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Abstract—Semantic communication has recently attracted sig-
nificant interest from both industry and academia due to its
potential to transform the existing data-focused communication
architecture towards a more generally intelligent and goal-
oriented semantic-aware networking system. Despite its promis-
ing potential, semantic communications and semantic-aware
networking are still in their infancy. Most existing works focus
on transporting and delivering the explicit semantic information,
e.g., labels or features of objects, that can be directly identified
from the source signal. The original definition of semantics as
well as recent results in cognitive neuroscience suggest that it
is the implicit semantic information, in particular the hidden
relations connecting different concepts and feature items that
play the fundamental role in recognizing, communicating, and
delivering the real semantic meanings of messages. Motivated
by this observation, we propose a novel reasoning-based implicit
semantic-aware communication network architecture that allows
destination users to directly learn a reasoning mechanism that
can automatically generate complex implicit semantic informa-
tion based on a limited clue information sent by the source
users. Our proposed architecture can be implemented in a
multi-tier cloud/edge computing networks in which multiple tiers
of cloud data center (CDC) and edge servers can collaborate
and support efficient semantic encoding, decoding, and implicit
semantic interpretation for multiple end-users. We introduce a
new multi-layer representation of semantic information taking
into consideration both the hierarchical structure of implicit
semantics as well as the personalized inference preference of
individual users. We model the semantic reasoning process as a
reinforcement learning process and then propose an imitation-
based semantic reasoning mechanism learning (iRML) solution
to learning a reasoning policy that imitates the inference behavior
of the source user. A federated graph convolutional network
(GCN)-based collaborative reasoning solution is proposed to
allow multiple edge servers to jointly construct a shared semantic
interpretation model based on decentralized semantic message
samples. Extensive experiments have been conducted based on
real-world datasets to evaluate the performance of our proposed
architecture. Numerical results confirm that iRML offers up
to 25.8 dB improvement on the semantic symbol error rate,
compared to the semantic-irrelevant communication solutions.
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I. INTRODUCTION

Shannons information theory has been serving as the foun-
dation for almost all existing communication systems. In
his seminal work published in 1948, Shannon observed that
most communication messages involve semantic meaning. He,
however, argued that “these semantic aspects of communi-
cation are irrelevant to the engineering problem” [1]. Based
on this argument, any given semantics-involving message
must be first converted into a sequence of semantic-irrelevant
binary symbols before being introduced into the physical
layer communication process which is designed to focus only
on transmitting and recovering messages with the bit-level
accuracy.

Recent development of communication and networking
technology has witnessed a explosively growing demand on
the smart services and applications, such as Augmented Re-
ality/Virtual Reality/eXtended Reality (AR/ VR/XR), digital
twins, and Tactile Internet, targeting at bringing human-like
intelligence and immersive experiences into various aspects of
human society [2]–[5]. Most of these services are data-hungry,
resource-consuming, and often require carefully orchestrated
network resources and functionalities based on the users’ back-
ground knowledge and experience as well as the semantics of
the communication messages [6], [7].

This motivates the semantic communication, a novel com-
munication paradigm focusing on recognizing, delivering, and
utilizing the key meaning of the messages during the commu-
nication and networking process [8]. Recent development in
neuroscience suggests that the semantic processing, includ-
ing semantic recognition, communication, and inference, is
a defining feature of human behavior, central not only to
language, but also to human’s capacity to exploit knowledge in
learning, reasoning, and problem solving [9]. In other words,
semantic communication has the potential to fundamentally
transform the existing data-focused and semantic-irrelevant
communication architecture towards a more generally in-
telligent and human need-driven semantic-aware networking
system [8], [10].

The concept of semantic communication problem was first
introduced by Weaver in 1949, right after Shannon introduced
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the classic information theory [11]. In this work, the problems
of communication have been categorized into three levels and
the Shannon theory has been coined as the solution of the
level-one communication problem, referred to as the “technical
problem of communication”. The semantic communication
problem has been defined as the level-two problem which
investigates “how precisely do the transmitted symbols convey
the desired meaning”. Although Weaver also introduced the
level-three problem, the “effectiveness problem” investigating
“how effectively does the received meaning affect conduct in
the desired way”, he augured that the semantic and effec-
tiveness problems are “closely interrelated and overlapped in
a rather vague way”. In other words, the semantic commu-
nication has the potential to enable a higher-level meaning
exchange with human-like semantic recognition, reasoning,
and communication that may revolutionize the way of human
users’ interactions with physical and virtual worlds [12].

Most existing works consider the semantics of messages
as the explicit semantics such as object labels and signal
features that can be directly identified from the source signals
[13]–[15]. It is known that the semantics involved in most
communication messages can be much more than the explicit
semantics. In fact, the original definition of semantics as well
as recent results in cognitive neuroscience suggest that it is the
implicit semantic information, in particular the hidden relation-
s connecting different concepts, terms, features, and ideas, that
plays a fundamental role in recognizing, communicating, and
delivering the real semantic meanings between human users.
French philologist, Breal first defines the “semantics” as the
“relationships between words and the knowledge they signify”
in 1897 [16]. Recent study in cognitive neuroscience suggests
that the capability of human users to express rich semantic
meanings based on very few words is achieved by combining
words with different relations in different sequences. Fur-
thermore, human users’ high-level communication, learning,
and inferring capability is also closely linked to their ability
to establish relations between new unknown concepts and
its known knowledge base. In other words, estimating and
reasoning the possible relations to link the explicit semantics
into hidden knowledge concepts are of critical importance for
enabling the high-level semantic communication and cognitive
intelligence for the next generation human-oriented communi-
cation networking systems.

Despite its importance, the development of the relation-
based implicit semantic communication has been hindered
by several challenges. First, communication messages may
involve multiple types of complex relations connecting differ-
ent subsets of knowledge concepts including both commonly-
shared and fact-based concepts as well as private personal
knowledge. It is generally impossible to establish and maintain
a single database with all the global and private semantic
knowledge. Second, the implicit semantics of messages may
involve many hidden relations and knowledge concepts that
cannot be directly observed from the source signal. This
hidden information is often closely related to the message
context, users’ personal preference, background, and private
experience, many of which involve private information that is
inaccessible for the destination user or any third-party service

providers. Finally, relation-based implicit semantic informa-
tion is difficult to represent, compress, recover, and evaluate.
It may involve rich meaning information and attributes that are
inefficient to transport and difficult to compress and compute.
Currently, there is lacking a unified solution for representing,
recovering and evaluating implicit semantics during the com-
munication and networking process.

In this paper, we investigate the implicit semantic commu-
nication from a novel perspective that is, instead of trying
to maximize the detection and transportation of the explicit
semantics, we propose an imitation learning-based solution
to allow edge servers to learn from the past inference be-
havior of the user and establish a source user’s background
and preference-relevant reasoning mechanism to automatically
infer the implicit semantics at the destination user. In this way,
the destination user can imitate the past inference behavior
of the source user and directly infer the implicit semantics
from the observed clue information, e.g., explicit semantics,
and also update and maintain the reasoning mechanism during
the communication process. Motivated by recent observation
in neuroscience suggesting that the human brain utilizes a
hierarchical structure of semantic knowledge for reasoning and
processing disambiguity of semantic meaning [17], we propose
a new multi-layer representation of semantics, taking into
consideration of both hierarchy of semantics across different
abstraction levels as well as personal preference of semantic
reasoning for individual users. Inspired by the fact that human
users tend to infer hidden information from the closely related
concepts, we model the semantic reasoning process as a
reinforcement learning process. An imitation-based reasoning
mechanism learning (iRML) solution is then introduced for the
CDC and edge servers to learn a semantic reasoning mecha-
nism, i.e., a reasoning policy, that can imitate the inference
behavior of the source users. We also introduce a federat-
ed graph convolutional networks (GCN)-based collaborative
reasoning solution to allow multiple same-tier edge servers
to collaborate in constructing semantic interpretation models
without disclosing their local information. Finally, extensive
experiments have been conducted to evaluate the performance
of our proposed solution based on real-world knowledge
datasets. Numerical results suggest that iRML achieves up
to 25.8 dB improvement on the semantic symbol error rate,
compared to the existing semantic-irrelevant communication
solutions.

We summarize the key contributions of this paper as fol-
lows:
(1) Novel implicit semantic representation solution: We pro-

pose a novel multi-layer representation of semantics
including three key elements: explicit semantics, implicit
semantics, and a user-relevant semantic reasoning mech-
anism. To improve the communication efficiency of the
semantics, we convert the rich semantics of messages into
a sequence of low-dimensional semantic constellation
representations that are efficient for physical channel
transmission.

(2) New imitation-based reasoning mechanism learning ap-
proach: We propose a novel imitation-based reason-
ing mechanism learning solution, iRML, to allow edge
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servers and the CDC to learn from the user and train
semantic reasoning mechanism models to imitate the
inference behavior of the source users. To address the
ill-posted problem of imitation learning, we adopt the
principle of maximum causal entropy to convert the
ill-posted problem into a strongly convex optimization
problem. We then prove that in this case, each edge server
can train a unique semantic reasoning mechanism with
the minimized semantic distance between the generated
interpretation and the expert reasoning paths observed by
the source user.

(3) New multi-tier collaborative reasoning-based semantic
interpretation solution: We propose a federated GCN-
based approach to allow the same-tier edge servers to
collaborate in training a shared semantic interpretation
model based on the decentralized knowledge datasets.
Our approach does not require any edge server to expose
its local knowledge information. We provide a theoretical
bound on the convergence rate of the collaborative train-
ing process and also quantify the performance loss caused
by the decentralized distribution of knowledge datasets.

(4) Extensive experimental results: We evaluate the perfor-
mance of our proposed architecture by simulating the
implicit semantic-aware communication process based on
real-world knowledge datasets.

The remainder of this paper is organized as follows. Ex-
isting works that are relevant to semantic communication and
knowledge reasoning are reviewed in Section II. The multi-
tier cloud/edge computing networks is presented in Section III.
The multi-layer semantic representation and semantic distance
are introduced in Section IV. The collaborative reasoning-
based semantic communication solution is introduced in Sec-
tion V. We present numerical results in Section VI and
conclude the paper in Section VII.

II. RELATED WORK

Multi-tier Computing: Multi-tier computing is a promising
architectural framework that seamlessly integrates CDC, fog,
edge, and things for enabling diverse intelligent applications
and services [18]–[23]. Most of the existing works focus on
optimizing the task scheduling and resource allocation to meet
various application and service needs. For example, Chen
et al. proposed a novel fog-as-a-service architecture, called
FA2ST, that can offer end-to-end support for massive Internet-
of-Things (IoT) systems [20]. Yang et al. introduced the
multi-tier computing architecture and discussed its potential
to deliver various IoT services in next generation mobile
networks [21]. Wang et al. designed a hierarchical aggregation
mechanism in a federated learning-based multi-tier network
to further improve the utilization of resource efficiency [24].
Wang et al. proposed a joint task offloading and caching
optimization algorithm for massive MIMO-aided multi-tier
computing networks [22]. In our paper, we apply multi-tier
computing into collaborative reasoning-based semantic-aware
communication networks. Our results suggest that multi-tier
computing has the potential to serve as an important ar-
chitectural framework for enabling semantic-aware network

intelligence in the next generation communication networks.
To the best of our knowledge, this is the first work that studies
semantic-aware communication and its implementation under
multi-tier computing networking systems.
Semantic Communication: Most existing works in semantic
communication can be categorized into two directions: infor-
mation theory and machine learning. Earlier works in semantic
communication mainly focused on extending the Shannon’s
classic information theory to study semantic communication
problem. For example, Carnap and Bar-Hillel introduced
the semantic information theory in which the set of binary
symbols in Shannon theory has been replaced with the set
of possible models of worlds [25]. Bao et al. derived the
semantic entropy by simply replacing the Shannon’s entropy
of binary messages with the entropy of models [26]. Guler
et al. investigated the coding error when the binary sym-
bols have been replaced by words defined in a common
dictionary-based dataset [27]. It has been observed that most
Shannon theory-based semantic communication work suffers
from the so-called Bar-Hillel-Carnap (BHC) paradox which
argues that any self-contradictory message has the maximum
amount of information in Shannon theory due to its rarity,
which contradicts with the fact that the semantic information
must be true and contradictions are false with minimum
meaningful information [28]. Motivated by the observations
that semantic information is learned and dynamically evolved
through human interactions, in our recent study [12], we have
developed the rate distortion theory for strategic semantic
communication, a novel framework that combining game
theoretic models with rate distortion theory to characterize the
impact of interactions between semantic encoder and decoder
on the distortion performance of the communication.

Motivated by the recent breakthrough in machine learning,
especially the deep neural networks (DNNs)-based objec-
t/pattern recognition and classification algorithms, many recent
works convert the semantic communication problem into the
problems of recognizing and classifying the human-assigned
labels and/or features of objects, called the explicit semantics,
that can be identified from the various forms of source signals
such as image [29]–[31], voices [32]–[34], and text [35]–[37],
etc. One of the key advantages of these solutions is that mature
algorithms can be directly applied to identify semantics from
the source signals. However, these solutions often require a
large volume of manually labelled dataset for model training
and updating. They also ignore the implicit impact such as
those generated by interaction history, personal experience,
and background on the semantics recognition and delivery
process.

Motivated by the recent study in cognitive neuroscience
which observes that the human users are able to recover com-
plex implicit semantics during the communication based on the
background knowledge and/or a limited clue information, in
this paper, we introduce the concept of implicit semantic-aware
communication, in which implicit semantics including the
hidden relations and inference mechanisms can be learned and
automatically inferred during the communication and network
interaction. Different from the existing works, in the implicit
semantic-aware communication, instead of trying to maximize
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the total amount of information transmitted from one user
to another, the source user will try to guide the destination
user and/or the destination edge server to learn the implicit
rules and reasoning mechanism that dominates the implicit
semantic information generation process. In this way, the BHC
paradox can be naturally solved for rational users and also
the personal preference and background knowledge of the
source user is directly included into the learned mechanism.
To the best of our knowledge, this is the first work that
investigates the imitation learning-based implicit semantic-
aware communication networks.
Knowledge Reasoning: Knowledge reasoning has attracted
significant interest recently due to its potential to infer hidden
or even unknown information. Most of the existing works in
knowledge reasoning are based on knowledge graph which
can be roughly divided into three categories: graph-level,
subgraph-level, and entity-level reasoning. Graph-level reason-
ing reveals the underlying properties of the entire input graphs
taking into consideration their overall structural information. It
has been successfully implemented in various real-world appli-
cations such as protein discovery [38] and molecule trials [39].
Subgraph-level reasoning solutions utilize relation features
between knowledge entities exhibited in various subgraphs
of knowledge [40]. Entity-level reasoning solutions utilize
the entities’ connection features and have shown promising
results in entity classification and link prediction in various
networking systems such as social networks [41]. As men-
tioned earlier, knowledge graph can only model complete
knowledge relations and therefore cannot be directly applied
to represent the implicit knowledge components. In this paper,
we proposed a novel multi-layer representation of semantics
that can capture both explicit and implicit semantics. We
also consider a collaborative reasoning-based solution that
enables the collaborative learning among users decentralized
knowledge bases involving both globally-shared and locally-
owned knowledge information.

III. MULTI-TIER CLOUD/EDGE COMPUTING NETWORKS

We consider a multi-tier cloud/edge network consisting of
a number of edge servers deployed between the CDC and
users as illustrated in Fig. 1. The set of edge servers can be
divided into different tiers according to their service types,
coverage, as well as relative distances to the served users.
To simplify our description, we focus on a three-tier network
consisting of a CDC (high-tier) and a two-tier edge network
including mid-tier and low-tier edge servers, to support the
semantic communication and interpretation between users. Our
considered network consists of the following key components:
(1) CDC: corresponds to a centralized CDC that offers

globally accessible computational and storage resources
to all the users. The CDC can also maintain a globally
shared semantic knowledge base consisting of accumu-
lated knowledge entities, e.g., facts, terms, concepts, and
objects, and possible relations, e.g., relationship between
entities. In general, the entities and relations in the
globally-shared knowledge base can correspond to the
high-level commonly-shared facts that are irrelevant to
the regional or local specific knowledge.

Locally-shared 

Knowledge Base

High-tier

Mid-tier

Globally-shared 

Knowledge Base

CDC

•
 

•
 

•
 

•
 

•
 

•
 

•
 

•
 

•
 

•
 

•
 

•
 

Regionally-shared 

Knowledge Base

Low-tier

•
 

•
 

•
 

•
 

•
 

•
 

•
 

•
 

•
 

User

Fig. 1: A multi-tier cloud/edge computing network with
globally/regionally/locally-shared knowledge bases.

(2) Mid-tier Edge Servers: correspond to the edge servers
that provide regionally accessible computational and stor-
age resources to the users in the coverage area. Similarly,
each mid-tier edge server can also maintain a regionally
shared knowledge base consisting of regionally-relevant
and preferred knowledge facts, relations, customs, mech-
anisms, etc.

(3) Low-tier Edge Servers: are local edge servers, each
offers locally accessible computational and storage re-
sources to the local users. Each local edge server also
has a local knowledge base that can store some locally
shared or even personalized knowledge including person-
alized and experience-based, e.g., biased understanding of
knowledge concepts and relations associated with one or
a limited number of individual users.

(4) Users: correspond to either information source and des-
tination users that try to communicate their semantic
meaning with each other. We assume that each source
user can observe the past communication history and ex-
tract a set of semantic reasoning trajectories consisting of
globally, regionally, locally-shared, and/or even privately
accessible semantic knowledge information. The source
user will then use these observed semantic reasoning tra-
jectories, called expert reasoning paths, to guide CDC and
edge servers across different tiers to train the semantic
encoding, decoding, and interpreting models.

Note that in our considered network architecture, the multi-
tier CDC and edge servers are only required to be logically
divided based on the privacy requirements and data and service
coverage. For example, the function of a mid-tier edge server
can be deployed within the CDC with an exclusive right to
access the regionally shared semantic knowledge, e.g., some
users can purchase services offered by the CDC to store their
private information data. Similarly, mid-tier and low-tier edge
servers can also be co-located in the same device, e.g., edge
server, with different rights to access the regional or local
knowledge information. In some special cases, the mid-tier
and low-tier edge servers can also be co-located with some
high performance user devices with excessive computational
and storage resources that can be utilized to store the regional
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or local knowledge.

IV. SEMANTIC REPRESENTATION AND PROBLEM
FORMULATION

A. Multi-layer Representation of Semantics

As mentioned earlier, the semantic meaning of a message
may involve both implicit and explicit semantic information
that can be associated with different domains, privacy re-
strictions, and abstraction levels. Developing a simple and
comprehensive way to represent the semantics of messages
is therefore of critical importance for designing and imple-
menting semantic communication systems.

Most existing works in semantic communications assume
that all the possible semantic symbols are independent with
each other and belong to a closed set available at every user.
These representations of semantics contradict with the original
definition of semantics introduced by Breal which defines the
semantics as relationships between words and the associated
knowledge components they represent.

One potential solution to characterize the relations between
concepts and knowledge components is to adopt the knowl-
edge graph-like solutions to represent semantics of messages.
Despite its high efficiency in representing complex relations
between knowledge entities, applying graphical structures to
represent semantic meaning of a message is also challenging
due to the following reasons. First, knowledge graph can only
represent a complete set of known entities and relations and
therefore cannot represent the implicit meaning of messages.
Second, most existing knowledge graphs are built based on
facts and knowledge information recorded in globally-shared
dictionaries carefully compiled by linguists. It cannot reflect
the local preference of inference or some personalized un-
derstanding, e.g., biased personal experience-based knowl-
edge, of users. In other words, it is challenging to apply a
single knowledge graph to include both the globally-shared
knowledge as well as some regionally-shared or privately-
owned information of individual users. Finally, some messages
may consist of knowledge concepts and relations associated
with multiple decentralized knowledge bases deployed across
multiple CDC and/or edge servers. This makes it difficult for
performing joint semantic inference and interpretation across
multiple knowledge bases without causing the leakage of
private information.

Recent study in cognitive neuroscience reports that the
semantic cognitive process of human users can be considered
as a multi-layer semantic reasoning and causal inference pro-
cess, called hierarchical reasoning [17], consisting of multiple
abstraction layers of the cognitive process from the highest
layer, involving the high level abstraction of concepts and
the cognitive process, extending to the lowest layer, often
associated with very concrete and simple information and
cognitive actions.

Motivated by the above study, in this paper, we propose
a novel multi-layer representation of semantics of messages
taking into consideration both cross-layer hierarchical struc-
ture of knowledge reasoning process across different abstrac-
tion layers of knowledge components and intra-layer network
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Fig. 2: Knowledge entities of a dictionary-based dataset (FB15K-237)
divided into three layers of abstraction.

connections between the closely related entities with sim-
ilar abstraction layer. In particular, we seek interpretations
of semantics of a given message in L different abstraction
layers where the root layer (highest) consists of high-level
conceptual level entities and relations such as domain names
and classes and/or types of knowledge entities and the other
layers are composed of hyponymy concepts and relations
extended from one or multiple parent layer entities with more
concrete knowledge information. The lowest layer consists of
highly detailed entities and relations such as location points
and specific names of people. In fact, we can observe the
hierarchical structure of knowledge entities and relations in
many real-world human knowledge datasets. In the dictionary-
based knowledge dataset, e.g., FB15K-237 [42], for example,
the knowledge entities can be categorized into different ab-
straction layers based on the rank of their degrees (numbers
of directly connected relations), as illustrated in Fig. 2. In
particular, if we divide all the entities in the FB15K-237 into
three different layers based on the rank of their degree: high
layer (entities with degrees above 50), middle layer (entities
with degrees between 6 and 50), and low layer (entities with
degrees less than 6). We can observe that the knowledge
entities in the highest layer correspond to concepts with the
highest level of abstractions such as “sports”, “film”, “people”,
and “music”. Although the number of high layer entities only
accounts for a small portion, less than 0.0814%, of the entire
knowledge base, they are often closely related to each other,
for example, people and sports are often the main themes
of films. The middle layer entities are knowledge concepts
with relatively more detailed knowledge terms such as “film
awards”, “music awards”, and “country”. Each middle layer
entity can be associated with multiple concepts in the high
layer, for example, “Oscar award” contains both best “musical
award” and best “film award”. Generally speaking, the entities
in the middle layer are less connected to each other compared
to those in the high layer. The low layer entities offer the most
concrete information compared to the middle layer entities,
e.g., “Ronald Reagan” and “Elizabeth Taylor”, etc. Similarly,
each entity in the low layer can be correlated with multiple
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entities in the middle layer, e.g., “Ronald Reagan” is an actor
and also a president of a country.

More formally, we define a multi-layer representation of
semantics of a message as a triple ω = 〈vE , p(L)

(
vE
)
,π〉

consisting of the following elements:

(1) Explicit Semantics: include the visible entities (concepts,
objects, terms, etc.) and relations (relationship between
entities) that can be directly identified from the source
signal. Let vE = 〈eE , rE〉 be the explicit semantics of
a given message where eE and rE correspond to the
identifiable entities and relations, respectively.

(2) Inferred (Implicit) Semantics: correspond to the implic-
it knowledge components including the hidden entities
and relations that are closely related to the semantic
meaning of the message. Motivated by the fact that
human users tend to infer implicit knowledge components
from their closely related concepts and relations, we
model the inference process of semantics as a sequential
decision making process which extends one semantic
relation or entity at a time from the set of explicit
semantics vE . For example, an inferred semantic path ex-
tended from a visible entity e0 after t sequential inference
processes is given by pt = 〈e0, r1, e1, r2, e2, . . . , rt, et〉
where e0 ∈ eE is a visible entity identified in the source
signal and r1, e1, r2, and e2 are implicit semantic entities
and relations extended from e0. Since the semantics of
messages can be inferred based on entities and relations
across various abstraction levels, we use pl

(
vE
)

to de-
note the set of paths extended from the explicit semantics
to the lth abstraction level of the knowledge entities
and relations. Since in this paper, we focus mainly on
minimizing the semantic disambiguity (relatively detailed
meaning) of messages, we only consider the semantic
reasoning of any given entity in its downward layers, i.e.,
for a layer l entity e0, it will only infer implicit semantics
in the layers that are equal to or lower than layer l.
Suppose L abstraction layers are ranked from the highest
to the lowest from 1 to L. Each entity e0 will generate
(L − l + 1) paths in abstraction layers l, l + 1, . . . , L,
e.g., we can write the set of reasoning paths generated
from e0 as p(L) (e0) = {pi (e0)}i∈{l,...,L}. We also write
the combination of semantic inference paths for all the
explicit semantics vE as p(L)

(
vE
)

= {pL (e0)}e0∈vE .
(3) Inference Mechanism: corresponds to the inference rules

that decide the potential connections between the ex-
plicit and implicit semantics. As mentioned earlier, the
implicit semantics cannot be directly obtained from the
explicit semantics, but will have to be inferred based
on the background and/or personally related information
such as personal preference and previous experience. For
example, a message “Micheal is reading a book about
Tesla” consists of key entity “Tesla” which can be closely
linked to either the electric vehicle manufacturer or the
inventor Nikola Tesla, none of which can be directly
interpreted from the received message itself. If recent
conversations between Micheal and his friends mentioned
some inventions during 1890s, it is most likely that

“Tesla” in the example message is referred to as the
“inventor Nikola Tesla”. In other words, an inference
mechanism can be considered as a user-related mapping
function that maps the observed explicit semantics into a
set of possible reasoning trajectories extended across dif-
ferent abstraction layers, i.e., we can write the inference
mechanism as π : vE → p(L). In this paper, we assume
that all the communication messages arrived at the users
are generated by an unknown and unobserved inference
mechanism, referred to as the expert inference mecha-
nism. We then focus on developing solutions to learn an
estimated inference mechanism to imitate the true expert
inference mechanism from a set of reasoning trajectories
observed during the past communication history.

Note that in the previous section, we divide the knowledge
entities and relations into different tiers according to the
privacy requirements and service coverage of edge servers. In
this section, however, we consider categorization of knowledge
entities as well as their associated relations based on the
abstraction levels. These two ways of division of knowledge
entities do not have to be correlated with each other. In
other words, different mid or low-tier edge server can have
knowledge entities associated with different combinations of
abstraction levels.

B. Semantic Distance

One of the key objectives of semantic commutations is
to minimize the semantic distance, a metric for measuring
the meaning dissimilarity between the true meaning of the
source user and the recovered meaning interpreted by the
destination user. Unfortunately, designing a simple and unified
metric to measure semantic distance between two semantic
representations is known to be a notoriously difficult task
due to the following reasons. First, the representations of
semantics involve complex relations and entities at different
abstraction levels, there is still lacking a unified metric that
can characterize the difference between two hierarchical struc-
tures of semantic meanings. Second, since the real intended
meaning, especially the implicit semantic meaning, of the
source users is generally unknown or difficult to recognize,
evaluating the dissimilarity between an interpreted meaning
and the true meaning of the user is generally impossible.
Finally, as mentioned earlier, the implicit semantics need to
be inferred based on some background and personality-related
information that cannot be directly observed from the source
signal. In other words, different users may have different and
even biased understanding of meanings when observing the
same explicit semantics. How to capture the impact of the
personal-related information on the semantic distance between
different interpretations is still an open problem.

In this paper, we propose a unified solution for measuring
the distance of any given pair of semantic representations.
As mentioned previously, the semantics of a message can
be represented by a set of implicit semantic reasoning paths
generated from the observed explicit semantics. Suppose the
source user can observe a history of communication messages
consisting of many previously observed semantic reasoning
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trajectories of knowledge entities and relations originated from
some commonly used entities. We refer to these semantic
reasoning trajectories as the expert reasoning paths. Generally
speaking, the communicated messages of a specific user tend
to follow the similar syntax and reasoning preference. The
expert reasoning paths can therefore be considered as the
random samples of an unknown semantic inference mechanism
of the source user. Let q

(
vE
)

be the set of expert reasoning
paths originated from the visible entities and relations in vE ,
which follows a stationary distribution under the given vE .
We also use p

(
vE
)

to denote the interpreted semantic paths
made by the destination user or its associated edge server
when observes vE . Since the semantic reasoning mechanism
is closely related to user’s background and personal preference
and is generally assumed to be stationary for the same user,
we can then define the semantic distance between the seman-
tic meaning of the source user and that interpreted by the
destination user as the difference between the distributions of
two semantic reasoning paths generated by their corresponding
reasoning mechanisms based on the same explicit semantics
vE , denoted as Γ

(
q
(
vE
)
,p
(
vE
))

.
As mentioned earlier, the reasoning process of human users

tend to follow a sequential inference process dominated by a
reasoning mechanism, a policy that infers the most relevant
hidden relations and semantic entities from the observed or
previous inferred knowledge components. In particular, we
can write the reasoning policy πE that generates the expert
paths as a mapping function mapping the last entity of a
reasoning path into the next possible hidden relations, i.e.,
πE : pt → rt+1 for t = 0, 1, . . .. We define the occupancy
measure of a reasoning policy πE as the probability of
observing a set of relations r being added to a set of paths
p when the user infers implicit semantics based on the policy
πE , i.e., we can write the occupancy measure of policy πE
as cπE (r,p) = πE (r,p) Pr (p|πE) where πE (r,p) is the
probability of selecting relation r under path p decided based
on policy πE . If we assume that the reasoning process follows
the Markov property, that is the current choice of relations r
only depends on the previously observed or inferred entities
e, we can rewrite the occupancy measure of policy πE as
cπE (r, e) = πE (r, e) Pr (e|πE). We can observe that for
any given explicit semantics, the resulting semantic reasoning
paths can be fully determined by the reasoning policy with the
maximum length constraint J of a reasoning path. In other
words, the semantic distance between the original meaning
and the interpreted meaning is, in fact, the difference between
the reasoning mechanisms of the source and destination users,
characterized by the occupancy measures of their generated
paths. Let πD be the reasoning mechanism learned by the
destination users. Let qπE and pπD be the paths generated
by reasoning mechanisms of the expert reasoning mechanism
and that generated by the reasoning mechanism learned by the
destination user based on our proposed solution, respectively.
In the rest of this paper, we mainly focus on two types of
distance metrics for measuring semantic distances of reasoning
mechanisms defined as follows. Our proposed solutions, how-
ever, can be extended into more general scenarios involving
other forms of semantic distances.

(1) Statistic-based Semantic Distance (Distance-I): The
semantic distance between the expert paths and inferred
paths can be measured by their statistic difference. For
example, suppose that the set of all the valid occupancy
measures of the expert paths and that of the interpreted
paths are given by ∆E and ∆D, respectively, and if
we adopt the cross-entropy, one of the most commonly
used metrics for measuring the statistic difference, the
semantic distance can then be written as

Γ
(
qπE ,pπD

)
= EcπE∼∆E [− log (cπD )]. (1)

(2) Energy-based Semantic Distance (Distance-II): We
also consider an energy-based solution to first project the
high-dimensional graphical representation of reasoning
trajectories into a low-dimensional space, called semantic
space, in which the dissimilarity between two semantic
meanings is proportional to their Euclidean distance. In
particular, let ẽ and r̃ be the representations of e and r
in semantic space, respectively. The main objective is to
design a projection function such that the Euclidean dis-
tance between ẽt+r̃t+1 and ẽt+1 is minimized if entities
et and et+1 are connected via relation rt. Suppose J is
the maximum length of each semantic reasoning path. In
this way, we can write the representation of a semantic

reasoning path in the semantic space as p̃ =
J∑
j=1

r̃j + ẽ0.

The semantic distance between reasoning policies πE and
πD will then be defined as:

Γ
(
qπE ,pπD

)
= EcπE ‖ẽt + r̃t+1 − ẽt+1‖2

−EcπD ‖ẽt + r̃′t+1 − ẽ′t+1‖2, (2)

where r̃′t+1 and ẽ′t+1 are the hidden relations and entities
inferred by πD.

The above two distance metrics have different features
and can be applied into different scenarios. In particular, the
energy-based semantic distance is simple to calculate and easy
to scale into large knowledge base. Also, since it measures the
semantic difference (e.g., plausibility of true facts compared to
the false ones) based on the Euclidean distance in the projected
semantic (encoding) space, it is also easier to evaluate the
noise combating performance as will be discussed later in
this paper. The statistic-based semantic distance needs to be
calculated based on the probability distributions of possible
semantic meanings and therefore is more suitable to measure
the semantic difference between semantic generation rules
or models, i.e., the semantic reasoning paths generated by
the neural networks, especially the deep neural networks-
generated paths.

C. Problem Formulation

The main objective of this paper is to design a semantic-
aware communication solution to minimize the semantic dis-
tance between the true meaning of the source user and the
interpreted meaning of the destination under any given explicit
semantics. We can write the optimization problem as follows:

min
πD

EπD
(
Γ
(
qπE ,pπD

))
, (3)
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where πE is the unobserved true semantic reasoning mecha-
nism of the source user.

It can be observed that problem (3) is an ill-posted problem
which is generally difficult to solve due to the following
reasons. First, the users cannot directly access the reasoning
mechanism that generates the expert paths but can only
observe a limited set of trajectories of the knowledge compo-
nents observed during the past communication. Considering
that there exist multiple different ways/paths to express the
same/similar semantic meaning, how to estimate the reasoning
mechanism that imitates the true reasoning process of the
source user is a challenging task. Second, different edge
servers may access different sets of decentralized knowledge
bases and therefore how to develop a resource efficient knowl-
edge sharing framework without compromising the privacy of
the knowledge information is also an open problem.

V. COLLABORATIVE REASONING-BASED
SEMANTIC-AWARE COMMUNICATION NETWORK

ARCHITECTURE
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Fig. 3: (a) Collaborative reasoning-based implicit semantic-aware com-
munication network architecture, and (b) procedures in the training and
communication phrases.

A. Architecture Overview

We propose a collaborative reasoning-based implicit
semantic-aware communication network architecture as illus-
trated in Fig. 3. There are two phases to implement the
proposed architecture: (Model) training phase and (semantic)
communication phase. In the training phase, each source to
destination user pair assists the CDC and edge servers to
train semantic encoding and interpreting models. In particular,
the source user will first identify some initial entities and/or
relations from the expert reasoning paths as the explicit seman-
tics to be sent to the semantic interpreter at the edge server
that is close to the destination user. The semantic interpreter
at the destination user will then generate a set of possible
semantic reasoning paths to be sent back to the semantic

evaluator at the edge server of the source user. The source
user will then compare the paths generated by the semantic
interpreter with the expert reasoning paths and feedback the
value of semantic distance to the semantic interpreter. The
above process will be repeated until the semantic interpreter
converges to a stationary policy and semantic evaluator at the
source user cannot differentiate the paths generated by the
semantic interpreter from expert reasoning paths. The edge
server will also train a semantic encoder to convert the high
dimensional representation of explicit semantic entities and
relations into a set of low-dimensional semantic representation
that is efficient for physical channel transmission. The trained
semantic encoder will be loaded to the source user for message
encoding during the semantic communication phase. Similarly,
to train the semantic decoder, the destination user will upload
the noisy version of the low-dimensional semantic signal
received from the channel to the edge server. The edge server
can then calculate a decoding function that can recover the
semantics of the source user. The semantic decoder will also
be loaded to the destination user at the end of the training
phrase. Note that, during the training process of the semantic-
aware communication system, the semantic interpreter at the
destination user uses the noisy version of the explicit semantics
as input and can then output the inferred implicit semantics
based on the noisy semantics. In other words, if the destination
user communicates with the semantic interpreter at the edge
server via a high SNR channel, e.g., wired connection, we
can ignore the noise of channel connecting edge servers and
users. However, if the destination user connects the edge server
through wireless channel, the signal arrived at the edge servers
will include both noises in the channel between the source and
destination users as well as that connecting the destination user
and the edge server. In this case, the semantic interpreter will
use different input to train the semantic interpretation model
and the rest of the training process remains the same. We
will discuss the semantic encoding and decoding process for
a single edge server case in Section V-D. Multiple edge servers
can collaborate in training their semantic interpreters using a
federated GCN-based collaborative reasoning solution which
will be discussed later in Section V-E.

During the communication phrase, the source user will
first identify the explicit semantics and then apply the pre-
loaded semantic encoder to compress the identified semantics
for physical channel transmission. The destination user once
recovers the explicit semantics from the received signal will
then send the recovered semantics to the semantic interpreter
at the edge server. The semantic interpreter will generate the
implicit semantics to be sent to the destination user.

B. Semantic Reasoning Mechanism Modeling

Motivated by the fact that, in most human-related com-
munication scenarios, the current communication context is
closely related to the communication history, in this paper,
we model the sequential semantic reasoning process as a
reinforcement learning problem in which the implicit semantic
entities and relations are sequentially inferred from the explicit
semantics. In this way, the reasoning mechanism can then be
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considered as an inference policy that decides the possible
(hidden) relations that link the currently interpreted entities to
the next relevant hidden entities.

We focus on a slotted sequential decision making process in
which, in each time slot t, the user decides the possible rela-
tions to extend the current reasoning paths. We use subscript t
to denote the parameters decided in the tth reasoning iteration
for 0 ≤ t ≤ J . We define the semantic reasoning process of
a user as a four-tuple 〈S,A,π, µ〉, where the state space S
corresponds to the currently extended reasoning paths from
the explicit semantics, e.g., we can write st = 〈p(L)

t

(
vE
)
, t〉

where p(L)
t = 〈el0, . . . , elt〉l∈{1,...,L}. We have s0 = vE . The

action space A is the possible implicit relations selected to
extend the current reasoning paths, i.e., action at decided in
the tth time slot is given by at = rt. The policy π corresponds
to a set of stationary stochastic policies that decide the actions
under each given state, i.e., π : S×A → A. It can be observed
that for any given explicit semantics (initial state s0) and a
policy π, the set of possible reasoning paths q (a sequence of
actions) can be determined. We can therefore write the set of
expert paths generated by policy πE with explicit semantics
vE as qπE

(
vE
)
.

C. Imitation-based Reasoning Mechanism Learning

Since the expert policy πE is unknown and cannot be
observed by the user, how to estimate the policy function to
imitate the true reasoning process of the source user is a very
challenging task. One commonly used approach is to adopt
the inverse reinforcement learning-based solutions which need
to first estimate a specific cost function and then applies the
traditional reinforcement learning-based solutions to calculate
the policy. One of the key assumptions of these solutions is that
every expert path is assumed to be a unique and optimal choice
of the user to minimize its cost. In many practical systems,
however, it is impossible to estimate any specific cost function.
Also, due to the randomness of users’ choices, it is unrealistic
to assume that every reasoning decision made by the users is
optimal.

In fact, each of the expert paths observed by the source
user can be considered as a sample resulted from many
different possible probability distribution functions, due to the
lack of information, none of which can be assumed to be
more likely than others. This motivates a novel theoretical
framework, called the principle of maximum entropy, which
resolves the uncertainty about some constrained probability
distribution functions for “modeling the observed behavior
of the users by choosing the distribution functions that has
the least commitment for any particular outcome” [43]. In
other words, a probability distribution function that follows
the principle of maximum entropy is the distribution that
maximizes the entropy, a standard measure of uncertainty
in information theory, subject to the matching of observed
behavior trajectories.

In this paper, our main objective is to learn a reasoning
policy that captures the sequential decision making rules
dominated by the causality between the explicit and implicit
semantics, e.g., any hidden entities or relations should only

be inferred during the interpretation of semantic meaning
when they are closely related to the other existing semantic
components of the arrived message. Therefore, we adopt the
principle of maximum causal entropy, an extension of principle
of maximum entropy that involves the conditional probability
distributions for capturing the sequential decision making
dominated by the causality between sequence of actions, to
learn the reasoning mechanism that explains the observed
reasoning paths of the source user. More formally, the casual
entropy of a state to action transition is defined as H (at‖st) =
Ea|s [− log (Pr (at|s1:t, a1:t))] = Eπ [− logπ (a, s)] = H(π)
where H (·) is the entropy function, s1:t = 〈sl〉l∈{1,...,t} and
a1:t−1 = 〈al〉l∈{1,...,t−1}. The main idea of the principle of
maximum causal entropy is to find a policy that maximizes
H(π).

We can now propose an imitation learning solution based on
the principle of maximum entropy to train a reasoning policy
to match the user observed semantic reasoning process. Let
us first consider an imitation learning-based solution for a
single edge server to learn the semantic reasoning policy of the
user. We extend our proposed imitation learning solution into a
large number of multi-tier collaborative edge severs in the next
subsection. In the rest of this subsection, we first introduce our
proposed solution and then prove that the proposed solution
can, in fact, address all the issues of the ill-posted problem of
(3).

Since the user cannot know the reasoning policy of the
source user but can only observe expert reasoning trajectories,
we try to derive a reasoning policy than can match the state
to action mapping observed in the expert paths. Let us define
the occupancy measure of a given policy π as the probability
of observing an action being decided under a given state
when the user reasons based on policy π, i.e., the occupancy
measure of policy π is defined as cπ (a, s) = π (a, s) Pr (s|π)
where π (a, s) is the probability of selecting action a un-
der state s under policy π. Based on this definition, for
a given occupancy measure c, we can rewrite policy π as
πc (a, s) = c(a, s)/

∑
a′ c(a

′, s). In this way, we can convert
the matching between semantic reasoning policies π and πE
as the matching between occupancy measures cπ and cπE .
We can finally write the maximum causal entropy problem
with the constraints on the matching between the semantic
reasoning policy πD learned by the edge server and the true
reasoning mechanism πE that generates the expert path as
follows:

max
πD

H (πD) (4)

s.t. cπD (s, a) = cπE (s, a) ,∀s ∈ S, a ∈ A

where H (πD) = EπD [− logπ (a, s)] is the causal-entropy of
the semantic reasoning policy πD.

By substituting the definition of semantic distance defined
in Section IV-B and convert the above problem into its
Lagrangian form, we can have the following optimization
problem,

min
πD

F (πD) (5)
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where F is the loss function given by

F (πD)

= −H (πD) + λ (Es,acπD (s, a)− Es,acπE (s, a))

= −H (πD) + λΓ (πE ,πD) , (6)

where λ is the Lagrange multiplier. Since F (πD) is convex,
we can apply the standard convex optimization solution to
solve problem (5). [44]

We can now prove that by converting problem (3) into
problem (4), the problem is no longer ill-posted and we can
find a unique optimal solution by applying the standard convex
optimization solution.

In particular, we have the following results:

Theorem 1. Suppose occupancy measure c is non-negative
and its value is bound by a positive constant M , i.e., 0 ≤
c ≤ M . There exists a constant ξ ∈ (0, 1), such that the
corresponding policy πc (a, s) = c(a, s)/

∑
a′ c(a

′, s) ≤ 1 −
ξ. Then, problem (5) is strongly convex and there exists a
unique policy under the observed occupancy measure.

Proof: See Appendix A.
From the above theorem, we can observe that by regular-

izing the loss function based on the causal entropy, we can
always find a unique semantic reasoning policy that imitates
the reasoning behavior of the source user.

D. iRML with a Single Edge Server

In our considered implicit semantic-aware communication
networks, each user may not have the sufficient resource to
perform semantic coding but can guide the resource-abundant
edge servers to learn their personalized semantic reasoning
preference. We propose a novel solution, iRML, for training
both semantic encoder and decoder at CDC and edge servers
to support semantic communication between a source-to-
destination user pair. Let us first introduce the training process
of iRML for a single edge server scenario consisting of the
following key procedures.

1) Training Semantic Encoder at the Edge Server: The
source user will try to train a semantic encoder for converting
the high-dimensional semantic representation of messages into
a low-dimensional representation that is efficient for physical
channel transmission. Different from the traditional encoding
solution which converts messages into a sequence of bina-
ry symbols regardless of their represented meaning, in our
proposed semantic-aware communication, different entities are
encoded into a sequence of semantic constellation representa-
tions in which the distance between entities in the represented
constellation space is proportional to their meaning dissimilar-
ity. For example, if we adopt the energy-base semantic distance
to measure the meaning dissimilarity between two entities,
the edge server will train a projection (encoding) function by
minimizing the following loss function:

L =
∑

〈ẽ,r̃,ẽ′〉∈K,
〈ẽ,r̃′,ẽ′′〉∈K−

max{0, σ + ‖ẽ+ r̃ − ẽ′‖2

−‖ẽt + r̃′ − ẽ′′‖2}, (7)

where K and K− correspond to the sets of valid and invalid
entity-relation connecting triplets in the edge server’s local
knowledge base, respectively. σ is the average distance be-
tween the valid (positive) and invalid (negative) entity-relation
connecting triplets. The trained projection function, denoted
by Θ(·), will be sent to the source user to encode the explicit
semantics into a sequence of constellation representation of
symbols before sending to the physical channel. In this way,
the entities representing similar meanings will have relatively
short Euclidean distance, compared to those with different
meanings. When the encoded signal has been corrupted by
the channel fading or noise, each symbol (entity) will be
more likely to be misrepresented by the semantic similar
symbol instead of semantic dissimilar ones. In other words, our
proposed encoding strategy is more robust against semantic
misinterpretation than existing semantic-irrelevant communi-
cation solutions, especially for applications that can tolerate a
certain symbol-level loss during the semantic interpretation.

Compared to many existing semantic communication solu-
tions which directly encode the labels or features of objects
into a sequence of binary bits to be sent based on the
traditional channel coding solution, our proposed semantic-
aware encoding solution can encode more semantic symbols
in each constellation by separating different symbols by their
meaning differences, and therefore offers much improved
communication efficiency and enhanced robustness against the
channel corruption, especially when being combined with our
proposed semantic decoder which will be discussed later in
this section.

In Fig. 4, we consider an example message consisting
of semantic meaning represented by 17 knowledge entities
generated from FB15K-237 knowledge dataset divided into
three abstraction layers. It is known that each entity in FB15K-
237 has over 200 attributes and therefore to transmit all
these explicit semantics will require sending 3,400 real valued
data coded into binary bits when applying the traditional
communication solution. In our proposed solution, the multi-
layer representation of semantics will be encoded into a 2-
dimensional semantic constellation with real and image parts.
We can either encode explicit semantics of different layers
into separate constellation representations as shown in Figs.
4(b)-(d) or encode all the semantic entities into a single
semantic constellation as shown in Fig. 4(e). As mentioned
earlier, entities in the higher layers generally have more
directly connected relations with each other and therefore their
representations in the constellation space will be more densely
located. Also, entities in the lower layers tend to have less
directly connected relations and therefore are located more
separately.

2) Training Semantic Decoder at the Edge Server: The
destination user will also rely on the edge server to train a
semantic decoder, denoted by Θ−1(·), to recover the explicit
semantics from the received signal. In particular, suppose the
source user sends an encoded signal v̂E . The signal received
by the destination user is given by

ŵE = gv̂E + δ, (8)
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Fig. 4: (a) A multi-layer representation of semantics of a message consisting
of 17 knowledge entities across three abstraction layers and (b)-(d) their corre-
sponding semantic constellations represented with entities in three individual
layers and (e) all the entities represented in a single semantic constellation
space.

where g is the channel fading coefficient and δ is the additive
Gaussian noise.

During the training phase, the destination user will directly
upload the received signal ŵE to the edge server. The edge
server can then decide whether or not to fully decode the
explicit semantics before sending to the semantic interpreter.
In particular, we consider two semantic decoding schemes for
the destination user:
• Hard Decoding: the destination user first recovers the

explicit semantics sent by the source user from its
received signal and then sends the recovered explicit
semantics to the semantic interpreter for inferring the

implicit semantics. Since the semantic encoding function
used by the source user can also be trained by the edge
server, during the training phrase, when the edge server
receives the noisy version of semantic signal uploaded
from the destination user, it can estimate the fading
coefficient and additive noise level of the channel between
the source and destination users and then calculate a
decoding function that maps a noisy version of the low-
dimensional semantic representation of signals received
by the destination user to the high-dimensional graphical
form of explicit semantics sent from the source user.

• Soft Decoding: the noisy version of the received signal
will be directly sent to the semantic interpreter for
generating the reasoning paths. Suppose the energy-based
semantic encoding function trained by (7) has been used.
The semantic interpreter, once received a noisy version
of explicit semantic representation ŵE , will sequentially
extend a reasoning path with length J (J relations being
decided) from ŵE as follows:

p̂ =

J∑
j=1

r̃j + ŵE . (9)

Similarly, the semantic decoding function can also cor-
respond to a neural network model which generates
semantic reasoning paths based on the noisy version of
explicit semantics by following a learned policy model
πE . We will give a more detailed discussion in the next
subsection.

The detailed semantic encoding and decoding processes are
illustrated in Algorithm 1.

// Training Phase
Input: Entities and relations of previously observed expert paths
Output: The project function Θ
for each server k ∈ [K] do

Initialize Θ
while L ≥ Threshold do

Update Θ w.r.t∑
〈ẽ,r̃,ẽ′〉∈K,

〈ẽ,r̃′,ẽ′′〉∈K−

∇{σ + ‖ẽ + r̃ − ẽ′‖2 − ‖ẽt + r̃′ − ẽ′′‖2}

end
end
Return Θ
// Encoding Phase
Input: Explicit semantics identified by the semantic identifier
Output: Low-dimensional representations of semantics
• Source user receives Θ
• v̂E ← Θ(vE)

// Decoding Phase
Input: ŵE received by the destination user
Output: A set of reasoning paths that best interpret the implicit
semantics
Destination user uploads ŵE to edge server
if hard decoding then

wE ← Θ−1
(
ŵE

)
else

p̂←
J∑

j=1
r̃j + ŵE

end
Algorithm 1: Training Semantic Encoder and Decoder
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3) Training Semantic Interpreter at the Edge Server:
To fully recover the semantic meaning of the message, the
edge server will need to train a semantic reasoning policy
that can generate a set of possible reasoning paths based
on the observed explicit semantics. We propose a generative
adversarial imitation learning-based solution for the source
user to assist the training of the semantic interpreter based
on its previously observed expert paths. In this approach, the
source user and semantic interpreter will compete with each
other in training a policy to generate reasoning paths that are
indifferentiable to the expert paths observed by the source user.
More specifically, during the training phrase, the source user
will randomly sample some initial entities in the expert paths
as explicit semantics which will be sent to the edge server. The
edge server will then try to generate a set of reasoning paths
with length J extended from the received explicit semantics to
be sent back to the source user. The source user will compare
the occupancy measure of the received reasoning path with
that of the expert paths to calculate the semantic distance to
be sent back to the edge server. The edge server can adopt
the standard SGD-based approach to iteratively learn a policy
to minimize the semantic distance between its generated paths
and the expert paths as the above process repeats, i.e., the edge
server will try to minimize the following problem,

min
πD

(
−H (πD) + λ

(
EcπE∼∆E

[
$∗φ (cπE (q))

]
+ EcπD∼∆D

[
$∗φ (cπD (p))

] ))
,

(10)

where $∗φ is the semantic evaluator that is learned by the
source user based on the observed expert reasoning paths
which will be discussed in the next subsection.

At the beginning of the training phrase, the semantic inter-
preter can be a randomly initiated graph convolutional network
(GCN) to generate random paths from any given explicit
semantics based on the local knowledge base associated with
the destination user. As will be proved later, the semantic
interpreter associated with a single source user will always
converge to a stationary reasoning policy πD. From (10), we
can observe that $∗φ is in fact a discriminator that tries to
differentiate the paths generated by the semantic interpreter
from the expert paths observed by the source user.

4) Training Semantic Evaluator at the User: As mentioned
earlier, the source user will not reveal its expert paths to
the edge servers of the destination users but will assist the
training process of the reasoning mechanism by reporting the
difference (semantic distance) between the semantic reasoning
paths interpreted by the edge servers and the expert paths.
For example, the source user can train a semantic evaluator,
a neural network to differentiate the interpreted meaning and
the meaning of the expert paths, i.e., the main objective of the
semantic evaluator is to maximize the cross entropy between
the occupancy measure of the expert paths and that of the
interpreted paths,

$∗φ = arg max
$φ

(
−H (πD)

+λ
(
EcπE∼∆E [$φ (cπE (q))]

+EcπD∼∆D [$φ (cπD (p))]
))

. (11)

Theorem 2. For any given πD, there always exists an optimal
solution for problem (11) under a given πD. As long as
πD converges to the optimal solution of problem (10), then
the resulting semantic distance between the expert paths and
the reasoning paths generated by the semantic interpreter
approaches zero.

Proof: See Appendix B.

E. iRML with Multi-Tier Collaborative Reasoning

Let us consider a multi-tier cloud/edge network with de-
centralized knowledge bases. In this case, each edge server
or CDC can only access a subset of knowledge concepts
and relations. Motivated by the fact that knowledge bases of
edge severs within the same tier may exhibit similar reason-
ing habits when reasoning about the relations and reasoning
paths among entities, we propose a federated GCN-based
model aggregation solution to jointly construct the reasoning
mechanism at the semantic interpreters among the same-tier
edge severs. We assume there exists a coordinator that can
communicate with all the servers within the same tier to
periodically coordinate their local model training process. The
coordinator can either be a higher-tier server or one of the
same-tier server selected to maintain and update the global
model. Semantic encoder and decoder will be locally trained
and updated by each edge server to be broadcast to the local
source and destination users in its coverage area.

Two key challenges of the collaborative model training
across decentralized knowledge bases are: (1) cross-layer
(knowledge base) reasoning: a single message received by a
source user may involve semantic entities stored at multiple
layers of edge servers and/or CDC; and (2) missing (inter-
knowledge-base) relations: different from the sample-based
dataset, in this paper, we consider the relation-based semantic
reasoning in which there may exist relations between entities at
different knowledge bases stored at different edge servers. Un-
fortunately, these inter knowledge base relations are discarded
due to the decentralized distribution of knowledge bases.

To address the first challenge, we introduce an index list at
each edge server to specify all the other knowledge entities
with the associated edge servers. Note that this index only
consists of links between knowledge entity labels and their
located edge servers. No relations nor attributes of the entities
will be stored or revealed in this index. To seek interpretation
of semantics, each user will submit its explicit semantics to
the closest edge server, which will then distribute the entities
in the received explicit semantics into the corresponding edge
servers according to the index. Each edge server will then
generate a reasoning path from the received entities based on
its local knowledge base and the learned reasoning policy. If
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the generated paths only involve entities in the local knowledge
base of the edge server, these paths will be sent back to the
local edge server of the user. We refer to the reasoning policy
that decides the relations connecting entities within the same
layer of knowledge bases as the intra-server policy. There are
cases some reasoning paths generated by an edge server may
need to extend to entities at other same-tier or even cross-tier
edge servers’ knowledge bases, which we referred to as the
intra-layer policy or cross-layer policy.

In this case, the source user will need to also guide each
edge server to train a cross-server policy which decides the
next entities in another edge server based on the currently
observed or inferred entities in the current edge server. Since
no knowledge base has the inter-knowledge-base relations, it
is generally impossible to know the detailed types of relations
that exist between entities cross different knowledge bases.
The cross-server policy can therefore only decide a binary
relation (1 or 0, exist or no relation) specifying whether or
not there exist a relation between an entity in other knowledge
bases and the current one.

Both intra-server policy and cross-server policy can be
collaboratively trained by multiple edge servers. Let us now
describe the detailed training and model coordination process
as follows.

(1) Intra-server Policy Coordination: Each edge server will
perform local model training for the semantic interpreter
following the same procedures described in Section V-D.
The locally trained model parameters of the semantic in-
terpreters at edge servers can be periodically coordinated
during the training phrase. Here, we will mainly discuss
the coordination procedures between edge servers via a
coordinator. At the beginning of the training phase, the
coordinator will broadcast a global model to every edge
server. For example, if we adopt a commonly used setup
and assume the semantic interpreter of each edge server
is a GCN with two-layer fully-connected convolutional
layers, we have

πDk = σ(w2
k, τ(w1

k,p
E
k )), (12)

where we use subscript k to denote the parameters
associated with the kth edge server, σ(·) and τ(·) are
activation functions which can be ReLU, softmax, and
sigmod. Let wk be the concatenation of both layers of
model parameters, i.e., we have wk = 〈w1

k,w
2
k〉. Recall

the local loss function of the semantic interpreter in (10)
is given by Fk = −H(πDk) + λΓ(πEk ,πDk). Suppose
edge servers upload their local models every E rounds of
local SGD iterations. We adopt the FedAvg [45], one of
the most commonly used federated learning algorithms
for model coordination, to coordinate the model training
among edge severs. We can therefore write the mod-
el aggregation among K collaborative edge servers as
w̄ =

∑K
k=1 γkwk where γk = nk∑K

k=1 nk
and nk is the

number of entities in the knowledge base of edge server
k.

(2) Cross-server Policy Coordination: each edge server can
also train a cross-server semantic reasoning policy that

only specifies a binary relation connecting each of its
entities with any other entities in the knowledge bases of
other edge servers. The model training and aggregation
processes are exactly the same as the intra-server policy
case with a different action space, which consists only of
entities from other edge servers.

The detailed algorithm is presented in Algorithm 2.

Input: Expert path set πE , encoded signal vE sent by source user
Output: Learned policy π∗D
Initialize w(1)

k = w̄(1) and πDk
Randomly generate a path pk(1) according to πDk and vE

k
for t = 1, · · · , T do

if t+ 1 /∈ [nE], n = 0, 1, 2, · · · then
for each server k ∈ [K] do

Generate pk(t) according to π(t)
Dk

Send pk(t) back to source users;
Get semantic difference
g(t)

wk
← ∇wkFk

(
w(t)

k

)
w

(t+1)
k = w

(t)
k − ηtg

(t)
wk ;

// Update local parameters.

Update π(t+1)
Dk

;
end

else
w̄(t+1) ←

∑K
k=1 γkw

(t+1)
k ;

// Aggregation at the coordinator.
The coordinator broadcasts w̄(t+1) back to edge servers;
Update π(t+1)

Dk
;

end
end
Algorithm 2: Collaborative Reasoning Mechanism

Many existing works in federated learning have already
verified that the FedAvg algorithm is able to converge to
a global optimal model when training with a global knowl-
edge base consisting of all the knowledge information of the
collaborative edge servers. Unfortunately, since the division
of knowledge entities between decentralized knowledge bases
results in the loss of information about the inter-knowledge-
base relations, the collaborative model training in our case
cannot converge to the global optimal solution. However, in
many real-world scenarios, the number of inter-knowledge-
base relations can be very limited, especially compared to the
relations connecting entities within each knowledge base. For
example, in the multi-tier computing network, the regionally-
shared knowledge entities are generally more closely related
to each other than other entities from other regionally-shared
knowledge base. In this case, the model trained by our
proposed collaborative training solution will approach to the
close neighborhood of the global optimal solution.

Let us now derive the theoretical convergence bound to
capture the above-mentioned performance gap between the
collaboratively trained model based on decentralized knowl-
edge bases and the global optimal model trained with the
complete global knowledge information.

Consider K same-tier edge servers collaborate to train a
shared semantic interpretation model. Let N be the total
number of knowledge entities of a global knowledge base, a
combination of knowledge bases of all K collaborative edge
servers. We use A and X to denote the adjacent matrix and
feature vector of the possible relations between entities in the
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global knowledge base. Let Ak and Xk be the adjacent matrix
and feature vector of the relations between knowledge entities
in edge server k. We follow a commonly adopted setting and
quantify the heterogeneity of local knowledge data distribution
across collaborative edge servers as ρ = F ∗ −

∑K
k=1 γkF

∗
k .

Before introduce the main theoretical result, let us introduce
the following assumptions.

Assumption 1. The local function F1, ..., Fk are all L-smooth,
i.e., there exists a constant L > 0, such that Fk (wi) ≤
Fk (wj) + (wi −wj)

T ∇Fk (wj) + L
2 ‖wi −wj‖22 ,∀k ∈ K.

Assumption 2. The local function F1, ..., Fk are all µ-strongly
convex, i.e., there exists a constant µ > 0, such that Fk (wi) ≥
Fk (wj) + (wi −wj)

T ∇Fk (wj) + µ
2 ‖wi −wj‖22 ,∀k ∈ K.

Assumption 3. The expected squared norm of local gradients
is uniformly bounded, i.e., E

∥∥∇Fk (wk
t

)∥∥2 ≤ σ2
L,∀k ∈ K

and t = 1, · · · , T − 1.

Assumptions 1-3 are commonly adopted settings in most
federated learning solutions and have already been verified
to be satisfied in many practical scenarios [46]–[48]. We can
prove the following results.

Theorem 3. Suppose Assumptions 1-3 hold and the learning
rate is given by ηt = 2

µ
1
ζ+t , where ζ = max {8κ,E} and

κ = L
µ . The coordinated model parameters w̄T trained by

K collaborative edge servers after T iterations of local SGD
training satisfy

E [Fk (w̄T )]− F ∗ ≤ 2κ

ζ + T − 1

(
Ω

µ
+

2Lp
µN
D
)
, (13)

where Lp is a constant satisfying Lipstchitz continuity and Ω
and D are given by

Ω = 4
(
1 + 2(E − 1)2

)
σ2
L + 4Lρ+

µ2ζ

4
‖w1 −w∗‖2 (14)

and

D =
∥∥KXT

kAT
kAT

kAkAkXk −XTATATAAX
∥∥2
. (15)

Proof: See Appendix C.
From Theorem 3, we can observe that the convergence

bound of our proposed collaborative model training is mainly
affected by two key parameters: Ω and D. The value of
Ω is mainly affected by the total number of local SGD
iterations and the heterogeneity of knowledge information
across collaborative edge servers. The value of D quantifies
the divergence between the local and global adjacent matrices
which directly reflects the performance gap between the col-
laboratively trained model based on decentralized knowledge
bases and the global model trained with the global knowledge
base.

VI. EXPERIMENTAL RESULT

A. Dataset and Simulation Setup

In this section, we evaluate the semantic communication
performance based on iRML. To demonstrate the generality of
iRML, we simulate the semantics of messages generated by

three popular real-world knowledge datasets, Cora, Citeseer,
and FB15K-237, composed of different types of knowledge
entities. In particular, Cora and Citeseer are citation datasets,
consisting of 2708 and 3327 knowledge entities (scientific
papers), 5429 and 4732 relations, and 1433 and 3707 features,
respectively. The semantics sampled from these two datasets
can be used to simulate the meaning represented by a sequence
of topics, studied in the scientific articles. FB15K-237 dataset
is a dictionary-based human knowledge dataset consisting of
14,541 entities and 237 types of relations. The semantics
sampled from FB15K-237 dataset may be used to simulate
the meaning of messages composed of the sampled words
connected with relations. The set of expert semantic reasoning
paths observed by each source user is obtained by random
sampling a set of paths based on a two-sided breadth first
path searching algorithm. Since this path sampling algorithm
always searches for the shortest paths connecting any given
pair of entities, the establish set of expert paths can simulate
the semantic reasoning mechanism of the users with more
straight-forward inference preference. The semantics of each
individual message is simulated by a path with the first
entity considered as the explicit semantics and the rest of the
relations and entities are considered as implicit semantics.

We consider the energy-based semantic distance and set
semantic interpreter as a two-layer fully-connected graph con-
volutional networks (GCNs) with the output being normalized
by a softmax function. The semantic evaluator consists of a
hidden layer and an output layer also being normalized by a
sigmoid function.
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Fig. 5: Symbol error rate of semantic symbols (entities) associated with
different abstraction layers when being decoded with (a) hard decoding and
(b) soft decoding under different SNRs.
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Fig. 6: Accuracy of symbol recovery when recovering semantic symbols
with different degrees under SNRs at (a) 2dB and 3dB, and (b) 8dB and 9dB.

B. Numerical Results
1) Performance of Semantic Encoder/Decoder: We first

evaluate the performance of our proposed semantic encod-
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Fig. 7: Average symbol recovery accuracy when the semantic entities have
been divided into different layers of abstraction.

ing and decoding solutions for a single pair of source and
destination users when communicating via noisy channels. In
fact, once the semantic interpreter being trained, it can be
used not only to infer the implicit semantics but also recover
some missing semantics corrupted during the physical chan-
nel transmission. We therefore evaluate the semantic symbol
error rate when the semantic interpreter can be used by the
destination user to recover the corrupted semantic symbols
(entities) that are associated with different abstraction layers
sent over physical channel with additive Gaussian noises under
different signal-to-noise ratio (SNR) in Fig. 5. We simulate
the semantics of messages using FB15K-237 dataset. We can
observe that the symbol error performance of semantic sym-
bols (entities) in different layers of abstractions is generally
different. In particular, the higher-layer symbols generally have
better error correction performance than that of the lower-
layer symbols. For example, when the received SNR is 4dB,
compared to the no semantic encoding/decoding solutions, our
proposed semantic interpreter offers 17.3 dB, 17.9 dB, and
25.8 dB improvements on the symbol error rate when the
entities are associated with low layer, mid layer, and high layer
of abstractions when using the hard decoding as shown in Fig.
5(a). This is because, as observed in our previous discussion,
high layer semantic symbols generally have higher degrees and
are densely connected with each other, compared to the low
layer symbols. Therefore, when being corrupted in the noisy
channel transmission, the high layer symbols have a higher
chance to be recovered by other directly connected entities
and relations. In Fig. 5(b), we also compare the symbol error
rate when the corrupted semantic symbols can be recovered
with soft decoding. We can observe that, in this case, our
proposed semantic interpreter achieves 16.3 dB, 16.9 dB, and
24.7 dB improvements on the semantic symbol error rate when
the entities are associated with low layer, mid layer, and high
layer of abstractions, respectively, compared to the no semantic
reasoning-based symbol recovery solution.

In Fig. 6, we consider semantics of messages generated from
13,621 entities in FB15K-237 dataset with degrees that are less
than or equal to 100, and then evaluate the semantic symbol
recovery accuracy when the semantic interpreter has been
applied to recover semantic entities with different degrees. We
can observe that our proposed semantic interpreter offers a
better semantic recovery performance for semantic symbols
with higher degree numbers, especially when the SNR is low.
When the SNR increases into a large value, e.g., 8dB or 9dB,
the impact of the semantic symbol’s degree on the recovery

accuracy becomes limited, i.e., when degrees increase from
20 to 100, only 8% and 4% improvements are achieved in
semantic symbol recovery accuracy under SNRs 8dB and 9dB,
respectively.

2) Performance of Multi-layer Representation: In this pa-
per, we propose multi-layer representation of semantics that
is suitable to be implemented into a multi-tier cloud/edge net-
working architecture. In our proposed representation, semantic
entities have been categorized into multiple layers based on
the abstraction levels of their represented meanings. In some
human knowledge databases, the difference in the meaning
abstractions can be reflected by the degree of the semantic
entities, e.g., entities with higher abstraction levels may have
higher degrees. To evaluate the impact of the multi-layered
representations on the semantic communication performance,
we once again focus on the semantic entities in FB15K-237
dataset with degrees that are less than or equal to 100 and
investigate the cases when the semantic entities can be divided
into different numbers of layers according to their degrees,
e.g., when the number of layers is 1, all the entities belong to
the same layer, when the number of layers is 2, the semantic
entities with degrees 0-50 and 51-100 will be categorized into
different layers, similarly, when the numbers of layers are 3,
(4 or 5), the entities with degrees 0-30, 31-60, and 61-100
(0-30, 31-60, 61-80, and 81-100 or 0-20, 21-40, 41-60, 61-
80, and 81-100) will be categorized into 3 (4, or 5) different
layers. In Fig. 7, we compare the average semantic symbol
recovery accuracy when the semantics can be represented by
the above different layered structure. We can observe that
the layered representation of semantics can further improve
the error correction performance of semantic communications,
especially when the SNR is low. This is because, as suggested
by Fig. 6, the higher layered entities (with higher degrees)
tend to enjoy better robustness against channel corruption, and
therefore by dividing the semantic entities into multiple layers,
the improved recovery accuracy of the higher layered entities
will benefit the recovery performance of their descendant
entities.
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Fig. 8: Semantic reasoning accuracy of collaborative reasoning under
different training iterations with different i.i.d. datasets based on (a) Cora
and (b) Citeseer datasets.

3) Performance of Collaborative Reasoning: Let us now
evaluate the performance of our proposed collaborative rea-
soning approach. As mentioned earlier, the heterogeneity of
decentralized datasets at different edge servers may directly
affect the convergence of the model training of the collabo-
rative reasoning. To simulate different levels of heterogeneity
between datasets, we consider different distribution schemes
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(c) Citeseer, p = 0
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Fig. 9: Semantic reasoning accuracy under different training iterations
with different numbers of collaborative edge servers with different non-i.i.d.
datasets.

of knowledge entities associated with 6 different subjects in
two citation datasets Cora and Citeseer [49]. In particular, we
divide the entities in the datasets of each edge server into two
parts: one part consists of entities associated with a single
subject that can be exclusively accessed by the edge server,
the other part consists of entities that are uniformly random
sampled from a combination of entities across 6 subjects. We
introduce a random variable p to denote the portion of the
first part entities in the dataset of each edge server, entities
associated with a single subject with exclusive accessibility.
For example, p = 1 means that all the entities in each edge
server are uniformly randomly sampled from all 6 subjects of
knowledge entities. p = 0.5 means that a half of entities in
the datasets of each edge server is associated with a single
subject and the rest half of entities are randomly sampled
from the combination of entities randomly sampled from 6
subjects. p = 0 means that the dataset in each edge server
only has entities associated with a single subject. In this way,
the datasets in different edge serves can be considered as i.i.d.
(or non-i.i.d.) when p = 1 (or p = 0). All other values of p are
associated with different non-i.i.d. degrees of datasets across
different edge servers.

In Fig. 8, we compare the convergence performance of
collaborative reasoning based on datasets with different non-
i.i.d. degree. We can observe that when the non-i.i.d. degree
of datasets at different edge servers increases, the convergence
rate of collaborative model training can be improved for
both considered knowledge datasets. Also, the improvement of
convergence rate caused by the increase of non-i.i.d. degree
of datasets is higher in Cora than that in Citeseer. This is
because the knowledge entities in Cora has relatively higher
degrees of relations in average compared to the entities in
CiteSeer. In other words, the convergence performance of
collaborative reasoning exhibits stronger relationship with the
non-i.i.d. degree of decentralized datasets when the knowledge

entities are more densely connected to each other.
In Fig. 9, we compare the convergence speed of collabora-

tive reasoning under different numbers of collaborative edge
servers. We can observe that when the datasets are non-i.i.d.
(p = 0), the convergence speed increases significantly when
the number of edge servers increases from 2 to 6. However, if
the dataset in each edge servers are uniformly sampled from
all the 6 subjects of knowledge entities (i.i.d. datasets), the
convergence improvement achieved by increasing the number
of collaborative edge servers becomes limited.

In Fig. 10, we compare the converged semantic recovery
accuracy after 600 local SGD iterations when the semantic rea-
soning model is trained with different numbers of collaborative
edge servers. We can observe that the accuracy of the trained
model always increases with the numbers of collaborative edge
servers. Also, when the number of edge servers increases, the
increasing rate of the model accuracy trained with non-i.i.d
datasets will be higher than that with i.i.d datasets. We can
also observe that different knowledge datasets exhibit different
increasing rates of trained model accuracy when the number
of edge servers increases. In particular, in Cora dataset, the
accuracy of the trained model increases at a higher speed
when the number of collaborative edge servers is small, e.g.,
increases from 2 to 4, and the increasing rate of the model
accuracy becomes slower when the number of edge servers
becomes larger than or equal to 5. In the Citeseer dataset
however, the model accuracy increases almost linearly with
the number of edge servers.

2 3 4 5 6

# of Edge Servers

0

0.2

0.4

0.6

0.8

1

S
em

an
ti

c 
R

ea
so

n
in

g
 A

cc
.

p=0.0
p=0.5
p=1.0

(a)

2 3 4 5 6

# of Edge Servers

0

0.2

0.4

0.6

0.8

1

S
em

an
ti

c 
R

ea
so

n
in

g
 A

cc
.

p=0.0
p=0.5
p=1.0

(b)
Fig. 10: Semantic reasoning accuracy of model trained with different
number of edge servers.

VII. CONCLUSION

This paper has proposed a novel collaborative reasoning-
based implicit semantic communication architecture that allow
users and edge servers to jointly learn to imitate the implicit
semantic reasoning behavior of the source users to support
efficient semantic encoding, decoding, and interpretation. In
particular, a new multi-layer representation of semantics taking
into consideration of both a hierarchy of implicit semantics
across different abstraction levels as well as personally pre-
ferred semantic reasoning mechanism of individual user has
been proposed. We have then proposed a multi-tier collab-
orative reasoning-based semantic communication architecture
in which the users rely on CDC and edge servers for encod-
ing, decoding, and interpreting semantic meaning involving
knowledge concepts stored at CDC and/or edge servers. An
imitation-based reasoning mechanism learning solution has
been developed for the source users to assist CDC and edge
servers to train semantic reasoning mechanism models that
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can imitate the true inference mechanism of the source users.
A federated GCN-based collaborative reasoning solution has
proposed to allow same-tier edge servers to joint construct
a shared model to generate implicit semantics from the ob-
served explicit semantics. Finally, extensive experiments have
been conducted to evaluate the performance of our proposed
solution. Numerical results confirm that our proposed solution
can achieve over 82.9% accuracy level for implicit semantic
recovery at the destination user, even communicated in noisy
faded physical channel condition.
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APPENDIX A
PROOF OF THEOREM 1

To prove the optimization problem in (5) is a strongly
convex problem, let us first present the following lemmas that
are necessary for our proof of Theorem 1.

A. Key Lemmas

Lemma 1. If a function F (x) = H(x) + Γ(x), where H is
strongly convex and Γ is convex, then F is strongly convex.

Lemma 2. H̄(c) =
∑
s,a c(a, s) log(c(a, s)/

∑
a′ c(a

′, s)) is
strongly convex given the bounded occupancy measure, i.e.,
there exist two positive constants M and ξ, such that c(a, s) ≤
M and c(a, s)/

∑
a′ c(a

′, s) ≤ 1− ξ.

B. Proof of Lemma 1

Proof: Suppose m > 0 and H is m-strongly convex, then
by definition, for all valid x and y, we have:

H̄ (y) ≥ H̄ (x) +∇H̄(x)T (y − x) +
m

2
|y − x‖2, (16)

where ∇H̄(x) is the gradient at x if H̄ is differentiable, and
it can be replace by sub-gradient when the function is non-
differentiable. And if Γ is convex, by definition, we can write:

Γ (y) ≥ Γ (x) +∇ΓT (x) (y − x) . (17)

By adding eqn.(16) and eqn.(17), we have:

H̄ (y) + Γ (y) ≥ H̄ (x) + Γ (x)

+
(
∇H̄(x) +∇Γ (x)

)T
(y − x)

+
m

2
|y − x‖2, (18)

which can be written as:

F (y) ≥ F (x) +∇FT (x) (y − x) +
m

2
|y − x‖2.

Hence, F is m-strongly convex, which completes the proof.

C. Proof of Lemma 2

Proof: Let h̄(c) = c(a, s) log(c(a, s)/
∑
a′ c(a

′, s)), by
taking the first derivative with respect to c, we have

∇h̄(c) = log c (a, s) + 1− log
∑
a′

c (a′, s)− c (a, s)∑
a′ c (a′, s)

.

Then, we take the second derivative, and rearrange it as
follows:

∇2h̄(c) =
1

c (a, s)
− 2

c (a, s)
∑
a′ c (a′, s)

+
c (a, s)

(
∑
a′ c (a′, s))

2

=
1

c (a, s)

(
1− c (a, s)∑

a′ c (a′, s)

)2

(19)

We have

1

c (a, s)
≥ 1

M
and

(
1− c (a, s)∑

a′ c (a′, s)

)2

≥ ξ2. (20)

By combining (19)-(20), we have

∇2h̄(c) ≥ ξ2

M
, (21)

which proves that h̄ is µ̄-strongly convex and µ̄ = ξ2/M .
Note that H̄ is sum of h̄. We can therefore conclude that H̄
is µ-strongly convex where µ is a positive constant.

D. Proof of Theorem 1

Proof: By definition, we have

H(π) = Eπ[− log π(a, s)] = −
∑
s,a

cπ(a, s) log π(a, s)

= −
∑
s,a

cπ(a, s) log
cπ(a, s)∑
a′ cπ (a′, s)

= −H̄ (cπ) .
(22)

From Lemma 2, −H(π) is µ-strongly convex. In addition,
Γ(πE , πD) is in the form of cross-entropy or TransE that has
been proved to be convex. From Lemma 1, we can conclude
that the sum of H(π) and Γ(πE , πD) is also µ-strongly
convex, which completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Due to the limit of space, we present a brief description of
proof of Theorem 2. We adopt the idea similar to a modified
version of generative adversarial networks (GAN) in which the
interpreter (generator) and the evaluator (discriminator) can be
trained in a competitive fashion [50]. In particular, as shown in
Theorem 1, the objective function described in problem (10)
is strongly convex, which means that we can find the optimal
$∗φ by taking the first derivative of the objective function and
equating it to zero. Then we can use SGD-based method to
obtain the optimal πD that minimizes the objective function
in problem (11) taking value at $∗φ. In other words, the
KL divergence between the distributions of expert paths and
reasoning paths generated by the interpreter can minimized,
which concludes our proof.
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APPENDIX C
PROOF OF THEOREM 3

A. Key Lemmas

We first present several key lemmas that are necessary to
the proofs of Theorem 3. Let gt =

∑K
k=1 γk∇Fk

(
wk
t

)
be the

aggregated gradients.

Lemma 3. Let Assumptions 1-3 hold. If we choose the learning
rate ηt ≤ 1

4L , we have

E‖w̄t+1 −w∗‖2 ≤ (1− µηt)E‖w̄t −w∗‖2

+4ηt
2 (E − 1)

2
σL

2

+4η2
tLρ+ ηt

2E‖gt‖2

Lemma 4. Assume [51, Theorem 5.4] and Assumption 3 hold,
we have

E‖gt‖2 ≤
2Lp
N
D + 2σL

2

where D =
∥∥KXT

kAT
kAT

kAkAkXk −XTATATAAX
∥∥2

.

B. Proof of Lemma 3

Proof: Notice that w̄t+1 = w̄t − ηtgt, then we have

‖w̄t+1 −w∗‖2

= ‖w̄t − ηtgt −w∗‖2

= ‖w̄t −w∗‖2 + 2ηt 〈w̄t −w∗,gt〉︸ ︷︷ ︸
A1

+ ‖ηtgt‖2 .
(23)

Next, we focus on bounding A1 that can be split into two
parts:

A1 = −2ηt 〈w̄t −w∗,gt〉

= −2ηt

K∑
k=1

γk
〈
w̄t −w∗,∇Fk

(
wk
t

)〉
= −2ηt

K∑
k=1

γk〈
〈
w̄t −wk

t ,∇Fk
(
wk
t

)〉︸ ︷︷ ︸
B1

− 2ηt

K∑
k=1

γk〈wk
t −w∗,∇Fk

(
wk
t

)〉︸ ︷︷ ︸
B2

.

(24)

By applying the Cauchy-Schwarz inequality and AM-GM, B1

can be bounded as:

−2B1 = −2
〈
w̄t −wk

t ,∇Fk
(
wk
t

)〉
≤ 1

ηt

∥∥w̄t −wk
t

∥∥2
+ ηt

∥∥∇Fk (wk
t

)∥∥2
.

(25)

From the µ-strong convexity of Fk(·), B2 can be bounded as:

−B2 =
〈
wk
t −w∗,∇Fk

(
wk
t

)〉
≤ −

(
Fk
(
wk
t

)
− Fk (w∗)

)
− µ

2

∥∥wk
t −w∗

∥∥ . (26)

By the L-smoothness of Fk(·), we have

∥∥∇Fk (wk
t

)∥∥2 ≤ 2L
(
Fk
(
wk
t

)
− F ∗k

)
. (27)

By combining eqn.(23)-(27), we have

‖w̄t+1 −w∗‖2 ≤ (1− µηt) ‖w̄t −w∗‖2

+

K∑
k=1

γk
∥∥w̄t −wk

t

∥∥2

+A2 + ‖ηtgt‖2 .

(28)

where

A2 =2Lη2
t

K∑
k=1

γk
(
Fk
(
wk
t

)
− F ∗k

)
− 2ηt

K∑
k=1

γk
(
Fk
(
wk
t

)
− Fk (w∗)

)
According to [52, Lemma 1], A2 can be further bounded as:

A2 ≤ 4Lη2
t ρ+

K∑
k=1

γk
∥∥w̄t −wk

t

∥∥2
.

Substituting A2 into eqn.(28), taking the expectations on both
sides, and assume [52, Lemma 3] holds, we then have

E ‖w̄t+1 −w∗‖2 ≤ (1− µηt)E ‖w̄t −w∗‖2

+ 4ηt
2 (E − 1)

2
σL

2 + 4Lη2
t ρ

+ E ‖ηtgt‖2 .
(29)

This concludes the proof.

C. Proof of Lemma 4

Proof: We first split E‖gt‖2 as follows:

E‖gt‖2 = E
∥∥gt −∇Fk (wk

t

)
+∇Fk

(
wk
t

)∥∥2

≤ 2E
∥∥gt −∇Fk (wkt )∥∥2

+ 2σ2
L,

(30)

where the last inequality is based on Assumption 3 and the
fact that, for random variables z1, ..., zm, we have

E
[
‖z1 + · · ·+ zm‖2

]
≤ mE

[
‖z1‖2 + · · ·+ ‖zm‖2

]
.

Following the same line as [51, Theorem 5.4], we can rewrite
(30) as

E ‖gt‖2 ≤
2Lp
N
D + 2σ2

L. (31)

This concludes our proof.
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D. Proof of Theorem 3

Proof: By combining Lemma 3 and Lemma 4, we can
have

E‖w̄t+1 −w∗‖2 ≤ (1− µηt)E ‖w̄t −w∗‖2 + ηt
2Y, (32)

where

Y = 2((E − 1)2 + 1)σ2
L + 4Lρ+

2Lp
N
D. (33)

Following method adopted in [52, Theorem 1] and substituting
Ω = 4

(
1 + 2(E − 1)2

)
σ2
L + 4Lρ+ µ2ζ

4 ‖w1 −w∗‖2, we can
have

E [F (w̄T )]− F ∗ ≤ 2κ

ζ + T − 1

(
Ω

µ
+

2Lp
µN
D
)
, (34)

where ηt = 2
µ

1
ζ+t , ζ = max{8κ,E}, and κ = L

µ . This
concludes the proof.
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