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Abstract—Federated edge intelligence (FEI) is an emerging
framework that implements federated learning (FL)-based learn-
ing solutions in an edge networking and computing system. It
has attracted significant interest due to its potential to enable
machine learning (ML)-based smart services and applications
in the next-generation wireless systems. Despite its potential,
the environmental impact of implementing energy-consuming
ML-based solutions in a large networking system has been
considered as one of the major challenges for the sustainabil-
ity of future digital networking systems. This paper proposes
energy-efficient FEI (EE-FEI), an energy-efficient framework,
that jointly optimizes multiple key parameters to minimize the
overall energy consumption of an FEI-supported Internet of
Things (IoT) network. We establish models to quantify the
relationship between the total energy consumption of FEI and
the key parameters including the number of edge servers, the
number of local model training rounds, and the number of global
coordination rounds. We formulate the energy consumption
minimization problem and prove its approximation problem is
biconvex. Alternate Convex Search (ACS) algorithm for solving
the key parameters to minimize the energy consumption of an
FEI system has been used. Finally, we evaluate our theoretical
results using a hardware prototype. Numerical results have shown
that EE-FEI can significantly reduce the energy consumption of
FEI systems by 49.8%.

Index Terms—Energy efficient, federated learning, edge Intel-
ligence, IoT network.

I. INTRODUCTION

The increasing popularity of IoT devices has resulted in
exponential growth in the volume of data generated by wireless
networking systems. According to a recent report [1], the
global mobile data traffic is expected to increase over 100
times from 2020 to 2030, reaching around 163 Zettabytes in
2030. It is expected that the data transportation and compu-
tational resources required for emerging data-driven services
and applications will soon exceed those of today’s wireless
networks. In particular, the traditional centralized data process-
ing architecture in which data samples collected by all the IoT
devices must be uploaded into a remote cloud data center for
centralized processing is now viewed as the major obstacle for
supporting high-performance ML-based applications requiring
complex model training, fast service response, and privacy
protection.

Recently, edge intelligence has been promoted as one of
the key solutions to support ML-based smart services with
stringent requirements [2]. By deploying a large number of
decentralized edge servers to perform data processing and
model training closer to IoT devices, edge intelligence has the

potential to significantly reduce the communication overhead
and improve service responsiveness. To address the need for
decentralized data processing across multiple edge servers,
federated edge intelligence (FEI) has been introduced to
implement federated learning (FL), an emerging distributed
learning framework, for training and constructing ML models
over edge servers based on decentralized datasets [3]. FEI
allows multiple edge servers to collaboratively train a model
without exposing their local data and therefore can further
improve communication efficiency and offer privacy protection
for the local data samples.

Since FL is essentially a distributed coordination frame-
work for implementing ML algorithms, it suffers from the
high implementation cost and resource consumption as most
existing ML solutions. It has been observed that the resource
consumption for training the state-of-the-art deep learning
models is doubled every few months, resulting in a total
increase of 300,000 times from 2012 to 2017 [4]. There is still
lacking a comprehensive framework to optimize the energy
consumption of an FL-based networking system.

Recent reports observe that the resource consumption of FL-
based algorithm is closely related to several key parameters
including the number of edge servers participating in each
round of global model coordination, the number of local com-
putational steps performed by each edge server as well as the
total number of global coordination rounds required to achieve
a certain model accuracy. Although there are already existing
works investigating the impact of these parameters, most of
these works focus on optimizing a single parameter that could
only affect the data processing and computation at edge servers
[5]. In addition to the computational resources, the model
training performance at the edge servers is also closely related
to the data collecting and uploading capability of the IoT
network. There is a pressing need to develop a comprehensive
framework to model and optimize the energy consumption
of an FEI network system involving both computation and
communication related energy consumption.

Motivated by the above observations, in this paper, we study
the multi-parameter optimization problem for minimizing the
total energy consumption of an FEI-supported IoT network.
Compared to the single parameter optimization problem that
only focuses on minimizing the resource consumption of edge
servers, the above problem is much more complex due to
the following reasons: (1) IoT devices and edge servers are
fundamentally different devices and their energy consumptions



are affected by different subsets of parameters, (2) it is known
that different parameters are closely related to each other and
different combinations of these parameters may result in differ-
ent convergence performance as well as energy consumptions
of the IoT networks and edge servers, yet there is still no
analytical solution that is able to capture the relationship of
different parameters as well as their impact on the overall
system resource-consumption, and (3) although some recent
works are focusing on the resource consumption of FL, an
extensive measurement study based on a practical prototype
is still lacking.

To address these challenges, we propose a novel framework
called energy-efficient FEI (EE-FEI) that can jointly opti-
mize multiple key parameters to minimize the overall energy
consumption of training a model with desirable accuracy. In
particular, we formulate mathematical models to characterize
the energy consumption of every step of FEI and quantify
the impact of three key parameters on the total energy con-
sumption of it, including (1) the number of edge servers K
to participate in each round of global model coordination,
(2) the number of local model training rounds E in each
round of global model coordination, and (3) the total number
of global coordinations T required to train the model with
a target accuracy level. We utilize ACS algorithm as the
solution for K, T , and E to minimize the total energy
consumption. Finally, we develop a hardware prototype with
20 Raspberry Pis and conduct extensive measurement studies
on the energy consumption under different combinations of
parameters. To the best of our knowledge, this is the first
work that leverages the ACS algorithm as the solution for
approximately optimizing multiple key parameters to minimize
the energy consumption of FEI-based networking systems.

The main contributions of this paper are summarized as
follows:

• Energy Consumption Modeling: We propose an energy-
efficient framework, referred to as EE-FEI, for FEI-
supported IoT networks. We formulate energy consump-
tion models concerning K, T , and E for each step of FEI.
Based on the formulated model, we analyze and quantify
the impact of key parameters on the energy consumption
of an FEI system.

• Optimal Solution: We formulate the energy consump-
tion minimization problem and prove that the objective
function of the problem is biconvex with respect to K
and E, and take ACS algorithm as the solution for K,
E, and T to minimize the energy consumption of FEI.

• Prototype Development and Simulation: We develop a
hardware prototype and conduct extensive measurements
for the energy consumption of FEI under different setups
and combinations of parameters. Numerical results have
shown that EE-FEI can reduce the energy consumption
by 49.8% and achieve an optimal trade-off between
computational load per edge server and communication
overhead.

The rest of this paper is organized as follows. Existing

works that are relevant to this paper are reviewed in Section II.
We introduce our system model in Section III and formulate
the energy consumption model of FEI in Section IV. The
energy consumption optimization algorithm is proposed in
Section V. Experiment results are presented in Section VI,
and Section VII concludes this paper.

II. RELATED WORK

Optimization of Federated Learning: FL has been intro-
duced as a solution for distributed learning, which is more
communication-efficient compared with mini-batch SGD.
Most existing works in FL focus on investigating the trade-
off between communication cost and convergence performance
[6]–[8]. In particular, in [6], a K-step averaging SGD algorithm
was developed to minimize the communication overhead and
its convergence result was also established for non-convex
objectives. The convergence rate of FL was derived in [7] on
convex problems. In [8], an upper bound of convergence for
FL was derived and utilized to develop a control algorithm to
minimize the loss function under certain resource constraints.

Energy Model of Federated Learning: The environmental
impact of implementing energy-consuming ML-based solu-
tions in a large networking system has been considered as
one of the major challenges for the sustainability of future
networking systems. However, the energy consumption of fed-
erated learning has not been well explored. The authors in [9]
developed a deep reinforcement learning-based solution for the
joint optimization of training time and energy consumption.
An iterative algorithm with low complexity was proposed in
[10] to minimize total energy consumption while maintaining
the requirements of latency. In [11], the authors studied the
trade-off between convergence and energy consumption. An
online energy-aware dynamic edge server scheduling policy
was proposed in [12] to maximize the average number of
edge servers participating in a single iteration with energy
constraint.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the main components of
the federated edge intelligence (FEI)-based IoT system and
then present the energy consumption model for each step of
the model training process.

A. System model

An FEI system consists of the following components as
shown in Fig.1:
(1) IoT Network: consists of a large number of IoT devices

deployed across a wide geographical area. Each IoT
device collects local data samples to be uploaded to its
designated edge server.

(2) Edge Servers: correspond to mini-computational servers
deployed close to the IoT devices to provide data storage
and model training service.

(3) Coordinator: coordinates the model training processes
among all the edge servers. It can be deployed at the
cloud data center or one of the edge servers.



Fig. 1. System model and training procedure.

Due to the privacy concerns and the data transportation limit
of the communication channel, edge servers cannot share their
datasets with each other nor send any data samples to the
coordinator. They can however collaborate with each other
to train a shared machine learning model by following the
FL procedures. In this paper, we assume all the edge servers
adopt FedAvg, one of the most popular FL-based algorithms,
to coordinate their model training process.

Suppose the FEI system consists of a set K of edge servers
trying to train a shared machine learning model over T rounds
of global coordination. Let N := |K|, where |·| means the size
of set. We use subscript t to denote the model training related
parameters between the t-th and the (t+1)-th round of global
model coordination, i.e., let ωk,t be the locally trained model
parameters of edge server k and ωt be the globally updated
model sent by the coordinator at the beginning of the t-th
round of coordination. The algorithm procedure is illustrated
in Fig.1. The main steps in each round t are described as
follows:
(1) Data Collection: Each IoT device first uploads the re-

quested number of data samples to its associated edge
server k. Suppose edge server k requests nk number of
data samples from its local IoT devices. We use x(i)k,t to
denote the i-th data sample to be sent to edge server k in
the t-th round of coordination. Let

〈
x
(i)
k,t

〉
i∈{1,··· ,nk}

be

the sequence of data samples arrived at edge server k.
(2) Local Model Training: A subset Kt of edge servers

will be randomly selected in each round t to participate
in each round of model updating, for Kt ⊆ K. Once
being selected, each edge server will receive a global
parameter ωt sent by the coordinator. Every selected edge
server k will start performing E rounds (epochs) of local
stochastic gradient descent (SGD) based on parameter ωt
and the data samples from the IoT network using the local
loss function, denoted as

Fk(ωt) :=
1

nk

nk∑
j=1

l
(
ωt;x

(j)
k,t

)
, (1)

where l
(
ωt;x

(j)
k,t

)
is the loss function over each data

sample x(j)k,t.
(3) Model Uploading: After E rounds of local training, each

edge server k obtains an updated local model parameter
ωk,t which will then be uploaded to the coordinator.

(4) Model Aggregation and Updating: After receiving up-
dated model parameters from all the selected edge severs,
the coordinator calculates the updated global model pa-
rameters by performing model aggregation as follows:

ωt+1 ←
1

|Kt|
∑
k∈Kt

ωk,t, (2)

where Kt is the subset of edge servers selected to
participate in the FL training task in the t-th round of
update, and K := |Kt| is the cardinality of the set.

B. Energy Consumption Analysis of FEI

The energy consumption of each step of the FEI during
each round of global model coordination can be modeled as
follows:

(1) Energy Consumption of Data Collection: is dominated
by the energy consumed by IoT devices in transmitting
the required number of data samples. We use eIk (nk) to
denote the amount of energy consumed by a set of IoT
devices for uploading nk data samples to edge server k.

(2) Energy Consumption of Local Model Training: is
mainly affected by the energy consumption of local
computation and data processing performed by each edge
server. Previous works as well as our measurements
suggest that the energy consumption for the local model
updating at each edge server k is closely related to several
key parameters including the number of local epochs E
and the size of the local dataset nk. Let ePk (E,nk) be
the energy consumption of edge server k to train E local
epochs over a local dataset of size nk.

(3) Energy Consumption of Model Uploading: is char-
acterized by the energy used by the edge servers to
transmit the local model to the coordinator. The total
energy consumption of model uploading is closely related
to the subset of edge servers being selected to participate
in each round of model coordination, i.e., let eUk be the
energy consumed by edge server k to upload its locally
trained model. We can write the total energy consumed
by FEI for model uploading as eU =

∑
k∈Kt

eUk . Note
that each edge server k only consumes energy for model
uploading after E rounds of local training when it has
been selected by the coordinator to participate in the
global model coordination.



In this paper, we focus on energy minimization problem of
FEI which can be written as follows:

min
E,K,T

{E [e(E,K, T,n)]} (3a)

s.t. E [F (ωT )− F (ω∗)] ≤ ε, (3b)
E,Kt, T, nk ∈ Z+,∀t ∈ {1, ..., T} , k ∈ K, (3c)

where K = 〈Kt〉t∈{1,...T}, n = 〈 nk〉k∈K, and
e(E,K, T,n) =

∑T
t=1

∑
k∈Kt

(eIk (nk) + ePk (E,nk) + eUk ).
F (ω∗) is the minimum value of the loss function, and
E[F (ωT )− F (ω∗)] is the gap between the loss value after T
rounds of global model coordinations and the global minimum
loss value. ε is the target model accuracy.

It can be observed that solving problem (3a) requires ana-
lytical solutions that can characterize the relationship between
e(E,K, T,n) and all the parameters E,K, T,n, as well as
the target accuracy level ε, most of which are unavailable. In
the rest of this paper, we first establish energy consumption
models for every step of FEI and then adopt the convergence
result from the existing literature to derive the analytical
solution that can capture the relationship between all the above
key parameters and the performance metrics.

IV. ENERGY CONSUMPTION MODELING OF FEI

In this section, we discuss the possible energy model for
each step of the FEI.

A. Energy Model of Data Collection

This part of energy is mainly consumed by the IoT network
to collect and upload data samples to the edge servers. Since
most IoT devices adopt passive sensors to record data samples,
we can ignore the energy consumption of data collection. It is
known that IoT devices are mostly low-cost devices without
complex energy adaptation or channel equalization schemes,
we can therefore assume each IoT device consumes the same
amount of energy for uploading a fixed-size data sample. For
example, NB-IoT consumes 7.74 mWs (mW · s) per byte
to send data packets. For some IoT technologies operating
in the unlicensed band, the data uploading may suffer some
data packet loss due to the transmission collision caused
by simultaneous data transmission of multiple IoT devices.
Recent results have shown that as long as the location of all
the IoT devices can be assumed to be fixed, the probability
of successful data uploading can also be regarded as a fixed
value for each IoT device, i.e., the average energy consumed
by an IoT device in the unlicensed band for uploading each
data sample can also be assumed to be a constant. We assume
the data samples uploaded from all the IoT devices to each
edge server have equal size and follow the i.i.d. distribution.
We can therefore write the energy consumption for all the
associated IoT devices to upload nk number of data samples
to edge server k as

eIk (nk) = ρknk, (4)

where ρk is the normalized energy consumption for IoT
devices to upload each data sample.

B. Energy Model of Local Model Training
Previous studies and our own measurement observe a linear

relationship between ePk (E,nk) and the values of E and nk
[13]. In particular, we consider the FL with synchronized
coordination among edge servers and assume each edge server
performs the same number E of local computation steps.
nk is the mini-batch size of each edge server. It has been
observed in [3] that the computational load scales almost
linearly as the mini-batch size, i.e., we can write the energy
consumption for each local round of model training at edge
server k as elk = c0nk + c1, where c0 characterizes the
energy consumed for computing each data sample and c1 is the
constant capturing the energy consumption that is unrelated
to the computational load, i.e., stationary energy for most
computing devices. We will give a more detailed discussion
and provide empirical values of c0 and c1 in Section VI. Based
on the above discussion, we can write the energy consumption
of local model training at edge server k as

ePk (E,nk) = c0Enk + c1E, (5)

Based on the above assumption, we can rewrite the energy
consumption minimization problem in Eq.(3) as

min
E,K,T

{E [ê(E,K, T )]} (6a)

s.t. E [F (ωT )− F (ω∗)] ≤ ε, (6b)

E,K, T, nk ∈ Z+, and 1 ≤ K ≤ N, (6c)

where ê(E,K, T ) is given by ê(E,K, T ) =∑T
t=1

∑
k∈Kt

(
ρknk + c0Enk + c1E + eUk

)
.

V. ENERGY CONSUMPTION OPTIMIZATION ALGORITHM

In this section, we develop an optimization algorithm to
solve problem (6a). We adopt an existing convergence rate
upper bound to merge the convergence constraint in (6b) into
objective function. We then propose a distributed algorithm to
optimize K and E.
A. Convergence Constraint

Multiple theoretical convergence results have been reported
in the existing literature. In this paper, we adopt the con-
vergence solution from [14] due to the following reasons:
(1) it has been claimed that the convergence rate proposed
in [14] is the tightest compared to other solutions; (2) the
convergence result covers several extreme scenarios as special
cases including the mini-batch SGD (E = 1) and one-shot
SGD (T = 1); and (3) it does not require the strong assumption
such as a bounded dissimilarity of local gradients across
different edge servers.

In [14, Theorem 4], it reports the following convergence
results.

Proposition 1: Suppose the loss function of each edge server
Fk is µ-convex and L-smooth, i.e., for all x, y ∈ Rd, we have
µ
2 ||x−y||

2 ≤ Fk(x)−Fk(y)−〈5Fk(y), x−y〉 ≤ L
2 ||x−y||

2.
For any E,K, T ∈ Z+, we have

E[F (ω̄T )− F (ω∗)] ≤
α0||ω0 − ω∗||2

γTE
+
α1γσ

2

K

+α2γ
2Lσ2(E − 1),

(7)



where α0, α1, α2 are constants, ||ω0 − ω∗||2 is the distance
between initial point and optimal point, ω̄T = 1

TE

∑TE
t=1 ω̂t,

where ω̂t is the local updated model, γ is the learning rate and
σ is the metric measuring the variance of stochastic gradients
at the optimum, defined as σ2 , 1

K

∑K
k=1 Ezk∼Zk

[|| 5
f(x∗, zk)||2], where Zk is the distribution of samples at edge
server k.

We have the following proposition:
Proposition 2: It has been proved that if all local models

gradually reach consensus, then the FL can always converge
to the loss minimization solution. We assume that for any
1 ≤ t1 < t2 ≤ T , we have E[F (ωt1)−F (ω∗)] ≥ E[F (ωt2)−
F (ω∗)]. Then the average accuracy level over T rounds is
always smaller than the expected precision at the T -th round
of coordination, i.e., we have

E[F (ω̄T )− F (ω∗)] ≥ E[F (ωT )− F (ω∗)]. (8)

Proof 1: From assumption in Proposition 2, we have

E[F (ω̄T )− F (ω∗)] = E[
1

TE

TE∑
t=1

F (ωt)− F (ω∗)]

≥ E[
1

TE
TEF (ωT )− F (ω∗)] = E[F (ωT )− F (ω∗)].

(9)

This concludes the proof.
Substituting (7) into (9), we have

A0

TE
+
A1

K
+A2(E − 1) ≤ ε, (10)

where A0, A1 and A2 are constants given by A0 = α0||ω0 −
ω∗||2/γ, A1 = α1γσ

2 and A2 = α2γ
2Lσ2. Then, in order

to minimize the energy consumption, we need to reduce
the global training rounds T as much as possible under the
constraint of convergence. By rearranging inequality (10), we
can get the constraint of T on ε and obtain the optimal T ∗ as
follows:

T ∗ =
A0K

[εK −A1 −A2K(E − 1)]E
, (11)

Substituting (11) into problem (6a), we can rewrite the
objective function (6a) as follows:

E[ê(K,E)] =
A0K

[εK −A1 −A2K(E − 1)]E
K (B0E +B1) , (12)

where B0 = E(c0)nk + E(c1) and B1 = E(ρk)nk + E[eUk ].
In the rest of this paper, we follow the commonly adopted

setting [14] and focus on optimizing the upper bound as an
approximation of the energy consumption of FEI. We can
therefore rewrite problem (6a) as follows:

min
E,K
{E [ê(E,K)]} (13a)

s.t. E,K, T, nk ∈ Z+, and 1 ≤ K ≤ N, (13b)
εK −A1 −A2K(E − 1) > 0. (13c)

B. Solving the Energy Consumption Optimization Problem

As mentioned earlier, in FEI, all the edge servers will wait
for the global model parameters as well as the model training
setup information from the coordinator. In other words, the
coordinator will first decide how many edge servers to select
to participate in the next round of global model coordination.
Actually, many existing results [5] have already shown that
increasing K can always result in acceleration of convergence,
e.g., reduced number of required global coordination to reach
the target accuracy level. However, increasing K could also
cause a higher energy consumption for FEI. In other words,
there exists a fundamental trade-off between convergence and
energy consumption. The existence of an optimal solution of
K with a given E is proved as follows.

Lemma 1: For a fixed E, objective function (13a) is a strictly
convex function of K.

Proof: For a fixed E ≥ 1, we have

∂2E[ê]

∂2K
=

2A0A
2
1C0

(C1K −A1)3
> 0, (14)

where C0 = (B0E +B1)/E > 0 and C1 = ε−A2(E − 1) >
0. Since the second-order partial derivative of the objective
function with respect to K is positive and also the domain of
K is convex, we can claim that the objective function (13a)
is a convex function of K. This concludes the proof.

To find the optimal value of K, we use ∂E[ê]
∂K = 0 and derive

the optimal value K∗ as follows:

K∗ =


2A1

ε−A2(E−1) ,
A1

ε−A2(E−1) ∈ {1, N}
1, A1

ε−A2(E−1) < 1

N, A1

ε−A2(E−1) > N

(15)

where A1 and A2 are defined in (10).
Similarly, existing solutions have proved that increasing

the value of E will reduce the required number of global
coordination rounds to reach a fixed accuracy, resulting in
a reduction of energy consumed for communication between
edge servers and the coordinator. However, E directly affects
the local computation load at each edge server. Therefore,
E is closely related to the trade-off between the energy
consumption of communication and local computation. We
prove the following result which will lead to the optimal
solution of E.

Lemma 2: For a fixed K, objective function (13a) is a
strictly convex function of E.

Proof 2: For a fixed N ≥ K ≥ 1, we have

∂2E[ê]

∂2E
=

2A2
2C2K

2

(C4 −A2KE)3
+

2A2C3K

(C4 −A2KE)2E2
+

2C3(C4 − 2A2KE)2

(C4 −A2KE)3E3
> 0,

(16)

where C2 = A0B0K
2 > 0, C3 = A0B1K

2 > 0 and C4 =
εK −A1 +A2K > 0.

Since the second-order partial derivative of the objective
function with respect to E is always positive and the domain



Fig. 2. Hardware prototype with the power measurement device (KM001C),
laptop as coordinator, 20 Raspberry Pi as edge servers and the WiFi Router.

of K is convex, we can claim that the objective function (13a)
is a convex function for a fixed K. This concludes the proof.

By letting ∂E[ê]
∂E = 0 we can derive the optimal E∗ as

follows:

E∗ =

{
(εK−A1+A2K)B1−A2B0K

2A2B1K
, (εK−A1+A2K)B1−A2B0K

2A2B1K
≥ 1

1, (εK−A1+A2K)B1−A2B0K
2A2B1K

< 1
(17)

Combining Lemma (1) and Lemma (2) directly leads to the
following result.

Theorem 1: Objective function (13a) is a strictly biconvex
function.

The biconvexity of problem (13a) allows us to adopt
Alternate Convex Search (ACS) [15] to iteratively achieve
the optimal solution for both K∗ and E∗. We first set the
search domain as ZK ∈ {max

(
A1

ε−A2(E−1) , 1
)
, N} and

ZE ∈ {1, εK−A1+A2K
A2K

} based on (13c). When the difference
of the calculated values obtained by two successive iterations
is less than the target residual ξ, the solution is considered to
be approximately optimal. The detailed algorithm is presented
in Algorithm 1.

Algorithm 1 Parameter Optimization Algorithm
Input: Target residual ξ; i = 0; Initial point (K0, E0); Search
domains ZK and ZE .
Output: Solution point (K,E).
While |E[ê(Ki, Ei)]− E[ê(Ki+1, Ei+1)]| > ξ do

Step 1: Substitute Ei into (15) to calculate K∗.
Step 2: Substitute Ki into (17) to calculate E∗.
Step 3: Set i = i+ 1.

VI. EXPERIMENTAL RESULTS

In this section, we develop a hardware prototype to measure
the energy consumption of FEI and then conduct extensive
simulations to evaluate the performance of our proposed
optimization algorithm.
A. Experimental Setup

We develop a hardware prototype system consisting of N
= 20 Raspberry Pis 4B mini-computers as edge servers as
shown in Fig. 2. We use a laptop computer as the coordinator.
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Fig. 3. Power consumption of an edge server during two rounds of global
model coordination: we can observe different power consumptions at different
steps of local model training and updating in each round including (1) Waiting
(for data uploading), (2) (global) Model Downloading, (3) Local Model
Training, and (4) Local Model Uploading.

Edge servers and the coordinator are connected via a TP-Link
WiFi Router, and we use a multi-function USB multi-meter
POWER-Z KM001C plugged into the power port of each
Raspberry Pi to measure and keep track of voltage, current,
and power during model training. We set the power sample
rate to 1 kHz.

We conduct our experiments on a widely used dataset named
MNIST containing 70,000 28×28 pixel gray-scale images
(60,000 for training and 10,000 for testing) of hand-written
digits. We adopt multinomial logistic regression as the loss
function to train a classification model shared among edge
servers.

We uniformly allocate 60,000 training data samples into
20 edge servers (each has 3000 samples stored in its local
memory). We use full batch size for SGD and set the learning
rate as 0.01 with a fixed decay rate of 0.99.

B. Preliminary Observations

We record data traces of energy consumption at each edge
server during 100 rounds of global model coordination. We
can observe the same pattern being repeated at each round
of training. We can also observe a clear difference in the
energy consumption at different steps of local training and
model uploading at the edge server.

Since our experiments are based on dataset pre-loaded to
each edge server, the local model training and uploading
consist of the following four steps:
(1) Waiting: In FEI, each edge server will first wait for the

global model and training parameters from the coordi-
nator as well as data samples uploaded from the IoT
network. In our experiment, we assume the dataset has
been pre-loaded to the edge server. Therefore, in this first
step, the edge server will not perform any data loading
or computing tasks. The average power consumption in
this step see in step (1) in Fig. 3 is 3.6W which is almost
the same as that of the idle state of a Raspberry Pi.

(2) Model Downloading: Once the coordinator dispatches
the global model parameters and model training setup
to edge servers, each edge server will first download
these model-related data and then replace its local model
parameters with the global one, which can be reflected by



the two peaks in power consumption at the beginning of
step (2) in Fig. 3. The average power consumption during
the entire step (2) is around 4.286W.

(3) Local Model Training: Once an edge server receives all
the required model and datasets, it will start to perform
E rounds of local training. Surprisingly, we observe that
the instantaneous power consumption does not increase
with the values of E of nk. In Table I we present the
time duration of step (3) under different combinations of
E and nk. We can observe that the time duration of each
local training step increases almost linearly with nk. The
average energy consumption during this step is around
5.553W.

(4) Local Model Uploading: When E steps of local model
training have been finished, the edge server will upload
the updated local model parameters to the coordinator.
The power consumption in this step is recorded in (4) of
Fig. 3. We can observe that the average power consumed
for local model uploading is around 5.015W which is less
than the computational power consumption for training
the local model (step (3)) and higher than the power
consumption consumed by model downloading (step (2)).

The above four-step power consumption pattern is repeated
at every round of global model updating.

TABLE I
TIME DURATION OF STEP (3) UNDER DIFFERENT TRAINING

PARAMETERS

E nk Time of step (3)(sec)
10 100 0.0197
10 500 0.0749
10 1000 0.1471
10 2000 0.2855
20 100 0.0403
20 500 0.1508
20 1000 0.2912
20 2000 0.5721
40 100 0.0799
40 500 0.3026
40 1000 0.5554
40 2000 1.1451

Based on the above analysis, we observe that the energy
consumption recorded in our experiments are consistent with
the energy consumption model previously developed in Eq.
(5) and we can fit our measured data in Table I to obtain the
estimated values of c0 and c1 as 7.79 ∗ 10−5 and 3.34 ∗ 10−3,
respectively using the least square method.

C. Numerical Results

Here we present our experimental results. Our simulation
configuration is listed in Table II.

TABLE II
SIMULATION CONFIGURATION

Model Type Multinomial Logistic Regression
Input Size 784*1

Output Size 10*1
Activation Function Sigmoid

Optimizer SGD, learning rate 0.01 with decay rate 0.99

Fig. 4 presents the global loss value and test accuracy at dif-
ferent global coordination rounds with different combinations
of E and K.

Fixed E: In Fig. 4(a) and Fig. 4(b), we fix E = 40 and
compare the convergence performance of FEI under different
K. In Fig. 4(a), we can observe that the global loss value drops
dramatically in the first few rounds of global coordination
(around T = 25), and then the convergence speed reduces
when the value of T continues to increase. Fig. 4(b) compares
test accuracy under the number of global coordination rounds
with different values of K. We observe that when the required
model accuracy level is relatively low (e.g., around 0.89),
increasing K does not significantly affect the required value
of T to reach the target accuracy (shown in the middle-
left subfigure). However, when the required model accuracy
becomes more stringent (e.g., around 0.9), increasing K results
in a linear reduction of the required value of T to obtain the
target accuracy, which is shown in the middle-right subfigure.

Fixed K: As shown in Fig.4(c) and Fig. 4(d), we fix
K = 10 and compare the convergence performance of FEI
under different E. In both figures, we can observe that E is
closely related to the trade-off between communication and
local computation at edge servers. It has already been proved
that the convergence of FL is almost the same as that of
mini-batch SGD (e.g., E = 1) in terms of the total gradients
calculated by edge servers, which is determined by E · T
for a given K. However, our result suggests that the above
result does not apply when evaluating the combined energy
consumption involving both communication and computation
at edge servers. In particular, suppose the target accuracy level
is 0.9, we can observe that when E = 20, the required value of
T is given by 280, resulting in 5,600 rounds of local gradients
being calculated in total to reach the target accuracy. When
E increases to 40, the required value of T to reach the target
accuracy is around 90, resulting in 3,600 local gradient rounds.
If we continue to increase E to 100, we can observe that the
required value of T becomes 60, which again results in a total
of 6,000 rounds of local gradients being calculated by edge
servers. This verifies the existence of an optimal value of E to
achieve the minimized energy consumption of an FEI system.

In Fig. 5 and 6, we compare the theoretical bound of energy
consumption in (13a) with the real traces collected in our
experiments. We also highlight the optimal values K∗ and
E∗ calculated using both the theoretical bound as well as real
traces collected in our hardware prototype. Note that since
we compare the total amount of energy consumed for training
the model with a fixed accuracy level of 92% (calculated by
power times the duration of the entire model training process),
different combinations of E and K will result in different
number of required global coordination rounds T . We can
observe that although there is a gap between real traces and
the theoretical bound, the theoretical bound curve shows the
same trend as the real traces. In particular, in Fig. 5, we
can observe that the optimal solution K∗ is 1 which means
that only one edge server needs to be selected to participate
in each round of global coordination. This is because, in
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Fig. 4. Training performance with multinomial logistic regression and MNIST.
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our setup, we assume the distribution of data samples in all
the edge servers is identical. In other words, the gradients
calculated using datasets at different edge severs should show
similar statistic features. In this case, our result shows that
choosing one edge server to upload its locally trained model
is a more communication-efficient solution. Similarly, in Fig.
6, we present the energy consumption of the optimal solution
E∗ compared with that of other E values. Note that there is
a slight difference between the optimal E∗ calculated using
our theoretical result and real traces. This can be caused by
the roundup operation applied in our theoretical bound where
we use a continuous optimization solution to approximate the
discrete value of E. We can also observe that by optimizing the
value of E, our proposed EE-FEI can achieve around 49.8%
reduction of energy consumption, compared to the case with
K = 1 and E = 1.

VII. CONCLUSION

This paper studied an FEI-supported IoT network. An
energy-efficient FL-based framework called EE-FEI was pro-
posed to jointly optimize the number of model training partic-
ipating edge servers K and the number of local model training
rounds E to minimize overall energy consumption for training
a satisfactory ML model. We investigated the energy consump-
tion in each step of the model training process and proved
the energy consumption minimization problem was biconvex.
We then derived close-form optimal solutions for K, E, and
T to solve our optimization problem. A hardware prototype
has been developed to verify the performance of our proposed
solution. Experiment results showed that our theoretical results

were consistent with real energy measurement results and EE-
FEI could reduce the energy consumption by 49.8%.
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