can benefit from strategic
communication with or without committing to an encoding
strategy. Previous results suggested that committing to an

encoding strategy can always bring benefit to the encoder

[12], [15], [16]. We, however, prove that there exist cases

such that committing to an encoding strategy can in fact harm

the rate distortion performance of the encoder. We therefore

provide a sufficient condition under which committing to an

encoding strategy can improve the performance of the encoder.

The strategic semantic communication models and solutions

considered in this paper have the following unique features:

(1) Semantic information source can only be indirectly ob-

served by the encoder and interpreted by the receiver with

the assistance of the side information.

(2) Transmitter and receiver have different distortion mea-

sures and the main objective of the encoder is to influence

the receiver’s semantic interpretation process instead of

maximizing the transporting capacity of information to

the receiver.

(3) The strategy profiles of encoder and decoder have been

derived and compared under three equilibrium solution

concepts, including Nash equilibrium, optimal Stackel-

berg equilibrium, and robust Stackelberg equilibrium.

II. SYSTEM MODEL

o                   g                                          h

Fig. 1: A semantic communication model consists of a semantic
information source Wn, a signal generator o, input of the encoder
Uk, output of the encoder Xm, channel output X̂m, side information
Y , channel PX̂ |X , output of the decoder Ŵn, encoder g and decoder
h.

We consider a semantic communication model as illustrated

in Fig. 1, where a semantic information source W consists

of some intrinsic states and features that cannot be directly

represented to or observed by the encoder. The encoder

can however obtain indirect observations as its input signal

source U . We use superscript n to denote the length of a

sequence of signals generated by the source, e.g., Wn denotes

a length-n i.i.d. sequence of signals generated by the semantic

information source. We consider the case that the encoder can

obtain a limited number k of i.i.d. indirect observations Uk.

This may correspond to scenarios where some semantic source

may contain rich information and the encoder may have a

limited time and resource to conduct sensing and observing.

The decoder has access to a side information Y . This side

information may correspond to the background knowledge

that is helpful for its interpretation of the semantic source.

For example, in human communication, different combinations

and sequences of words may result in different meanings,

most of which cannot be directly translated by simply com-

bining the meanings of individual words. In this case, the

side information, e.g., some common word combinations and

relevant background knowledge of the language, known by the

intended user will be helpful in interpreting the meaning of the

original message. Also, in the context of a smart factory or a

smart city, a single instructional message sent by a controller

may trigger complex interactions and coordination among a

large number of sensors, machines, and systems, each needs

to be able to infer the intended meaning and decide on the

responses according to its own functionality and situation. The

side information in this case will correspond to the relevant

information about the system structure as well as the situation

and functions of each system component.

We consider in this paper semantic communication with a

limited channel capacity, and assume that the encoder, after

receiving k indirect observations Uk, needs to send the infor-

mation via a length-m sequence of messages Xm. Let Δ(X )
be the set of probability distribution PX over X . We can then
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define the encoder’s strategy as a mapping g : Uk → Δ(Xm)
where Xm is the channel input. We consider a memoryless

channel defined by transition probability PX̂ |X where X̂m is

the channel output. Similarly, the decoder’s strategy is defined

as a mapping h : X̂m × Y → Δ
(
Ŵn

)
where Ŵn is the

output of the decoder, which corresponds to the interpreted

semantic information of the receiver.

In many practical systems, the encoder and the decoder

can be associated with different devices and services with

different requirements. We therefore consider a strategic com-

munication scenario in which the encoder and the decoder

can have different distortion measures defined as mappings:

DE : W×U ×Y ×Ŵ → R and DD : W×U ×Y ×Ŵ → R,

respectively. We focus on minimizing block-wise distortion be-

tween original semantic meaning and the interpreted meaning,

given by

DE

(
W, Ŵ

)
=

1

n

n∑
i=1

DE (wi, ŵi) , (1)

DD

(
W, Ŵ

)
=

1

n

n∑
i=1

DD (wi, ŵi) . (2)

III. PROBLEM FORMULATION

We consider the following strategic semantic communica-

tion scenario: the decoder is aware of the encoding strategy

adopted by the encoder and can decide its decoding strategy

accordingly by minimizing its own distortion function and the

main objective of the encoder is to decide the optimal encoding

strategy (guided by its own distortion measure) based on the

best response of the decoder. As mentioned earlier, simply

transporting all the details of its observed information as much

as possible may not be the optimal solution and the encoder in

this scenario can focus on designing the optimal information

structure to influence (e.g., persuade) the decoder to select the

optimal strategy in line with his distortion measure.

Before defining the solution profile, we need to first estab-

lish links between encoder’s and decoder’s distortion functions

and their strategy profiles by converting (1) and (2) into the

following equivalent forms.

Lemma 1: Suppose o, g, h, PX̂ |X are independent. Then, the

expected distortion functions of the encoder and the decoder

can be rewritten into the following equivalent forms:

DE (g, h) = (3)∑
W,U ,Y,X̂ ,Ŵ

PWPUY|WgX|UPX̂ |XhŴ|YX̂DE

(
W, Ŵ

)
,

DD (g, h) = (4)∑
W,U ,Y,X̂ ,Ŵ

PWPUY|WgX|UPX̂ |XhŴ|YX̂DD

(
W, Ŵ

)
.

Proof: Following the same line as in [20], we have a

Markov chain of W,U ,X ,Y, Ŵ . (3) and (4) can then be

obtained by substituting g and h into the joint distribution

PWUYŴ .

Let us now define the solution profiles of the strategic

semantic communication as follows.

Definition 1: In strategic semantic communication, a strat-

egy profile 〈gO, hO〉 is referred to as the optimal Stackelberg
equilibrium (OSE) [21] if gO and hO are given by:

〈gO, hO〉 = arg min
g∈Δ(X|U)

min
h∈H(g)

DE (g, h) (5)

where H (g) is the set of best responses of the decoding

strategies under a given encoding strategy g, defined as

H (g) =

{
h : h = arg min

h∈Δ(Ŵ|YX̂)
DD (g, h)

}
. (6)

OSE is the most optimistic solution profile for the encoder

because in this case both encoding and decoding strategies

have been selected in favor of the encoder.

The other possible strategy profile above is defined as

follows:

Definition 2: In strategic semantic communication, the strat-

egy profile 〈gR, hR〉 is referred to as the robust Stackelberg
equilibrium (RSE) if gR and hR are given by:

〈gR, hR〉 = arg min
g∈Δ(X|U)

max
h∈H(g)

DE (g, h) (7)

where H (g) is as given in (6).

We can observe that RSE provides the worst-case distortion

that accrues to the encoder given the response set of the

decoder. RSE has been referred to as the optimal robust

solution for the encoder in the literature because it specifies

the optimal distortion result the encoder can secure, regardless

of which best response chosen by the decoder [16]. We can

also directly observe that if the encoder and the decoder have

the same distortion measures, RSE and OSE result in the same

strategy profile. In this paper, we also compare the above two

strategy profiles with the Nash equilibrium (NE) [22] and we

use 〈gN , hN 〉 to denote the strategy profile of NE.

IV. MAIN RESULTS

We present the first main result of this paper as follows.

Theorem 1: For strategic semantic communication, there

exists an auxiliary random variable z ∈ Z and a sufficiently

large m such that in OSE and RSE defined in (5) and (7),

Δ(X|U) is given by:

Δ(X|U) =
{
g : ∀PWYZ = gPWPUY|WPZ|X ,

I (W,U ;Z|Y) ≤ k

m
I
(
X ; X̂

)}
. (8)

Proof: To prove the sufficiency of the above result,

we follow the same line as in [16], [23] to prove that it

is possible to construct a joint source and channel coding

scheme to achieve the above distortion with all the constraints.

Let us consider an asymptotically optimal source coding

scheme concatenated with a reliable channel coding scheme.

In particular, we adopt Wyner-Ziv source coding for the source

coding scheme and generate a random codebook consisting of

2mR1 i.i.d. codewords where R1 = I (W ,U ;Z|Y)− ε. These

codewords are then distributed uniformly randomly into 2kR2

bins where R2 = I
(
X ; X̂

)
− ε. In this way, we compress

the source message into R1 bits per symbol with distortion

DE and then map mR1-bit length codeword into a channel
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coding scheme with kR2 bits. Since kR1 ≤ mR2 and also

R2 corresponds to the channel capacity, W,U ,Z,Y,X , and

X̂ are jointly typical sequence codes. To prove the necessity

of Theorem 1, we follow the same line in [24] and introduce

an auxiliary random variable Zi = 〈Ui, X̂i,Yk
i+1,Yk〉. We can

then prove that Y,U ,Z,W is a Markov chain and exist a joint

source and channel encoding scheme g satisfies that

I
(
W,U ; X̂

)
= I(W,U ,Y; X̂ ) (9)

≥ I (W,U ;Z|Y) . (10)

Similarly, following the same line as in [16], [24], we can

prove that for any coding scheme including the proposed

joint source and channel encoding, the mutual information

between the coded message and the channel output should not

exceed the channel capacity I
(
X ; X̂

)
. We can therefore write

mI
(
W,U ; X̂

)
≤ kI

(
X ; X̂

)
which concludes the proof.

Observation 1: In the model of strategic semantic communi-

cation, the receiver discovers information about the semantic

meaning of messages from two sources: (1) the indirect

observation obtained by the encoder transmitted through the

capacity-limited channel, and (2) the side information available

at the receiver. Let us quantify the volumes of information

provided by these two sources. The domain of encoding

strategy G given in (8) specifies the constraint of the achievable

coding rate of the strategic semantic communication. We can

rewrite this achievable rate on the left-hand-side of inequality

(8) into the following equivalent forms using the Chain rules,

I (W,U ;Z|Y) = I (W,U ;Z,Y)− I (W,U ;Y) (11)

= H (U|Y) +H (W|U ,Y) +H (Z|Y)

−H (W,U ,Z|Y) , (12)

where the first term on the right-hand-side of equation (11)

specifies the total amount of uncertainty about the information

source W and encoder’s input U that can be reduced at the

receiver when being given the channel output Z and side

information Y . Note that Z is an auxiliary random variable

introduced in the Wyner-Ziv coding as the output of a “test

channel” for an input X . Z is conditionally independent to Y
given X . The second term in (11) specifies the uncertainty

about the information source that can be reduced by the

side information which is not required to be transported in

the channel because the side information is assumed to be

already available at the decoder. Equation (12) quantifies the

volume of information, i.e., amount of uncertainty, that can

be provided by each individual source. In particular, H (U|Y)
quantifies the information volume of the indirect observation

obtained by the encoder. H (W|U ,Y) quantifies the ambiguity

(uncertainty) about the semantic source when being given the

indirect observation of the encoder and side information of

the decoder. H (W,U ,Z|Y) quantifies the uncertainty about

the information source and channel output that can be reduced

when using the side information at the decoder. In [4, Theorem

1], the authors proved that semantic entropy and observation

signal entropy satisfy H(U) = H(W)+H(U|W)−H(W|U)
where H(U|W) is defined as the semantic redundancy and

H(W|U) is the semantic ambiguity of coding. Results in (11)

and (12) can be considered a further step of the result in

[4, Theorem 1] where we quantify the semantic information

source and the input of encoder when being transported into

the channel with side information at the decoder.

Observation 2: One interesting question for strategic semantic

communication is whether it is possible for the decoder to

simply “guess” the possible semantic meaning of the source

without requiring any information transmitted through the

channel? In our previous work [6], [25], a more general

scenario for this situation was presented in which the receiver

can have access to a knowledge base and can directly infer

some of the missing relationships as well as the missing terms

or concepts based on this knowledge base. From (11) and (12),

we can see that the amount of information that can be provided

by the side information is given by H (W,U ,Z|Y) and the

total amount of information that can be saved for transmission

due to the available side information at the decoder is given

by I (W,U ;Y).

We have the following results about the strategic semantic

communication problems.

Theorem 2:

(1) There exist cases where the encoder’s optimal distortion

performance achieved by RSE is strictly worse than that

achieved by any NE.

(2) Suppose distortion function DE (g, h) is a convex func-

tion of h and H(g) is a convex domain or H(g) is

a singleton. The strategic semantic communication then

satisfies

(2.1) DE

(
gR, hR

) ≥ DE ≥ DE

(
gO, hO

)
;

(2.2) There exists at least one strategy profile pair

〈gN , hN 〉 such that DE

(
gR, hR

) ≤ DE

(
gN , hN

)
;

(2.3) DE

(
gO, hO

) ≤ DE

(
gN , hN

)
for all 〈gN , hN 〉.

Proof: To prove result (1), we only need to provide a

contradiction example to show that RSE can be strictly worse

than NE. Suppose the strategy profiles of encoder and decoder

are probabilities between -1 and 1. Decoder’s distortion is

assumed to be a constant and cannot be affected by g and

h. This may correspond to the scenario when the decoder

has a constant belief about the distortion of the semantic

source. Note that in this case any decoding strategy h is a

best response. Suppose that the distortion of encoder is given

by DE = h(h− g). Let us first consider NE for this scenario.

We can show that for any h > 0, since DE decreases with

g, the best response of g is given by gN = 1 and we have

ming DE = h2 − h; for any h < 0, since DE increases with

g, the best response of g is given by gN = −1 and we have

ming DE = h2 + h; for h = 0, we have DE = 0. We can

therefore claim that, in any NE of our considered case, the

distortion of the encoder is always lower than or equal to zero,

i.e., DE(g
N , hN ) ≤ 0. Let us now consider RSE, where the

decoder always tries to find the optimal value of h to maximize

the encoder’s distortion. In particular, we can directly show

that when g ≥ 0, the optimal h to maximize DE is given by

h = −1 and in this case maxh DE = 1+ g ≥ 1; when g ≤ 0,

the optimal h to maximize DE is given by h = 1 and in this

case maxh DE = 1 − g ≥ 1. We can therefore claim that, in

RSE, the optimal distortion of encoder is given by 1, which
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is much higher than the distortion achieved by any NE.

Let us now consider result (2). To prove result (2.1), we

follow the definitions of DE

(
gO, hO

)
and DE

(
gR, hR

)
and

write the following inequality for a given set H (g),

max
h∈H(g)

DE (g, h) ≥ min
h∈H(g)

DE (g, h) . (13)

We can then obtain result (2.1) by taking minimization over

both sides of the above inequality.

To prove result (2.2), let us first define the sets of best

responses of encoder and decoder as G(h) and H(g), respec-

tively. We can then define a worst-case NE strategy profile of

encoder and decoder as follows:

〈g̃N , h̃N∗〉 = max
g∈G(h)

max
h∈H(h)

DE (g, h) . (14)

We can directly see that DE

(
gR, hR

) ≤ DE

(
g̃N , h̃N∗

)
and DE

(
gO, hO

) ≤ DE

(
g̃N , h̃N∗

)
for all the strategy profile

pairs 〈gR, hR〉 and 〈gO, hO〉.
To prove result (2.3), let us first prove that the domain G

of g is a convex closure. From (8), we can observe that since

I(X ; X̂ ) is the channel capacity which can be assumed to be

a constant in our setting, the domain of g can be obtained

by adjoining all linear combinations of points satisfying the

constraints in (8) which is a convex closure.

For the rest of the proof, we only need to show that there

does not exist an NE 〈gN , hN 〉 that can achieve a lower

distortion DE(g, h) than an OSE. We can prove this by

contradiction. Let us assume that there exists an NE 〈ĝN , ĥN 〉
that satisfies DE

(
ĝN , ĥN

)
< DE

(
gO, hO

)
. If this is the

case, we have

min
h

DE(g, h) < min
g

min
h∈H(g)

DE(g, h) or

min
g

DE(g, h) < min
g

min
h∈H(g)

DE(g, h) for any〈g, h〉

which cannot be true. This concludes our proof.

Observation 3: In the previous literature, RSE has been

commonly referred to as the optimal robust solution for the

encoder and has been considered in some previous works

as a promising solution concept for strategic communication

[12], [16], [17]. Our result (1) however suggests that it is

possible that RSE is strictly worse than any NE. In this case,

a better strategy for the encoder is to avoid RSE by enabling

simultaneous decision making or allowing leadership swap

between encoder and decoder [21].

Observation 4: Result (2.1) in Theorem 2 provides an upper

and a lower bound on the distortion that can be expected by

the encoder. It also provides a sufficient condition under which

committing to an encoding strategy can always reduce the

distortion for the encoder. We can observe that in a special case

such that distortion functions of encoder and decoder have the

same monotonic trend over g and h, then both encoder and

decoder will have the incentive to select the optimal strategy

profile to minimize the distortion. The upper and lower bounds

of DE become equal when both encoder and decoder have the

same distortion measure, i.e., DE(g, h) = DD(g, h).

TABLE I: Distortion Matrix

h0 h1 h2

g0 (0,0) (α,β+1.2) (7,8)
g1 (α,β) (0,1.2) (6,7)
g2 (7,7) (6,7.2) (0,1) 0 0.1 0.2
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V. EXAMPLE WITH MULTINOULLI SEMANTIC SOURCE

We consider a semantic communication example in which

the semantic information source W is a Multinoulli random

variable uniformly randomly drawn from a dictionary-based

knowledge dataset, WordNet. We consider distortion function

specified by the meaning dissimilarity between different se-

mantic symbols as defined in the WordNet dataset. In Table

I, we present the encoder and decoder’s semantic distortion

matrix of three different symbols (words) where first and last

symbols (labeled as 0 and 2) may correspond to “Nickel” and

“Gold” and symbol 1 can be selected from a set of possible

symbols with the semantic distances to symbol 0 specified by

values of α and β for encoder and decoder, respectively, e.g., if

symbol 1 is “Coin”, α = β = 1. We also introduce some bias

between distortions at the encoder and decoder to reflect the

difference between the personal preference or backgrounds of

the transmitter and the receiver. We present the rate distortion

function with different values of β normalized to compared

with Hamming distance-based distortion measure in Fig. 2. We

observe that since semantic sources may consist of symbols

with relatively less distortion when being incorrectly decoded,

it may result in less distortion than the Hamming distance

which is equal between any different symbols. In Fig. 3 and

4, we present the distortion of decoder and encoder under

different values of α and β. We can observe that different

decoding strategies may have different distortions. Also, in

some cases, RSE can be strictly worse than both NE and OSE.

VI. CONCLUSIONS

We have investigated the fundamental limit of distortion

rate for strategic semantic communication problems. We focus

on the case when the transmitter commits to an encoding

strategy. To investigate when and how much a transmitter and

a receiver can benefit from strategic communication with or

without committing to an encoding strategy, we have studied

three types of equilibrium solutions: OSE, RSE, and NE. The

optimal encoding and decoding strategy profiles have been

derived. We have observed that committing to an encoding

strategy cannot always achieve distortion reduction at the

encoder. We have accordingly proposed a feasible condition

under which committing to an encoding strategy can always

improve distortion performance.

2022 IEEE Information Theory Workshop (ITW)



REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[2] W. Weaver, “Recent contributions to the mathematical theory of com-
munication,” ETC: a review of general semantics, pp. 261–281, 1949.

[3] R. Carnap and Y. Bar-Hillel, “An outline of a theory of semantic
information,” Technical report, Massachusetts Institute of Technology.
Research Laboratory of Electronics, October 1952.

[4] J. Bao, P. Basu, M. Dean, C. Partridge, A. Swami, W. Leland, and
J. A. Hendler, “Towards a theory of semantic communication,” in IEEE
Network Science Workshop, West Point, NY, Jun. 2011, pp. 110–117.

[5] J. Liu, W. Zhang, and H. V. Poor, “A rate-distortion framework for char-
acterizing semantic information,” in IEEE ISIT, Melbourne, Australia,
Jul. 2021, pp. 2894–2899.

[6] G. Shi, Y. Xiao, Y. Li, and X. Xie, “From semantic communication to
semantic-aware networking: Model, architecture, and open problems,”
IEEE Commun. Magazine, vol. 59, no. 8, pp. 44–50, Aug. 2021.

[7] B. Juba and M. Sudan, “Universal semantic communication i,” in
Proceedings of the ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, May. 2008.

[8] L. Floridi, Information: A very short introduction. Oxford University
Press, 2010.

[9] ——, “Semantic information and the network theory of account,”
Synthese, vol. 184, no. 3, pp. 431–454, Feb. 2012.

[10] S. Sequoiah-Grayson and L. Floridi, “Semantic Conceptions of Infor-
mation,” in The Stanford Encyclopedia of Philosophy, Spring 2022 ed.,
E. N. Zalta, Ed. Metaphysics Research Lab, Stanford University, Jan.
2022.

[11] E. Akyol, C. Langbort, and T. Başar, “Strategic compression and
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