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Abstract—The effective deployment of connected vehicular
networks is contingent upon maintaining a desired performance
across spatial and temporal domains. In this paper, a graph-
based framework, called SMART, is proposed to model and
keep track of the spatial and temporal statistics of vehicle-
to-infrastructure (V2I) communication latency across a large
geographical area. SMART first formulates the spatio-temporal
performance of a vehicular network as a graph in which each
vertex corresponds to a subregion consisting of a set of neighbor-
ing location points with similar statistical features of V2I latency
and each edge represents the spatio-correlation between latency
statistics of two connected vertices. Motivated by the observation
that the complete temporal and spatial latency performance of a
vehicular network can be reconstructed from a limited number
of vertices and edge relations, we develop a graph reconstruction-
based approach using a graph convolutional network integrated
with a deep Q-networks algorithm in order to capture the spatial
and temporal statistic of feature map pf latency performance
for a large-scale vehicular network. Extensive simulations have
been conducted based on a five-month latency measurement
study on a commercial LTE network. Our results show that the
proposed method can significantly improve both the accuracy
and efficiency for modeling and reconstructing the latency
performance of large vehicular networks.

Index Terms—Spatio-temporal modeling, Graph Convolu-
tional Networks, latency modeling, deep Q-networks

I. INTRODUCTION

With the rapidly growing demand on intelligent vehicular

services and applications, connected vehicles that rely on

external communication, computation, and storage resources

to facilitate decision making and driving assistance have

become increasingly popular. According to the recent report

[1], in 2025 over 60% of new vehicles sold globally will be

connected to the Internet by wireless technologies such as 5G

and beyond [2].

Despite this surge in popularity, there exists many chal-

lenges. In particular, there is a need to better understand

how the achievable communication latency over spatial and

temporal domains. For instance, due to the heterogeneity in

services and applications as well as the diversity of service-

requesting devices such as wearable devices [3], sensors [4],

LiDar [5], and others, the maximum tolerable latency of

different vehicular services can dynamically change across a

wide range. Moreover, the latency of a large-scale vehicular

network is location-dependent, closely related to the potential

signal blockage and interference caused by factors such as

the surrounding environment as well as the distribution of

the network infrastructure. The challenge for spatial and

temporal latency modeling is further exacerbated by the fact

that vehicles are consistently moving from one location to

another, causing frequent service and link changes. As such,

there is a need to develop a simple and effective solution to

capture the performance, in terms of latency, of a large-scale

vehicular network across different time and location.

According to recent observation reported in [6] [7], the

instantaneous latency performance of each mobile device does

not exhibit any noticeable spatial and temporal correlations.

The statistical feature such as probability distribution func-

tion (PDF) however does show strong spatial and temporal

dependencies. This makes it natural to develop a graph-based

model to capture the statistical features of a vehicular network

in which each location point can be seen as a graph vertex and

each edge could represent the spatial correlation between two

connected location points. Despite its potential, formulating a

graphical model to characterize the interactive latency (e.g.

round-trip time (RTT)) of a vehicular network faces the

following novel challenges. First, it is generally impossible

to constantly collect samples across a wide geographical area

and keep track of temporal statistics at all locations. Second,

the correlation of latency performance at different time stamps

and locations can be complex and difficult to measure. There

are still lacking commonly adopted metrics to quantify the

correlation of the statistical distributions of interactive latency.

Finally, vehicles driving at different locations may request

different subsets of services, each of which may have unique

service demands and requirements. Thus, due to the random

nature of wireless networks, it is generally impossible to

always support all the requested services with the guaranteed

performance.

A. Related Works

Minimizing the latency of communication links is essential

for next generation wireless technology [8]. Most existing

works focused on how to maintain the latency experienced

by a connected vehicle below a deterministic threshold. In

particular, the authors in [6] propose AdaptiveFog, a novel

framework to maximize confidence levels in LTE-based fog

computing for smart vehicles. In [7], the authors propose a
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spatio-temporal generative learning model to reconstruct the

missing latency samples based on a variation autoencoder.

There has been a number of recent works [9]–[11] that

investigated the spatial and temporal features of a vehicular

networks. For examples, in [9], the authors investigate the

temporal and spatial dynamics of vehicular ad-hoc networks

in order to study communication properties such as adaptabil-

ity, stability, and effectiveness for safety-critical applications,

where latency plays a major role. In [10], a novel spatio-

temporal caching strategy is proposed based on the notion of

temporal graph motifs that can capture spatio-temporal com-

munication patterns in vehicle-to-vehicle networks. In [11],

the authors propose a framework based on spatio-temporal

graph convolutional networks (GCN) for traffic prediction

using spatio-temporal blocks to capture comprehensive spatio-

temporal correlations in multi-scale traffic networks.

However, the prior art in [6], [7], [9], [10] does not consider

the dynamics of the statistical features for large vehicular

networks. Therefore, there is a strong need for developing

a simple but effective solution that can exploit the spatio-

temporal correlation for tracking the latency performance of

large-scale vehicular network.

B. Contributions

The main contribution of this paper is a novel graphi-

cal modeling and reconstruction framework, called SMART

(Spatio-temporal Modeling And ReconsTruction), that can be

used to characterize the feasibility of supporting different

latency-sensitive services in a vehicular network across a

large geographical area. In particular, we first model a large

vehicular network as a graph by dividing the entire service

area into different subregions, each of which corresponds

to a vertex consisting of connected location points with

similar latency statistical probabilities. Any two neighboring

subregions will be connected with an edge. Statistical dis-

tance measures such as the Jensen-Shannon (JS) divergence

have been introduced to quantify the correlation between

neighboring subregions. SMART adopts GCN and deep Q-

networks (DQN) to capture the latency graphs’ spatial and

temporal features, respectively. We show that, when some

graphical features change, the captured spatial correlation

is sufficient to reconstruct the complete updated graphical

structure of a large vehicular network from an incomplete set

of samples collected from a limited number of subregions.

To accelerate the reconstruction speed of a large vehicular

network, we propose an efficient graph reconstruction solution

based on natural gradient descendant (NGD). We conduct

extensive performance evaluation using real traces collected

over a five-month measurement campaign in a commercial

LTE network. Simulation results show that our proposed

method can accurately recover the spatio-temporal latency

performance across all the subregions in a large vehicular

network.

The rest of the paper is organized as follows. In Section II,

we present the preliminary observations. Section III describes

the methodology used in our framework in detail. In Section

IV, we describe experimental setups and present the simulation

results. Finally, we conclude the paper and discuss potential

future works in Section V.

II. PRELIMINARY OBSERVATION AND ARCHITECTURE

OVERVIEW

A. Preliminary Observation

The latency of wireless communication systems is known

to exhibit spatial and temporal variation. Here, we particularly

focus on the wireless access latency between a moving vehicle

and the first IP address (i.e., the first node encountered in a

cellular system) of a commercial LTE network, also called the

vehicle-to-infrastructure (V2I) communication latency.

Latency Samples

Fig. 1: Measuring routes and traces of our dataset.
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Fig. 2: (a) Latency samples recorded in a university campus listed in
the sequence of time stamps. (b) Mean and STD of samples measured
through a consecutive week in the same location.
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Fig. 3: (a) Latency samples recorded in a university campus listed
in the sequence of location points. (b) Mean and STD of samples
from 6 locations on a main driving route.

We adopt a dedicated smart phone app using Android API

to periodically ping the first node and record the RTT for

both data delivery and acknowledgment. Fig. 1 shows the

measurement routes and traces of our dataset. We consider the

RTT as the main metric for interactive wireless access latency

for an LTE-supported connected vehicular system. Existing

works as well as our own observation have already shown

that even two consecutive measurements of the RTT at the

same location can vary significantly. In addition, the temporal

and spatial correlation of the instantaneous RTTs are often

negligible. Fortunately, the statistical features such as mean

and standard deviation (STD) remain relatively stationary.

In Figs. 2 and 3, we present the mean and STD of RTT
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Fig. 4: Model Architecture.

samples collected at different location points throughout the

main driving route of a university campus (see Fig. 3(b)) as

well as these collected at the same university lab location

over a consecutive week (see Fig. 2(b)). We can observe

that compared to instantaneous latency samples, the mean

and STD vary relatively slow according to different time and

location. Also, the spatial variation causes a more noticeable

impact on the mean and STD, compared to the temporal

variation.

In this work, we plan to exploit the spatial and temporal

correlation of the statistics of RTTs and model the vehicular

network as a graph in which each vertex corresponds to a

specific subregion and the edge connecting two vertices rep-

resents the statistical distance of the PDFs of RTTs between

two connecting locations.

To characterize the temporal correlation of the graph, we

consider a slotted process and assume the graphical model

of latency statistics within each time slot can be considered

to be fixed. Motivated by the fact that the temporal variation

of the statistical features of the RTT at the same location

often changes in a much slower pace than the statistical

difference between different locations, we adopt a reinforce-

ment learning-based approach to sequentially select a subset

of subregions at the beginning of each time slot to collect

samples and then exploit a GCN-based approach to reconstruct

the update statistical features of all the location points in the

new time slot. The reconstructed model will then be evaluated

and compared with the real RTTs collected during the rest of

the entire time slot. The evaluation results will then be used

to update the model in future time slots.

B. Architecture Overview

We propose SMART, a novel architecture for modeling and

keeping track of spatial and temporal statistics of wireless

access latency between connected vehicles and wireless in-

frastructure across a large geographical area. The proposed ar-

chitecture consists of three major components: data collection,

empirical modeling and graphical model construction, model

update and reconstruction, as illustrated in Fig. 4. We give a

more detailed exposition of each components as follows.

Data Collection: We consider a connected vehicular system

in which each vehicle is connected to a commercial LTE

network owned by a mobile network operator while driving

throughout an area of consideration. The RTTs of data packet

delivered to the first wireless infrastructure node as well as

receiving the feedback are recorded and reported to a central

server. Note that it is not necessary for the central server to

constantly collect RTT samples from all the vehicles. The

server only needs to request a limited number of RTT samples

from vehicles located in a carefully selected subset of regions

at the beginning of each time slot.

Empirical Modeling and Graph Construction: As ob-

served in Section II-A, the statistical features of RTTs col-

lected at different locations can exhibit strong spatial cor-

relation. We adopt a statistical distance that can be used to

calculate the confidence of the latency performance at each

location. We can therefore establish an empirical graphical

model.

Graph Reconstruction: To deal with the temporal variance

and maintain a real-time update of the graphical model, we

consider a slotted process. We use a reinforcement learning-

based method to select a small subset of locations that collect

samples at the beginning of each time slot so as to give

more accurate graph reconstruction based on these samples.

Then, we exploit a GCN-based approach to reconstruct the

confidence of the whole graph vertices in the new time slot

from s selected subset of subregions.

III. METHODOLOGY

In this section, we consider a commercial LTE network for

connected vehicles across a university campus as an example

to describe how to apply SMART to model and construct a

spatial and temporal statistical modeling of latency perfor-

mance of a V2I network. To make our description clearer,

we first introduce the following notations and concepts. We

model the roadways in the campus as an undirected graph

G = 〈V , E ,X〉 where V = {v1, v2, · · · , vN} is the set of

vertices representing N locations; eij ∈ E is the edge between

vertices with the weight characterized by the similarity (JS

divergence) of latency distributions between vertex vi and

vj , which will be discussed more thoroughly later in Section

III-B. X = [x1,x2, · · · ,xN ] ∈ R
N×F is the vertex feature

matrix of the graph and F is the dimension of the feature

vector of each vertex. A ∈ R
N×N is the adjacent binary

matrix of graph G, i.e., for any vi, vj ∈ V , Aij = Aji ∈ {0, 1}
where 1 means that there is an edge between vi and vj
and 0 otherwise. D is the degree matrix whose element is

Dii =
∑

j Aij .

A. Data Collection

Data collection will be conducted at the beginning of both

initialization and the model updating process as shown in Fig.

4. We adopt a smartphone app, called Delay Explorer, that pe-

riodically pings the first node and record RTTs every 500 ms.

It can also record data such as time stamps, GPS coordinates,

and driving speed, among others. We next explain, in detail,

the data collection procedure of data collection and model

updating processes:

1) During the initialization process, RTT samples will be

first collected throughout each considered area. The latency

data is collected constantly until there are enough samples

for each location to establish an empirical PDF. The PDFs

will then be used in initial graph construction and latency

performance evaluation.

2) During the model updating process, we consider a slotted

process to cope with the temporal variation of latency perfor-

mance and update the model slot by slot. At the beginning

of each time slot, the model will carefully choose a subset



of locations to collect instantaneous RTT samples as will

be discussed in Section III-C. We will evaluate the latency

performance of the selected locations as well as their labels

based on these data in the graph reconstruction procedure.
B. Empirical Modeling and Graph Construction

After collecting a sufficient number of samples, we can

establish an empirical PDF for each location vertex in the

graph. We adopt JS divergence to characterize the statistical

correlation between two neighboring locations, i.e., weight of

the edge connecting two vertices. Let Pi(x) and Pj(x) be

the PDFs of latency at location i and j, respectively. The JS

divergence can be written as follows:

JS (Pi(x)‖Pj(x)) =
1

2
KL

(

Pi(x)‖
Pi(x) + Pj(x)

2

)

+
1

2
KL

(

Pj(x)‖
Pi(x) + Pj(x)

2

)

, (1)

where KL(Pi(x)‖Pj(x)) =
∑

x∈X Pi(x) log
Pi(x)
Pi(x)

. If the

JS divergence JS (Pi(x)‖Pj(x)) falls belows a pre-defined

threshold η, we can add an undirected link between locations

i and j. In this way, we can then model the campus roadway

network as an undirected graph.

As already discussed, we consider the time-varying statis-

tical features of RTTs within a slotted time duration. The

statistical feature we mainly focus on is the confidence,

defined as the probability of a certain latency threshold can

be satisfied, of the latency performance at each location in a

multi-service scenario. We divide the locations into different

classes according to their confidence for supporting some key

vehicular services and give each location a preliminary label.

To make our model more general, the number of classes could

be flexibly assigned so that the evaluation can be adopted to

various scenarios. We use the following statistical requirement

as the latency performance metric:

Pr(di ≤ τ) =

∫ τ

0

Pi (x) dx ≤ ε, (2)

where Pr(·) represents the probability of an event, and ε is
the maximum confidence that must be guaranteed at the ith
location. τ represents maximum tolerable latency for some

specific vehicular services. According to the 5GAA [12],

the latency requirement of major vehicular services can be

roughly classified into 5 major use cases listed in Table I.

The latency requirements of these services can be roughly

divided into three classes according to Eq. (2):

1) Service Level 1: τ is 100 ms and ε is 99.99%;

2) Service Level 2: τ is 100 ms and ε is 99%;

3) Service Level 3: τ is 120 ms and ε is 99%.

It should be noticed that the above three service levels

exhibit an inclusion relation: service satisfying level 1 (or level

2) requirement can also meet the requirement of level 2 (or

level 3). For example, a location in Level 2 could satisfy the

service requirement of a hazardous location warning, but it

cannot satisfy the needs of a intersection assistance movement

at a crossroad.
C. Graph Reconstruction

In a practical system, latency performance can be time-

varying as shown in Section II. Thus, we need to keep the

TABLE I: Latency Requirement of 5 Different Services

Service Type Service Level Latency Reliability

Intersection movement 100 ms 99.99%

Awareness of the presence
100 ms 99.9%

of vulnerable road user

Hazardous location warning 100 ms 99%

Cross-traffic left-turn assist 100 ms 90%

Emergency break warning 120 ms 99%

entire graph updated whenever some locations’ latency per-

formance as well as their supported service level change. To

characterize the temporal correlation of the graph, we consider

a slotted process and assume that the graphical model within

each time slot can be assumed to be fixed. Due to the location

proximity, the latency variation of two neighboring locations

may experience similar changing patterns. We then introduce

a GCN-based approach to recover the complete graph from a

limited number of RTT samples collected throughout a subset

of edges and vertices

1) Graph Convolutional Network: The standard convolu-

tion in CNN is not applicable to graphs due to their non-

Euclidean structure. We therefore adopt GCN to reconstruct

the graphical model whenever some parts of the graph change.

According to [13], the computational complexity of spectral

GCN is O (n) where n is the number of graph edges. Hence,

GCN-based approach can be directly applied into large graphs.

The propagation process of the stacking layers can be

written as:

H(0) = X and H(l+1) = σ(∆AH(l)Wl), (3)

where ∆A = D̃
− 1

2

ÃD̃
− 1

2 is a renormalized matrix with

Ã = A+IN and D̃ii =
∑

j Ãij . H(l) is the output of layer l,
σ(·) is an activation function which is normally set as ReLU

function. Wl is the learnable parameter matrix which can be

obtained using gradient descent. The input feature vector xi

can be some normalized latency samples of location point i.
To accomplish the semi-supervised classification task, we

use the softmax activation function, defined as softmax(xi) =
exp(xi)/

∑

i exp(xi), on the output Z of the last convolu-

tional layer and the cross-entropy error and the loss function

L can be formulated as:

Z
′

= softmax(Z), (4)

L = −
∑

l∈yl

F
∑

f=1

Ylf lnZ
′

lf . (5)

Z
′

lf is entry f of the vertex’s hidden representation labeled

l. Ylf is the ground truth of the corresponding label.

In order to accelerate the convergence speed of GCN for

a large graph, we introduce a second-order gradient descent

method called NGD [14] to optimize the parameter matrices

in the training process of GCN. NGD transforms gradients

into so-called natural gradients that have proved to be much

faster compared to the stochastic gradient descent (SGD).

Recently, the work in [15] used NGD for a semi-supervised

classification task in GCN, and it showed encouraging results

in both accuracy and convergence speed on some benchmark



Algorithm 1 Preconditioning using NGD

Input: Gradient of parameters ∇Wl for l = 1, ...,m,

adjacency matrix A, degree matrix D, training mask z, regu-

larization hyper-parameters λ,ǫ

1: Derive the numbers of labeled and unlabeled vertices via

n̄ =
∑

(z) and n = dim(z). And let [∆aij ] represent the

entry of ∆A.

2: for l = 1, · · · ,m do

3: Formulate the feature aggregation process of each layer

via x̃l−1,i =
∑n

j=1 ∆ai,jxl−1,j .

4: Approximate matrices V l and U l via:

ul−1,i = ∂L/∂xl ⊙ σl (Wlx̃l−1,i),
U l =

∑n
i=1 (zi + (1− zi)λ)ul−1,iu

⊤
l−1,i/(n+ λn̄),

V l =
∑n

i=1 (zi + (1− zi)λ) x̃l−1,ix̃
⊤
l−1,i/(n+ λn̄).

5: Output: (V l + ǫ−1/2I)−1∇Wl(U l + ǫ−1/2I)−1

6: end for

datasets.

Preconditioning is inspired by the idea that capturing the

relation between the gradient of parameters before optimiza-

tion will help with convergence. For example, the traditional

optimizer, such as Adam [16], uses diagonal preconditioner

which neglects the pair-wise relation between gradients. How-

ever, any extra information about gradients is often impossible

or hard to obtain. Motivated by NGD, we introduce a precon-

ditioning algorithm that uses the second moment of gradient

to approximate the parameters’ Fisher information matrix in

the prediction distribution [15].

Algorithm 1 shows the detailed preconditioning process

for modifying gradients of each layer at any iteration. The

gradients are first transformed using two matrices, V −1
l and

U
−1
l , then sent to the optimization algorithm for parameter

updating. Let m be the number of the network layers and ⊙
be element-wise multiplication operation. xl−1,i represents the

output feature vector of vi in layer l − 1 and is updated into

x̃l−1,i using a renormalization trick for i = {1, · · · , N}. λ
is a hyper-parameter that controls the cost of predicted labels

and ǫ is a regularization hyper-parameter to evaluate V
−1
l and

U
−1
l .

2) Deep Q-Networks: As mentioned earlier, the latency

performance (i.e. the label of vertices in graph) of each

location point can change at different time slots. Always

collecting sufficient numbers of samples across all the possible

locations is generally impossible. Due to the spatial correlation

of the latency graph, collecting a subset of locations will be

sufficient to reconstruct the complete updated latency graph.

Motivated by the fact that the reconstruction accuracy of

a graph model can vary significantly with different sets of

selected vertices, in the rest of this section, we formulate

the vertices selection for graph reconstruction as a Markov

decision process (MDP) defined as follows.

State Space S is a finite set of possible service levels that

can be supported at each location. St ∈ R
K×N is a K ×N

matrix in time slot t where column vector Si
t represents the

probability for each K labels in next time slot t+1 of vertex

vi. Both prior and conditional probability can be obtained

from historical data.1

Action Space Av is the possible selection of location

subsets for requesting latency samples. We write atv =
{v1, v2, · · · , vm} as an instance of action in time slot t for

av ∈ Av . {v1, v2, · · · , vm} are m vertices selected from all

N vertices in the graph.

State Transition function T : S×Av×S → [0, 1] denotes the

probability of state transiting from one state to another. When

the selection of m vertices in slot t (i.e., the action atv ) is de-

termined, we can observe the actual label cti for each m loca-

tions. We can then establish as a mapping function f : St+1 =
f(St, a

t
v), where the m column vectors with probability

[Pr(c
(t+1)
1 |cti), Pr(c

(t+1)
2 |cti), · · · , Pr(c

(t+1)
K |cti)]

T for state St

to transit into St+1.

Reward Function R: We try to maximize the graph con-

struction accuracy, defined as the percentage of the correctly

predicted vertices among all the reconstructed graph, i.e., we

have Rt(St, a
t
v) =

1
N−m

∑

v∈V\at
v

I (c(v) = cv) where c(v)

is the predicted label and cv is the true label of vertex v. I(·)
is an indicator function to count the correct prediction.

We focus on maximizing the long-term reconstruction ac-

curacy including both current and future rewards defined as

Q(St, a
t
v) when action atv is taken at state St:

Q(St, a
t
v) = Rt(St, a

t
v) + βQ(St+1, a

t
v), (6)

where β is the learning rate.

Following the standard procedure of DQN, we can write

the optimal policy π∗ as:

π∗ = argmin
at
v
∈A

St
v

Q(St, a
t
v) (7)

where Q(St, a
t
v) can be pre-calculated and pre-stored in a

look-up table (i.e., Q-table) for finding the expected reward

under all possible state and action pairs which needs to be

stored in each time slot which leads to enormous storage and

computational complexity. To address the above problems,

DQN uses deep neural networks to estimate the Q-table. The

transition (St, a
t
v, Rt(St, a

t
v),St+1) is stored in the experi-

ence relay pool for learning process. During each epoch, the

predict network will choose an action which will be evaluated

in the target network.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we evaluate the performance of SMART

through extensive simulations using the dataset collected in

a university campus. Our simulations are performed mainly

using two open-source Python libraries, Pytorch and Pytorch

Geometric, on a workstation with an Intel(R) Core(TM) i9-

9900K CPU@3.60GHz, 64.0 GB RAM@2133 MHz, 2 TB

HD, and two NVIDIA Corporation GP102 [TITAN X] GPUs.

We consider 150 subregions across the university campus

and randomly choose 30 samples in each subregion to con-

struct the feature vector for each vertex. We train GCN models

1We use a one-month latency collection dataset measured at a university
campus. For example, we divide the latency data di at location i into
{d1

i
, d2

i
, · · · , dp

i
} sequentially according to p time slots and set the label

in each slot based on the confidence of latency performance. We can then

obtain the conditional probability Pr(c
(t+1)
j

|cti) for each location where cti
means the location is in label ci at time slot t.



(a) (b)

(c) (d)

Fig. 5: (a) Validation costs. (b) model accuracy based on test dataset,
(c) model accuracy with different input feature vectors, and (d)
rewards under different number of training iterations.

in 200 epochs (training iterations) using both Adam [16] and

NGD with learning rate 0.01. The Adam is used with the

weight decay of 5 × 10−4 and the momentum of 0.9. A 2-

layer GCN with a 16-dimension hidden variable is used in all

simulations. The first layer is followed by a drop out function

at the rate of 0.5. The training process stops if the validation

loss (i.e., the value of loss function on validation set which

is used to determine the hyper-parameters in the model) does

not decrease for 10 consecutive epochs and the loss function

is evaluated using the negative log-likelihood in equation. (5).

We compare the validation loss and testing accuracy of two

optimization methods over 10 rounds in Fig. 5(a). The blue

and yellow zones are confidence intervals of Adam and NGD,

respectively. We can observe that the validation loss in NGD

drops faster than Adam and could result in a lower validation

loss. In Fig. 5(b), we compare the model accuracies of Adam

and NGD based on our testing dataset. We can observe that

GCN with an NGD optimizer can reach a maximum accuracy

at 78.86% over 200 epochs (the red circles in the figure) which

outperforms the maximum accuracy of Adam optimizer at

74.43%. This result demonstrates that the NGD offers faster

processing speed compared to traditional optimizer such as

standard SGD to reconstruct graph model.

We present model accuracy with different numbers of

dimensions F of the input feature vectors. We can observe

that the larger dimensions of feature vectors could results in

a higher accuracy as shown in Fig. 5(c). This is because the

feature vector with respect to latency samples can offer more

information about the latency performance. Fig. 5(d) presents

the rewards achieved by the actions selected by DQN under

different number of training iterations. We can observe that

the reward achieved by selecting locations decided by DQN is

always higher than that achieved by adopting random selection

of locations at each time slot.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed SMART, a novel framework

for modeling and keeping track of spatial and temporal

statistics of vehicle-to-infrastructure communication latency

across a large geographical area. SMART can be directly

applied to characterize the feasibility of supporting different

latency-sensitive services across a large geographical area

during different time periods. Specifically, SMART first for-

mulates the spatio-temporal performance and correlations of

a vehicular network as a graphical structure and then adopt

GCN and DQN to reconstruct the spatial and temporal latency

performance in a slotted process. Simulation results show that

the proposed method can improve both the modeling accuracy

and reconstruction efficiency for large vehicular networks.

Our work opens several potential directions that worth

further investigating. In particular, it will be promising to

extend SMART into a more general setting. In addition, it

is also interesting to consider some other information to be

included into the edge weights and input feature vector of

GCN that can capture more complex correlations between
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