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ABSTRACT
In this paper, we consider the fair coexistence between LTE and

Wi-Fi systems in unlicensed bands. We focus on the misbehavior
opportunities that stem from the heterogeneity of the coexisting sys-
tems and the lack of explicit coordination mechanisms. We show that
a selfishly behaving LTE can gain an unfair share of the spectrum
resources through the manipulation of the parameters defined in the
LAA-LTE standard, including the manipulation of the backoff mech-
anism of LAA, the traffic class, the clear channel assignment thresh-
old and others. We develop a detection mechanism for the Wi-Fi
system that can identify a misbehaving LTE system. Our mechanism
advances the state of the art by providing an accurate monitoring
method of the LTE behavior under various topological scenarios,
without explicit cross-system coordination. Deviations from the ex-
pected behavior are determined by computing the statistical distance
between the protocol-specified and estimated distributions of the
LAA-LTE protocol parameters. We analytically characterize the
detection and false alarm probabilities and show that our detector
yields high detection accuracy at very low false alarm rate, for a
wise choice of statistical parameters.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; • Net-

works → Protocol testing and verification;

KEYWORDS
LTE-Unlicensed, LTE-LAA, Wi-Fi, Spectrum access, Coexis-

tence, Backoff manipulation, Misbehavior detection

1 INTRODUCTION
The dramatic growth in demand for wireless services has fueled

a severe shortage in radio spectrum, especially in the overcrowded
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unlicensed bands. The regulatory approach for meeting this gal-
loping demand is to allow the coexistence of competing wireless
technologies (e.g., LTE Unlicensed and Wi-Fi coexisting in the
5GHz U-NII band) [1–5]. This shared spectrum paradigm poses
novel challenges for the secure, efficient, and fair resource access.
Many of these challenges stem from the heterogeneity of the coexist-
ing systems, the system scale, and the lack of explicit coordination
mechanisms between them. The fundamentally different spectrum
access mechanisms and PHY-layer capabilities–dynamic vs. fixed
access, schedule-based vs. random access, interference-avoiding vs.
interference-mitigating, etc.–create a complex and interdependent
ecosystem, without a unified control plane.

Some recent efforts have addressed the problem of fair coexis-
tence of LTE/Wi-Fi and Wi-Fi/Zigbee under benign settings (e.g.,
[6–14]). Theoretical and experimental studies showed that the Wi-Fi
performance seriously degrades in the presence of an LTE Unli-
censed system, even if the LTE remains protocol-compliant [15, 16].
Several mechanisms proposed standard modifications to mitigate
the protocol unfairness. Two main approaches were promoted: a
duty cycle-based LTE-U based on Carrier-Sensing Adaptive Trans-
mission (CSAT) mechanism introduced by Qualcomm [17] and a
channel sensing-based Licensed-Assisted Access LTE (LAA-LTE)
based on the Listen-Before-Talk (LBT) mechanism [18]. For the
former approach, it was shown that adjusting the LTE duty cycle can
improve fairness [19,20]. For the LBT mechanism-based LAA, Jeon
et al. showed that controlling the Clear Channel Assessment (CCA)
threshold can be beneficial for the fair coexistence [21]. Follow-up
works achieved further improvements by dynamically adapting the
contention window (CW) size [22, 23].

However, the impact of deliberate violation of the coexistence
etiquette to gain an unfair share of spectrum occupancy has not been
studied at length. Ying et al. were among the first that considered
the problem of misbehavior when cycle-based LTE-U and Wi-Fi
coexist [24]. The authors recognized that the LTE duty cycle is uni-
laterally controlled by the LTE system, and can therefore be abused
to increase the spectrum share of the LTE. They proposed a monitor-
ing mechanism that accurately estimates the duty cycle followed by
the LTE and allows a spectrum manager detect any misbehavior. The
proposed scheme is not applicable to LAA-LTE standard, which is
embraced by most LTE operators and the standardization bodies [18].
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In this paper, we are the first to propose a mechanism for detecting
misbehavior under LAA-LTE.

Our methods build upon the extensive prior art on misbehavior de-
tection in channel access for homogeneous networks, e.g., [25–29],
with notable differences. First, heterogeneous networks do not share
common coordination channels for communicating explicit control
information such as network allocation vector fields, device IDs,
reservation messages (RTS/CTS), etc. Without explicit coordination,
detecting the state and monitoring the behavior of stations operating
under a different technology become challenging, as the messages
exchanged by one system are undecodable at any other. Relevant
challenges include determining which system occupies the channel,
for how long, at what locality, with what range, which stations col-
lided, to name a few. Moreover, although the LAA-LTE and Wi-Fi
standards follow the same carrier-sense multiple access (CSMA)
principles, they adopt different channel contention parameters that
affect the overall system behavior under various conditions of coexis-
tence. Determining a system’s behavior requires accurate estimation
of protocol parameters using only implicit monitoring. Note that
Wi-Fi devices may not be equipped with LTE receivers and vise
versa, thus complicating the monitoring mechanism.

In this paper, we address the problem of misbehavior at the sys-
tem level when heterogeneous technologies coexist. Specifically,
we consider a misbehaving LAA-LTE system that coexists with a
Wi-Fi deployment. The LTE aims at occupying the shared spectrum
for a longer fraction of time by manipulating the channel access
mechanism of LAA. We propose a framework that enables the Wi-Fi
to detect the misbehavior of LTE, taking into account the absence
of any means for explicit coordination. Our framework relies on
implicit sensing mechanisms that provide the Wi-Fi with accurate
approximations of the operational parameters used by the misbe-
having LTE. Parameters of interest include the defer time before
an attempt of channel access, the backoff period for new and re-
transmitted frames, the LTE priority class, and the CW size. Our
contributions are summarized as follows:

• We are the first to study and formulate the problem of channel
access misbehavior of LAA-LTE when coexisting with Wi-Fi.
Although possible misbehaving strategies bear resemblance
to those in a homogeneous setting, we highlight novel chal-
lenges that stem from the technology heterogeneity and lack
of explicit coordination.

• We introduce a monitoring mechanism that does not rely on
signal decoding for estimating relevant LAA-LTE protocol
parameters. We develop an implicit sensing mechanism that
goes beyond simple LTE transmission detection, to determine
the existence of hidden stations, identify retransmitted frames,
and specify the LTE priority class. These are essential param-
eters for accurately estimating the overall LTE behavior.

• We propose a novel misbehavior detection mechanism based
on Jensen-Shannon (JS) divergence [30]. We analytically
evaluate the threshold for detecting misbehavior based on
the JS metric and characterize the detection and false alarm
probabilities.

• We validate our theoretical results via extensive simulations
and show that our detector yields near-perfect detection capa-
bilities and a negligible false alarm rate.

backoff
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T
def

Wi-Fi

T
def

LTE

Figure 1: Backoff between two consecutive transmissions.

The remainder of this paper is organized as follows. We discuss
related works in Section 2. The system and misbehavior models
are introduced in Section 3. The adopted implicit techniques for
monitoring LTE activities are detailed in Section 4. In Section 5, we
demonstrate how the LTE channel access behavior can be accurately
evaluated. We analyze the detection scheme performance in Section
6. We summarize the main contributions of this work in Section 7.

2 BACKGROUND AND RELATED WORK
2.1 LAA-LTE Release 14

We consider an LTE system that follows the LAA-LTE specifica-
tion, as described in LTE Release 14 [18]. The standard defines four
traffic priority classes with channel access parameters listed in Table
1. Classes C1 and C2 are suitable for transmitting control messages
and short frames, whereas classes C3 and C4 accommodate longer
LTE frames. The channel access mechanism of LAA-LTE is shown
in Fig. 1 and is described in the following steps.

(1) Upon the completion of the previous LTE transmission, the
LTE station freezes for an initial time Tinit , consisting of
a defer time Tdef = 16µs plus p observation slots, each of
length ts = 9µs. The parameterp takes larger values for higher
priority classes to compensate for the longer frame size. If
the channel stays idle during Tinit , the LTE proceeds to the
backoff phase described in Step 2, otherwise it repeats Step
1. The channel state (busy or idle) is determined by sensing
the power on a given channel. If the power is less than the
CCA threshold (Pth ≈ −73 dBm according to [18]), for at
least 4µs, the channel is inferred to be idle. Otherwise, it is
inferred to be busy.

(2) The LTE station initializes the backoff counter to a value N
uniformly selected in J0,q−1K, where q is the CW size, which
is initially set to a minimum value qmin.

(3) The LTE station decrements its backoff counter by one with
every idle slot. If a slot is sensed to be busy, the station
freezes its backoff counter until the channel becomes idle.
The channel must remain idle for Tinit , before the backoff
countdown can be resumed.

(4) When the backoff counter becomes zero, the LTE station
transmits a frame with maximum duration of TMCOP . The
station then waits for an ACK/NACK. If it receives an ACK,
the transmission round for the given frame is completed. Oth-
erwise, the process is repeated from Step 2 by doubling the
CW size.

We note that the priority classes differ in both the defer time and
allowed CW sizes. As will be shown later, this difference can be
exploited by LTE stations to shorten the time between consecutive
transmissions.

2.2 Related Work
Whereas there is a wealth of interest in channel access misbe-

havior for homogeneous networks, misbehavior between coexisting
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Table 1: Parameters for different priority classes.
Priority
Class

p qmin TMCOP
(ms)

Allowed q sizes

C1 1 4 2 {4, 8}
C2 1 8 3 {8, 16}
C3 3 16 8 or 10 {16, 32, 64}
C4 7 16 8 or 10 {16, 32, . . . , 1024}

technologies is relatively new. The work closest to ours is reported
in [24]. However, the authors considered the misbehavior in the
LTE-U protocol that adopts a duty cycle channel access model. They
developed a method for estimating the LTE duty cycle by track-
ing LTE transmissions. The latter are identified based on the frame
length, as LTE frames are typically longer than Wi-Fi ones. Possible
LTE misbehavior is detected by a central node called the spectrum
manager, which has prior knowledge on the permitted duty cycle for
the LTE. In this paper we consider misbehavior under the LAA-LTE
standard that implements a CSMA-like channel access model and
involves drastically different misbehavior actions and remedies. Our
work is similar to that of [24] in that we also employ a central node
we call the hub to analyze the LTE behavior.

The LTE/Wi-Fi coexistence in a benign setting has sparked a
lot of interest due to the unfairness in channel access opportunities
(e.g., [14] and references therein). Ratasuk et al. [16] showed that
LTE outperforms Wi-Fi by replacing one of the Wi-Fi deployments
with an LTE cell and comparing the respective throughput. Hirzallah
et al. [31] showed that different access protocols for Wi-Fi and
LTE can cause an increase in the collision rate and latency for both
systems. They suggested a CCA threshold adaptation mechanism
to promote fairness between the two systems. The idea of adapting
the backoff parameters of the LTE to achieve fair coexistence with
Wi-Fi is also studied in [21–23]. However, these works assumed that
all stations are always trustful and protocol-compliant.

Misbehavior detection for channel access in homogeneous net-
works has been extensively studied, especially for the IEEE 802.11
family of protocols (e.g., [25–28, 32, 33]). Tang et al. proposed a
real-time misbehavior detection mechanism, depending on an indi-
cator function that represents the difference between the number of
successful transmissions and the number of expected transmissions,
under a fair channel allocation [27]. Li et al. used multiple backoff
counter observations to calculate the probability that a monitored
station remains protocol-compliant [28]. Misbehavior was detected
by comparing this probability to a threshold. Toledo et al. applied the
Kolmogorov-Smirnov test to detect misbehavior from the number of
idle slots between two transmissions [32]. As all stations follow the
same protocol, misbehavior is detected if the idle slot distribution of
a station differs from that of others.

The pivotal difference between our work and misbehavior detec-
tion in homogeneous networks lies in the monitoring mechanisms
for obtaining samples of behavior. All prior works rely on frame
decoding to attribute transmissions to their originators. This is not
generally possible between different technologies. Moreover, the
LTE and Wi-Fi systems execute channel access protocols with dif-
ferent parameters. For instance, the LAA-LTE backoff parameters
change depending on the priority class, as shown in Table 1. Accurate
estimation of the LTE behavior requires mechanisms for classifying
frames to their respective classes. Additional challenges stem from

Figure 2: Coexistence between LTE and Wi-Fi. Wi-Fi and LTE
stations have difference interference ranges.

the heterogeneity in transmission and interference ranges. A Wi-Fi
station may backoff in the presence of an LTE transmission, but the
converse may not occur.

3 SYSTEM AND MISBEHAVIOR MODELS
System Model: We consider the coexistence of an LAA-LTE sys-

tem with NW Wi-Fi access points (APs) over the 5GHz unlicensed
band, as shown in Fig. 2. The set of all Wi-Fi APs in the vicinity
of the LTE is denoted by NW , with |NW | = NW . For a station X ,
we denote by N(1)

X all transmissions that interfere with X . That LTE

and Wi-Fi APs transmit at different powers, so if Y ∈ N(1)
X , it is not

implied that X ∈ N(1)
Y . As an example, Wi-Fi AP B of Fig. 2 is in

the interefence range of LTE A (solid line), but LTE A is not in the
interference range of B (dashed line). The transmission powers for
the LTE and Wi-Fi are denoted by Pl and Pw , respectively.

The LTE behavior is expected to follow the LAA-LTE standard
[18], as described in Section 2.1. We consider the misbehavior of one
or more LTE stations which are monitored by any Wi-Fi AP in their
vicinity. The observations of the LTE behavior are assumed to be
collectively available for analysis at a central hub. This assumption
is made to evaluate misbehavior at the system level rather than the
station level, as done in prior works on homogeneous networks.
Finally, we analyze the LTE misbehavior under backlogged traffic
conditions. This is the most relevant scenario for LTE misbehavior
detection, as prior works have shown low performance gains under
conditions of low contention [33].

Misbehavior Model: The LTE system manipulates the LAA-LTE
protocol parameters by taking the following actions:

Decreased defer time p: The LTE can reduce its defer time to
reduce the delay before initiating the backoff countdown process.
Specifically, the LTE can select a defer time that belongs to a high
priority class and transmit a frame of low priority class, with longer
duration. Alternatively, the LTE can choose to ignore the defer time
overall and initiate the backoff countdown immediately after the
previous transmission is terminated, or a busy slot has ended.

CCA threshold manipulation: Another manipulation strategy for
the LTE is to avoid freezing its backoff counter in the presence
of an active Wi-Fi AP. This scenario can occur in benign settings
when the active Wi-Fi is a hidden terminal to the LTE, or due to
the power asymmetry between LTE and Wi-Fi. The two scenarios
can be illustrated with the assistance of Fig. 2. Assume that Wi-Fi B
acts as a monitor for the behavior of the LTE. The LTE is outside
the interference range of C and therefore does not freeze its backoff
counter whenC is active. This may be perceived by B, who is within
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the interference range of C, as misbehavior. Moreover, B freezes its
backoff counter when the LTE is active, but the converse does not
hold due to the transmission power asymmetry.

Backoff process manipulation: The LTE system can manipulate
the backoff process of LAA by selecting its backoff counter from a
smaller window range N ∈ J0,qm − 1K, where qm < q. The value
of qm can be selected from high-priority classes, so that the LTE
appears to be protocol-compliant. Moreover, the LTE can avoid
increasing its CW size after a collision to reduce latency between
two consecutive channel access attempts. This can be done by simply
ignoring any mandated CW size increase for a given priority class
after a collision or by taking advantage of the low CW sizes allowed
in high priority classes. We emphasize that there is an inherent
difficulty in attributing collisions to a transmitting station because,
(a) collisions are receiver-dependent and (b) in a heterogeneous
setting, one system cannot decode the transmissions of another. As an
example, the LTE station can consistently select backoff values in the
range J0, 3K, irrespective of the priority class. Moreover, in the event
of successive collisions, it can maintain the CW to four, or increase
it to eight, irrespective of the number of collisions. Essentially, all
priority classes are treated as if they were of C1 or C2.

For the rest of this work, we consider a more general misbehavior
model. In which, the LTE is protocol-compliant for α fraction of
the time, while it uses a smaller CW of size qm , for the remaining
fraction of time. The value of α ranges according to some factor
such as the LTE traffic demand, between zero to one. Thus, the uni-
formity assumption of the chosen backoff counter is not guaranteed
within this misbehavior model. Let X denote the distribution of the
backoff counter followed by the misbehaving LTE. The probability
of selecting a backoff x is given by,

PX(x) =
{ 1−α
qm +

α
q , ∀ x < qm ,

α
q , ∀ qm ≤ x ≤ q − 1.

(1)

This distribution depends on the chosen priority class, and the corre-
sponding sizes of the CW.

The LTE system can combine multiple misbehavior strategies to
improve its overall performance. We emphasize that although the
backoff misbehavior strategies outlined in the misbehavior model
are not new, a novel arsenal of detection methods is necessary due
to the lack of a common control plane and a common PHY-layer.

Overview of the Detection Mechanism: The misbehavior detec-
tion process proposed in this work consists of a behavior monitoring
phase and a behavior evaluation phase, as shown in Fig. 3. During
the behavior monitoring phase, the monitoring Wi-Fi APs listen
to the wireless medium when they do not transmit. Each monitor-
ing AP, overhearing the transmission of an LTE frame, estimates
behavior-related parameters such as the start and end times of the
LTE frame, the retransmission round, the traffic class, and the topo-
logical relation of the AP to the LTE (whether the AP is a hidden
terminal to the transmitting LTE). All the parameters are implicitly
estimated without decoding the LTE frame. Monitoring APs report
their observations along with the start and end times of their own
Wi-Fi activity to a central hub for further processing. The reported in-
formation provides to the hub universal knowledge on the distributed
observations of the Wi-Fi system.

Figure 3: Overview of the misbehavior detection mechanism.

In the behavior evaluation phase, the hub processes the informa-
tion reported by the distributed network of APs to derive the channel
access pattern of each monitored LTE station. If this access pattern
deviates from the LTE specifications for any LTE station, the station
is deemed to be misbehaving. Deviation from the nominal behavior
is measured through the Jensen-Shannon divergence (D JS ), defined
for any two distributions A and B as

D JS (A| |B) =
1
2
D(A| |C) + 1

2
D(B| |C), (2)

where D(·| |·) is the Kullback-Leibler divergence, and C = 1/2(A +
B). The LTE is deemed to misbehave if D JS > δ , where δ is a
misbehavior threshold selected to satisfy desired detection and false
alarm probabilities.

4 BEHAVIOR MONITORING PHASE
The key challenge in monitoring the LTE behavior is system het-

erogeneity. The monitoring APs cannot decode LTE transmissions
as they may not be equipped with LTE receivers. In this section, we
present several implicit techniques that enable the implicit estima-
tion of the LTE operating parameters. Specifically, each monitoring
AP listens to the wireless medium when it is not active. Upon de-
tection of a non Wi-Fi signal, it performs signal processing with-
out decoding to determine if it belongs to an LTE station. For the
ith LTE transmission, the AP estimates a six-tuple of information
< ts (i), te (i), ID j , r ,C,h > where ts (i) and te (i) denote the start and
end of the ith transmission, respectively, ID j denotes an LTE ID,
r denotes the retransmission round for an LTE frame, C denotes
the LTE traffic class, and h is a flag that denotes if the monitoring
AP is a hidden terminal to the transmitting LTE. All parameters
are estimated implicitly without decoding. In the remainder of the
section, we describe the parameter estimation process.

4.1 Detecting LTE Transmissions
Identifying LTE signals: The first step for estimating the LTE

operating parameters is to determine when and for how long LTE
stations access the wireless medium. To detect LTE transmissions,
we adopt the cyclic prefix (CP)-based method proposed in [31].
Briefly, the CP detection operates as follows. LTE transmissions,
like any other OFDM modulated signal, utilize the CP concept to
mitigate inter-symbol interference (ISI) between two consecutive
symbols. The CP is a replication of the end of an OFDM symbol,
copied at the beginning of that symbol, as shown in Fig. 4.

Let L denote the length of the CP in samples and N denote the
length of an OFDM symbol in samples. Parameters L and N are
fixed to unique values in the LTE standard [18]. A Wi-Fi AP that
cannot decode an LTE transmission can try to detect it by estimating
parameters L and N via signal sampling and signal correlation.
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Figure 4: Detecting LTE transmissions using CP.

The AP first samples the received signal and stores the samples.
The AP fixes two time windowsW1 andW2 of length L, separated by
N − L samples. Then, it shifts the two windows simultaneously by
one sample at the time while keeping the window separation fixed to
N − L. For each shift n, the AP obtains the corresponding received
signal samples s1(n) and s2(n) and computes the correlation ρ(n) as

ρ(n) =
L−1∑
k=0

s1(n − k)s∗2(n − k − N ), (3)

where s∗2 is the complex conjugate of s2. If s1 = s2, the correlation
spikes relatively to the case of s1 , s2 indicating that s1 is the CP of
s2 and that s2 occurs N − L samples away, thus confirming the LTE
OFDM symbol structure. This also allows the AP to synchronize
with the start of the LTE frame and determine the starting time ts (i)
and end time te (i).

Differentiating between LTE stations: Although the CP-based
detection approach can identify LTE transmissions without decoding,
it cannot attribute transmissions to individual LTE stations. This is
necessary for building the behavioral profile of each LTE station.
In an LTE system, an LTE transmission carries the station identity
ID j which is calculated as ID1 + 3ID2, where ID1 and ID2 define
the physical-layer cell identity group and physical layer identity,
respectively. The ID1 and ID2 fields are part of the primary synchro-
nization signal (PSS) and secondary synchronization signal (SSS),
respectively. The pair (ID1, ID2), which defines IDcell, is unique for
every LTE station, however they can only be obtained if the PSS and
SSS are decoded. As shown in Fig. 5, the PSS and SSS fields appear
at fixed locations in an LTE frame and also have a fixed duration in
number of OFDM symbols or signal samples.

Figure 5: The PSS ans SSS fields in LTE frames.

Monitoring APs can exploit the known LTE frame structure to
attribute LTE transmissions to different LTE stations. Note that we
are not interested in extracting ID j , but in attributing LTE transmis-
sions to unique LTE stations to evaluate their individual behavior.
This is achieved by exploiting the same signal correlation principle
used to identify LTE transmissions. The main idea is to detect the
unique header fields (ID1, ID2) by sampling the LTE transmission at
the PSS and SSS locations and correlating the signal samples with
previously recorded samples. Two transmissions from the same LTE
station will exhibit high correlation on the ID fields. Note that the
IDs themselves are not decoded, because correlation of the sampled

values suffices for classification purposes. A monitoring AP executes
the following LTE transmission classification algorithm.

Step 1: The AP applies the CP-based LTE detection method to
identify the ith LTE transmission and synchronizes with the start
time ts (i).

Step 2: The AP extracts the samples s
(i)
ID , of length LID , that

correspond to ID1 and ID2 in the PSS and SSS fields, respectively
(the two fields are contiguous).

Step 3: The AP maintains a signature database for all LTE sta-
tions. The signature of the jth LTE is the sampled form sID j of
ID1 | |ID2. For the ith LTE transmission, the AP computes the signal
correlation as follows,

ρ
(i, j)
ID =

LID∑
k=1

s∗ID j
(k) s(i)ID (k),∀j . (4)

Step 4: The AP attributes the ith LTE transmission to LTE j

that yields the maximum ρ
(i, j)
ID , given that ρ(i, j)ID ≥ γ0. Here γ0 is

a minimum correlation threshold that defines a signal match. If a
match is found, the AP also replaces the current signature of LTE j

with s
(i)
ID .

Step 5: If no correlation value exceeds γ0, the AP adds s(i)ID as a
new LTE station signature to the database.

The correlation-based classification method presents challenges
when LTE transmissions collide (with other LTE or with Wi-Fi).
Although performing classification via signal cancellation in the
presence of collisions is possible [34], we leverage the distributed
nature of the monitoring operation to resolve colliding transmis-
sions. As collisions are receiver-dependent, not all monitoring APs
experience collisions. Those APs that do not experience a collision
correctly classify the LTE transmission. As an example, AP A in
Fig. 2 is in the interference range of LTE A and LTE B thus being
unable to classify frames of A and B that collide. Such frames are
correctly monitored by AP B and D.

4.2 Priority Class Estimation
The channel access behavior of an LTE station depends on the

priority class. Lower priority classes utilize longer frames and thus
are designed to access the channel less frequently whereas higher
classes accommodate shorter frames, shorter defer times, and CW.

To evaluate the compliance of an LTE station with the class
parameters of the frame it transmits, the APs classify frames to one
of the four classes of Table 1. This classification is performed based
on the LTE frame length. As observed in Table 1, the maximum
occupancy time TMCOT is distinct for classes C1, C2, and C3/C4.
By measuring the length of the ith frame as te (i) − ts (i), the AP
can classify the frame to the appropriate class. Note that we have
implicitly assumed that in a backlogged scenario, it is in the interest
of the LTE to always maximize its occupancy time once it seizes
the channel. The TMCOP value is the same in C3 and C4. Moreover,
the first three CW sizes are equal for both classes. Only if a frame
collides three or more times, a C4 frame will be treated differently
that a C3 frame (there is also small difference in the defer time). For
all practical purposes, we air on the conservative side and assume
that any frame of length 8ms or 10ms belongs to class C3.
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4.3 CW Size Estimation
Another important behavior parameter is the CW used at every

LTE transmission. Maintaining a small CW improves the channel
access opportunities for the LTE. The CW is implicitly estimated
by tracking the transmission round r . The latter is defined as the
number of transmission attempts for successfully communicating
a given frame. Initially, r is set to one and it is incremented by one
with every retransmission attempt of the same frame. According to
the exponential increase principle, the value of theCW doubles with
every increase of r .

Parameter r is difficult to infer because a retransmission can be
caused due to a collision. The monitoring AP utilizes the signal
correlation method to infer r . Specifically, the AP utilizes the fact
that most fields in the header and payload of a retransmitted frame
remain identical to the original transmission. Therefore correlating
the sampled signal between two successive transmissions allows
the AP to infer that a retransmission has occurred and increase r
accordingly. A monitoring AP tracks r through the following steps.

Step 1: For each LTE ID j , the AP samples the i − 1st and ith

frames and buffers the related samples to the LTE frame header,
denoted by sHj (i − 1) and sHj (i) and of the payload, denoted by
sPj (i − 1) and sPj (i).

Step 2: The AP correlates sHj (i − 1) with sHj (i) and sPj (i − 1)
with sPj (i) using the correlation function of (4). It computes the
correlation value ρH (i − 1, i) for the header and ρP (i − 1, i) for the
payload.

Step 3: If ρH (i − 1, i) ≥ γ0 and ρP (i − 1, i) ≥ γ0 the AP identifies
the ith frame as a retransmission and increases r by one. Otherwise,
it sets r to zero.

From parameter r and the class priority c, the central hub can infer
the CW value that should have been used by a given LTE station.
For instance, the CW of a class 3 frame with r = 2 should be equal
to 32 according to Table 1.

4.4 Hidden Terminal Discovery
The channel access behavior of an LTE station is affected by other

coexisting Wi-Fi and LTE stations. coexistence is determined by the
CCA threshold, which is used by the LTE to determine if the channel
is idle and freeze its backoff process. In an LTE/Wi-Fi coexistence
scenario, a monitoring AP faces two challenges in inferring the
backoff behavior of an LTE station. First, the AP does not know if
it is a hidden terminal to an LTE that it overhears due to the power
asymmetry between LTE and Wi-Fi. For instance, AP K in Fig. 6
hearing a transmission from LTE A may or may not be a hidden
terminal to A. Second, for LTE A and LTE B overheard at K , the
AP does not know if A and B are hidden terminals. We propose two
methods that enable the Wi-Fi system to deal with hidden terminals.

4.4.1 Inferring APs hidden terminals. To determine if an AP
is a hidden terminal to an LTE, we exploit the channel reciprocity
principle. In Fig. 6, the AP k hears the transmissions of both LTE
stations, A and B. The AP needs to determine if its transmission
exceeds the CCA threshold at A and B. The AP utilizes channel
reciprocity as follows. For LTE A, the received power Pr,K at AP K
during the i − 1st LTE A transmission is given by

Pr,K = Pl |h
(i−1)
k,a |2, (5)

Figure 6: AP K is a hidden terminal toA but not B. LTE stations
A and B are hidden terminals.

Figure 7: Transmission timeline for two LTE stations which are
hidden terminals.

where h(i−1)k,a is the impulse response of the channel between LTE A

and station K and Pl is the transmit power of the LTE. Assuming that
the channel does not change dramatically during the LTE backoff
period (slow fading conditions), AP K can estimate the received
power at LTE A side, Pr,A, when K is transmitting by

Pr,A = Pw |h(i−1)k,a |2 =
PwPr,k

Pl
, (6)

where Pw denotes the Wi-Fi transmit power. If Pr,A > Pth , where
Pth is the CCA threshold employed by the LTE, then K is in the one-
hop neighborhood N(1)

LTE A of A. Otherwise, K is a hidden terminal to
A. Repeating the same steps at all APs and sharing this information
with the central hub allows the determination of all APs belong
to N(1)

LTE, for all LTE stations. The hidden terminal inference can
be fortified with repeated transmissions from the LTE. Assuming a
fixed topology, the AP can compute the percentage of LTE frames for
which the received power at the LTE as calculated by eq. (6) exceeds
the CCA threshold. If the percentage exceeds certain threshold, the
AP can declare with confidence that its activity is heard at the LTE
and set the h flag reported to the central hub to FALSE.

4.4.2 Inferring LTE hidden terminals. For two or more LTE
stations overheard at the same monitoring AP, the channel reciprocity
principle cannot be applied, because the AP cannot estimate the
channel between LTEs. This information is inferred at the central
hub based on the start and end times reported for each LTE. To
demonstrate this method, consider the topology of Fig. 6 where A
and B are hidden terminals to each other. In this case, the frames
transmitted by these two stations will concur in time, indicating that
one is not aware of the other’s transmissions. Here, we assume that
LTE stations that belong to the same operator, will not deliberately
try to interfere with each other’s transmissions.

The central hub utilizes the start and end times ts and te reported
by the APs to determine if LTEs are hidden terminals. If concurrent
frame transmissions are identified, the hub concludes that the in-
volved LTEs are hidden terminals and therefore should not take into
account each other’s transmissions in their channel access pattern.
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Figure 8: Estimation of the ith backoff counter between two suc-
cessive transmissions from LTE A.

By applying this approach for any two LTE stations, the hidden LTE
terminals are specified for each LTE station.

5 BEHAVIOR EVALUATION PHASE
In the behavior evaluation phase, the central hub models and ana-

lyzes the behavior of each LTE station. The evaluation is performed
in two steps. In the first step, the hub infers the channel access pattern
of each LTE station through their backoff pattern. In the second step,
the estimated backoff pattern is compared to the nominal pattern
dictated by the LTE specification. We focus on the backoff pattern
because it captures all misbehaviors described in the misbehavior
model detailed in Section 3. We describe each step in detail.

5.1 Backoff Pattern Estimation
Using the LTE identities, the traffic class, and the start and end

times, the central hub attributes all reported LTE frame transmissions
to the respective LTE stations. Consider two successive transmissions
i − 1 and i, attributed to the same LTE ID j . The hub can estimate
the ith backoff counter selected by the LTE by tracking the elapsed
time between the end of the i − 1st and the beginning of the ith LTE
transmission. The estimated backoff time T̂BO is given by

T̂BO (i) = ts (i) − te (i − 1) − T̂f (i), (7)

where ts (i) and te (i − 1) are the start and end times of the i th and
(i−1)th transmission, respectively, and T̂f (i) is the estimated backoff
freeze time. The elapsed time between two successive transmissions
from LTE A is shown in Fig. 8. The central hub estimates the freeze
time for the backoff counter by tracking the reported LTE and Wi-Fi
activities. The freeze time T̂f (i) can be written as

T̂f (i) =
|NIDj |∑
k=1

Lk (i) +Tcollision(i), (8)

where |NID j | is the cardinality of ID j ’s one-hop neighborhood, Lk (i)
is the length of the frame transmitted by the kth station (LTE or Wi-
Fi), and Tcollision(i) is the time of the received collisions at LTE ID j .
The one-hop neighborhood of LTE ID j is estimated using the hidden
terminal discovery technique discussed in Section 4.4, by identifying
all stations (Wi-Fi or LTE) whose transmissions exceed the CCA
threshold at ID j . The value of Lk (i) is set to zero if station k is not
reported to transmit during the i th backoff period. Collisions are
identified when two or more stations in NID j concurrently transmit.
The duration Tcoll ision is estimated by the hub as follows. The hub
tracks the intersections among the reported ts and te of all stations
belong to NID j , in the i th backoff period. For the APs, these times
are reported individually from each of them. Whereas for the LTE
stations, we consider that the LTE transmission is detected without
collisions at least once at any monitoring APs, which reports ts and
te of that transmission to the hub. Here, we utilize the distributed
nature of the monitoring APs for LTE’s, see Section 4.1.

From the backoff period T̂BO (i), the hub estimates the selected
backoff counter N̂ (i) for the ith backoff round. Let vi denote the
number of all transmissions from stations in NID j , including colli-
sions. A collision of any number of stations increases vi by one. The
backoff period for the LTE is given by

T̂BO (i) = (vi + 1) ·Tdef + (vi + 1)·p ·Ts + N̂ (i) ·Ts . (9)

where Ts is the slot duration for the LTE system and p is the number
of deferred slots according to the priority class (see Table 1). In (9),
we add one to vi to account for the Tdef that the LTE has to follow
after every LTE transmission. The backoff counter N̂ (i) is given by

N̂ (i) =
T̂BO (i) − (Tdef + p · ts )(vi + 1)

ts
. (10)

In (10), T̂BO (i) is obtained from eq. (7) and vi is computed based
on the Wi-Fi and LTE activities during the ith backoff period. The
correct estimation of N̂ (i) requires knowledge of the priority class
to determine p, as we mentioned in Section 4.2.

5.2 LTE Behavior Evaluation
In this section, we use the estimated backoff counters to detect

LTE misbehavior. The evaluation of the LTE behavior is performed
at the central hub after combining the backoff counters estimated
from the parameters reported by different monitoring APs. Let J be
the number of observations collected for a given LTE. To evaluate
the LTE behavior, the hub organizes the J backoff counter estimates
according to the class c and retransmission round r . This is required
to compare each series of backoff counters with the uniform distribu-
tionU (0,q(r , c)−1), where q(r , c) is the compliant CW size for class
c and retransmission round r . We employ the techniques proposed
in Section 4 for classifying the collected observations.

Once the sorting process is completed per c and r , misbehavior
detection is performed by computing the statistical distance between
the estimated distribution of the monitored backoff counters and
U(0,q(r , c) − 1). This statistical evaluation is done separately for
each (c, r ) pair. For simplicity, we consider that the J observations
follow the same (c, r ) pair, and neglect the c and r indices. We define
by M the estimated distribution based on the J observations. M has
a density function

PM(x) =
∑J
i=1 I (N̂ (i) = x)

J
, (11)

where I (·) is the indicator function. The statistical distance be-
tween M and U(0,q − 1) is computed through the Jensen-Shannon
divergence (D JS ). An LTE station is suspected of misbehavior if
D JS (U| |M) > δ , where δ is a threshold specified by the hub.

5.3 Determining the Threshold δ
In this section, we analyze the selection of the threshold δ as a

function of J . The backoff counter distribution related to J is defined
in (11). Let nx be the number of times that N̂ (i) is estimated to equal
x . The probability PM (x) can be written as PM (x) = nx/J . We define
by B the average of the probability distributions between U and M,
with PB (x) equal to,

PB (x) =
1
2
( 1
q
+
nx
J
) = nxq + J

2Jq
, ∀ x . (12)
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Now, the distance D JS (U| |M) can be written as,

D JS (U| |M) = 1
2
D(U| |B) + 1

2
D(M| |B)

=
1
2q

( q−1∑
x=0

log2(
2n

nx + n
) +

q−1∑
x=0

nx
n

log2(
2nx

nx + n
)
)
.

(13)

where n = J/q. It can be shown that D JS (U| |M) is a summation of q
convex functions in nx ’s that become zero at nx = n. We select δ to
achieve a zero false alarm rate. If M ∼ U[0,q − 1], then D JS (U| |M)
should be less than δ . At the same time, D JS (U| |M) should be greater
than δ if M ∼ X, the misbehavior’s distribution defined in (1). Due
to the convexity of D JS (U| |M), the maximum is achieved either at
nxmin = minx nx or nxmax = maxx nx . The following inequality
holds when substituting for all nx ’s with nxmin or nxmax,

D JS (U| |M) ≤ max{D(nxmin),D(nxmax)}, (14)

where

D(nx ) =
1
2

(
log2(

2n
nx + n

) + nx
n

log2(
2nx

nx + n
)
)
. (15)

Therefore, for any chosen δ , we can define nmin and nmax to be
the roots of the equation, D(nx ) = δ . and by selecting such δ we
are certain that no misbehavior is detected when, nxmin ≥ nmin
and nxmax ≤ nmax. To understand this selection, note that the
D JS (U| |M) is a summation of 1/qD(nx )’s. If we guarantee that all of
D(nx )’s are less than δ , then we are sure that D JS (U| |M) < δ . By
choosing nmin and nmax to be around n, as is the case for uniform se-
lection, such that nmin = n(1−c1), and nmax = n(1+c2), with c1 and
c2 being two constants that depend on the number of observations, δ
should be equal to the max{D(n(1 − c1)),D(n(1 + c2))}.

False alarm probability: From eq.(13), the false alarm probabil-
ity Pf a can be defined as,

Pf a = Pr
{
D JS (U| |M) > δ

}
, (16)

when the backoff counter is drawn uniformly from 0 to q − 1. Due
to the complexity of arriving to a closed-form formula for Pf a , we
derive a bound in the following proposition,

PROPOSITION 1. The false alarm probability can be bounded by,

Pf a ≤ 1 −
( nmax∑
k=nmin

(
J

k

)
( 1
q
)k (q − 1

q
)J−k

)q
. (17)

PROOF. The proof is provided in Appendix A. □

Detection probability: Unlike the false alarm analysis, the detec-
tion probability is misbehavior-dependent. Here, the analysis should
consider different misbehavior strategies represented by the fraction
of time 1 − α that an LTE misbehaves and the extend of misbehavior
represented by the selection of the contention window qm . We derive
a bound for Pd in the following proposition,

PROPOSITION 2. The detection probability is bounded by,

Pd > (1 −∑nmax
k=nmin

( J
k
)
βk (1 − β)J−k )qm (18)

.(1 −∑nmax
k=nmin

( J
k
)
(αq )k (

q−α
q )J−k )q−qm ,

where β = 1−α
qm +

α
q .

PROOF. The proof is provided in Appendix B. □

Propositions 1 and 2 dictate the expected tradeoff between Pd and
Pf a as a function of the detection threshold δ . For a given number of
observations J , δ can be selected to satisfy this tradeoff. We evaluate
this selection through the ROC curves in the following section.

Note: The Jensen-Shannon Divergence is designed for measuring
the distance between two distributions of the same range. However,
when α = 0 (i.e., the LTE always misbehaves), the series of backoff
counter estimates will yield zero probabilities for all x’s greater than
qm − 1. The proposed detection scheme is still applicable here by
replacing the zero probabilities with negligible (non-zero) values.

6 PERFORMANCE EVALUATION
To validate the proposed misbehavior detection framework, we

implemented an event-based simulation for the LTE/Wi-Fi coexis-
tence. Specifically, we deployed a set of terminals (LTE and Wi-Fi)
in the same collision domain so that activity from every terminal
affects the behavior of others. The LTE stations followed the LAA-
LTE specification whereas the Wi-Fi APs implemented the IEEE
802.11e protocol. To isolate the impact of misbehavior, frame losses
occurred only due to collisions (perfect channel conditions). Each
experiment was run for 100,000 events, where each event corre-
sponds to a transmission attempt by any terminal. All terminals were
backlogged. For each terminal, we evaluated the transmission at-
tempt rate defined as the number of transmission attempts, including
collisions, of a terminal over the total number of attempts by any ter-
minal. This metric indicates how frequently each terminal attempts
to seize the common medium. We further evaluated the detection
and false alarm probabilities under different misbehavior scenarios.

6.1 Effect of LTE Misbehavior on Wi-Fi
In the first set of experiments, we evaluated the effect of LTE mis-

behavior on the WI-Fi channel access opportunities. Misbehavior for
the LTE was implemented by adopting smaller values of the default
CW qm < q for various α . The LTE chose its backoff uniformly in
[0,qm − 1]. In Figure 9(a), we show the transmission attempt rate as
a function of qm/q, where q is the CW dictated by the LTE protocol.
The value of α was set to 0.5 and we considered the coexistence
of one LTE with Nw = 1 and Nw = 5 Wi-Fi APs. We observe
that the Wi-Fi channel access opportunities degrade when the LTE
adopts smaller qm values whereas the opportunities equalize when
qm approaches q. In addition, the LTE maintains its channel access
advantage even when a larger number of Wi-Fi stations compete
(note that for NW = 5, the Wi-Fi attempt rate is normalized per
Wi-Fi). We observe that the degradation in the attempt rate of each
Wi-Fi station can go up to 50%. Figure 9(b) gives similar intuition,
when the fraction of time that the LTE misbehaves is varied. For this
set of experiments, we fixed qm = 0.5q.

Next, we studied the relation between the number of APs compet-
ing with the LTE and the attempt rate. We evaluated the effect of two
misbehavior types. In type 1 misbehavior, the LTE always decreased
the CW to qm = 0.5q, whereas in type 2 it used the nominal value
of q but disregarded the CW exponential growth after collisions. In
Figure 9(c), we show the attempt rate as a function of NW , with
and without LTE misbehavior, for α = 0.5. An interesting point
here is that the effect of type 1 misbehavior is more prominent at
small NW ’s, whereas type 2 misbehavior has a higher impact at high
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Figure 9: Attempt rate for LTE and Wi-Fi systems: (a) vs. qm/q, with NW = 1, 5, and α = 0.5, (b) vs. α , with NW = 1, 5, and qm = 0.5q,
vs. number of Wi-Fi terminals for: (c) class 3-LTE and class 3-Wi-Fi with qm = 0.5q, and α = 0.5, (d) class 3-LTE and class 3-Wi-Fi
with qm = 0.5q, and α = 0.9 (e) class 3-LTE and class 3-Wi-Fi with qm = 0.5q, and α = 0, (f) class 3-LTE and class 2-Wi-Fi with
qm = 0.5q, and α = 0.5, and (g) class 2-LTE and class 3-Wi-Fi with qm = 0.5q, and α = 0.5.

NW . Overall, type 1 misbehavior has higher impact than type 2, as
it affects all retransmission rounds. We also investigated scenarios
where the LTE misbehaves all the time or a very small portion of
time. Figure 9(d) shows the case of α = 0.9. We observe that the
LTE misbehavior does not have any significant effect on the Wi-Fi
performance. The case of α = 0 is shown in Fig. 9(e). The Wi-Fi
performance degrades up to 40% for type 1 manipulation and about
8% for type 2. Note that at high NW , the performance of the LTE
station is always better than that of Wi-Fi stations.

In the previous set of experiments, the LTE and all Wi-Fi APs used
the same priority class, i.e., almost similar backoff parameters. In the
second set of experiments, we varied the priority class and measured
the achieved attempt rate. In Figure 9(f), the Wi-Fi APs employed a
lower priority class that utilizes a smaller CW. We observe that the
Wi-Fi performance is almost the same as that of the LTE because
reducing the CW for the LTE to qm = 0.5q equalizes the channel
access opportunities for all stations. As expected, the LTE gains are
significant when the LTE uses a lower class than Wi-Fi and also
misbehaves. These results are shown in Fig. 9(g) where we see a
larger difference in performance relatively to Fig. 9(c), where the
LTE and the Wi-Fi APs have the same class.

6.2 Selection of Detection Threshold δ
In the section, we show how to select the detection threshold δ for

detecting LTE misbehavior based on the theoretical bounds derived
in Propositions 1 and 2. For the misbehaving LTE, we use qm = 0.5q
and vary α to 0, 0.25 and 0.5. Figure 10(a) shows the false alarm
and misdetection probability (Pmd ) for q = 4, as a function of δ . As
expected, Pmd increases with α and also with δ . In addition, we note
an obvious tradeoff between Pf a and Pmd . To select an appropriate
value for δ , we equate Pf a with Pmd for each value of α . We observe

that for α = 0 and α = 0.25 the two curves intersect at δ ≈ 0.02
achieving an almost zero false alarm and misdetection probabilities.
For α = 0.5, the intersection of the two curves occurs at δ ≈ 0.01
with the false alarm and misdetection probabilities being around
0.15. Figure 10(b), presents the same tradeoff when the minimum
contention window equals to q = 16. Although Pmd increases at low
values of δ , we observe similar performance with the case of q = 4,
when we look at the value of δ that equates Pmd to Pf a . Note that
an alternative way to select δ is to fix the false alarm probability and
select the δ that minimizes the misdetection probability

6.3 Receiver Operating Characteristic Curves
6.3.1 Manipulation of the CW q. To further investigate the

tradeoff between Pf a and Pd , we studied the receiver operating
characteristic (ROC) curves using the theoretical bounds and sim-
ulations. In our simulations, we selected δ to satisfy certain false
alarm probability according to the theoretical bound in Proposition
1. To measure the probability of detection, we implemented a type 1
misbehavior strategy with qm = 0.5q and α = 0.5. To measure the
probability of false alarm, we set α = 1, i.e., no misbehavior.

Figure 10(c) shows the ROC curve using the theoretical bounds
and simulation for q = 4 and α = 0.5. We observe that the theoretical
bounds are somewhat loose and that the true system performance
is significantly better when the observation window (number of
transmissions analyzed) is large. Indeed, the ROC is close to the
optimal curve indicating that our system can operate with almost
sure detection and almost zero false alarm probability. In Fig. 10(d),
we increased the value of q to 16 and repeated our simulations.
Although the theoretical curve performs worse as the theoretical
bounds become looser, the simulation results still demonstrate an
almost perfect detection with an almost zero false alarm probability.
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6.3.2 Manipulation of the defer time p. In this section, we
evaluate the performance of the proposed detection scheme when
the LTE manipulates the defer time p before the backoff process
is started. To simulate this misbehavior, we implemented an LTE
that uses the defer time from traffic class C1 (i.e., p = 1) while
transmitting frames that belong to class C3 (p = 3). Our simulations
show an almost perfect ROC curve that yields perfect detection for
any non-zero false alarm probability, when Nw = 1 and Nw = 3.

The results are justified by the fact that the consistent selection of a
smaller defer time skews the estimated distribution of backoff values
in an always detectable manner. For class C3, the number of slots
that the LTE shall wait before attempting any transmission should
be at least three. When p = 1, there are situations where the LTE
transmits a frame after fewer than three slots from the completion of
the previous transmissions. This is a detectable phenomenon for any
selection of δ that fixes the false alarm probability to a given value.

6.3.3 CCA threshold manipulation. In the last set of exper-
iments, we evaluated the manipulation of the CCA threshold. A
selection of a lower CCA threshold, increases the number of Wi-Fi
APs that are ignored by the LTE, because they are considered hidden
terminals. To simulate the CCA threshold manipulation scenario, we
uniformly deployed multiple APs and one LTE in a square are of
200 × 200 meters. We set the transmission power of each Wi-Fi AP
to 20dBm and modeled the channels between terminals using the
free path-loss model. We set the carrier frequency to 5GHz

We evaluated the performance of our detector when the CCA
threshold is set to -63, -68, and -72dBm (the LAA-LTE standard sets
the CCA threshold to -73 dBm) and for a deployment of NW = 200
APs. In Fig. 11(b), we show the ROC for the three CCA thresholds.

We observe that when the CCA is lowered by more than 5dBm,
the ROC is near the optimal one. However, when the CCA is low-
ered little, our detector is unable to detect this misbehavior at low
false alarm rate. However, such misbehavior creates an imperceiv-
able advantage for the LTE in terms of channel access opportunity.
Nonetheless, even in this extreme case the detection probability is
higher than the false alarm rate.

7 CONCLUSION
We studied the problem of LTE misbehavior under the LAA-LTE

protocol for coexistent LTE and Wi-FI systems. We enumerated pos-
sible misbehavior scenarios for the LTE including the manipulation
of the defer time, the selection of the CW, the nullification of the
exponential increase backoff mechanism, and the manipulation of
the CCA threshold. We developed a suite of implicit monitoring
techniques that enable the Wi-Fi system to estimate the operational
parameters of the LTE, without decoding the LTE signal. This is a
desired property as Wi-Fi APs are not necessarily equipped with
LTE receivers. Our methods relied on computing signal correlations
in the signal domain to identify and classify LTE transmissions.

We further developed a behavior evaluation framework in which
a central hub collects all observations from a distributed set of mon-
itoring APs to build a behavior profile for the LTE stations. We
employed the Jensen-Shannon distance as a measure for comparing
the estimated LTE behavior to the nominal behavior dictated by the
LAA-LTE standard. We theoretically analyzed the false alarm and
detection probabilities and derived relevant bounds as a function
of the system parameters and the misbehavior pattern of the LTE.
Finally, we evaluated the performance of our detector via simula-
tions. We showed that the LTE misbehavior can cause a significant
performance degradation for the Wi-Fi stations. However, such mis-
behavior was detectable by our method with very high probability
while achieving a low false alarm probability.
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APPENDIX A PROOF OF PROPOSITION 1
The false alarm probability can be calculated by counting the

number of all possible combinations of nx that satisfy the inequality,

D JS (U| |M) > δ . (19)

Due to the uniformity of its distribution, we can divide it by the total
number of combinations to calculate Pf a . This way is inefficient and
unpractical, especially for a large number of observations. Instead
of that, we show how to derivative a bound that we guarantee that
Pf a is always below. Pf a can be written as,

Pf a = Pr
{
D JS (U| |M) > δ

}
= Pr

{ q−1∑
x=0

D(nx ) > qδ
}
.

(20)

Let Dmax = max{D(nxmin ),D(nxmax )}, then Dmax has to be greater
than δ to possibly cause a false alarm, thus we can consider the
following inequality,

Pf a ≤ Pr
{
Dmax > δ

}
= Pr

{
D(nxmin ) > δ

}
+ Pr

{
D(nxmax ) > δ

}
.

(21)

As we define nmin and nmax as the roots of the equation, D(n) = δ ,
we get

Pf a ≤ Pr {nxmin < nmin} + Pr {nxmax > nmax}. (22)

As we cannot expect which one is the maximum, it can be bounded
again to the following

Pf a ≤ 1 − Pr {nmin ≤ n0, . . . ,nx , . . . ,nq−1 ≤ nmax},

≤ 1 −
( nmax∑
k=nmin

(
J

k

)
( 1
q
)k (q − 1

q
)J−k

)q (23)

APPENDIX B PROOF OF PROPOSITION 2
The detection probability Pd can be written as

Pd = Pr
{
D JS (U| |M) > δ

}
(24)

= Pr
{ ∑q−1

x=0 D(nx ) > qδ
}

(25)
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when LTE misbehaves in selecting the backoff counter. Similar to
the ideas used in bounding the false alarm, Pd can be written as

Pd > Pr {n0, . . . ,nq−1 < nmin,n0, . . . ,nq−1 > nmax}. (26)

To clarify that, we claim that if all nx ’s either less than nmin, or
greater than nmax, then all D(nx ) have to be greater than δ , which
satisfies the inside inequality in (25), and guarantees a decodable
misbehavior. However, there are other possible situations in which
the misbehavior can also be detected, thus we get the inequality in
(26). This inequality can be further bounded as follows,

Pd >
∏q−1

x=0 Pr {nx < nmin,nx > nmax} (27)

=
∏q−1

x=0(1 − Pr {nmin < nx < nmax}) (28)

=
∏qm−1

x=0 (1 −∑nmax
k=nmin

( J
k
)
βk (1 − β)J−k ) (29)

.
∏q−1

x=qm (1 −∑nmax
k=nmin

( J
k
)
(αq )k (

q−α
q )J−k )

= (1 −∑nmax
k=nmin

( J
k
)
βk (1 − β)J−k )qm (30)

.(1 −∑nmax
k=nmin

( J
k
)
(αq )k (

q−α
q )J−k )q−qm ,

where β = 1−α
qm +

α
q . The probabilities, in (29), are those used in

drawing the manipulated backoff counter, which are function of α
and qm .
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