Driving in the Fog: Latency Measurement, Modeling, and Optimization of LTE-based Fog Computing for Smart Vehicles

Yong Xiao^{*}, Marwan Krunz⁺, Haris Volos[‡], and Takashi Bando[‡]

*School of Electronic Information and Communications, Huazhong University of Science & Technology, Wuhan, China
*Department of ECE, University of Arizona, Tucson, AZ
‡ Silicon Valley Innovation Center, DENSO International America, Inc.

IEEE SECON'19, Boston, MA

Smart Vehicular Services

Road safety and Efficiency

Basic Safety Services

Traffic lights Road avoidance guidance

Autonomous Driving

Platooning

Cooperative High-definition driving map

conditions

Telematics

Remote Vehicle Health Monitoring

Infotainment

Video Streaming

Music

Navigation

Parking

Mobile Office

News

Source: Huawei

Features of Future Smart Cars

✓ Always connected

THE UNIVERSITY OF ARIZONA. TUCSON ARIZONA

✓ Computing capabilities

 \checkmark Environment awareness

✓ Storage space

Connected Vehicles

In-Vehicle Processing vs.

vs. Connected Vehicle

NB-IoT Backend Parking **Edge Cloud** LTE/5G Traffic P2N 000 lights, LTE/5G Vulnerable roadside V₂I road infrastructure users LTE/5G LTE/5G V2N LTE/5G V2N V2P LTE/5G V2V LTE/5G V2V Local sensors Local sensors Local sensors Source: 5GAA

Limited computing/storage capability

Blind spot

Limited/no traffic updates

TUCSON ARIZONA

Quick decision

THE UNIVERSITY OF ARIZONA.

🙂 No blind spot

Instantaneous traffic updates

😕 Requires ultra-low latency comm.

Cloud-based Connected Smart Vehicles

Hierarchical Fog/Cloud Computing

supplemented by fog nodes Low latency

High reliability

Latency Challenge

- 3GPP recommends ~ 10 msec RTT for UEs across LTE networks (optimal conditions)
- Recent reports and our measurements suggest that this latency is far too challenging to achieve in existing LTE networks

Key Contributions

- AdaptiveFog: Vehicle-to-fog framework for multi-MNO LTE networks
- ✓ Novel distance metric (weighed K-R distance) to quantify latency performance of different MNO networks
- Measurement-driven modeling of V-to-fog and V-to-cloud latencies
- Optimal policy for dynamic selection of LTE provider & fog/cloud server

Outline

AdaptiveFog Framework

Latency Measurements & Modeling

Dynamic Network/Server Selection & Adaptation

Conclusions

AdaptiveFog Framework

AdaptiveFog is a novel framework for the UE to dynamically switch between available MNO networks and cloud/fog servers on the move

Latency Measurements

Extensive measurement campaign in two cities (San Francisco & Tucson) Tens of traces of <u>fog</u> & <u>cloud</u> latencies collected over several months <u>Fixed-location</u> as well as "<u>in-vehicle</u>" measurements using a custom app

Example routes (Tucson, AZ)

Smartphone App

Delay Explorer

- Periodically Ping IP address of
 - 1st node in LTE network
 - Amazon cloud server (West coast)
- Record RTT of two MNOs networks (Sprint and AT&T)
- Record other info (location, time stamp, GPS coordinate, etc.)

Settings-Status

Wait C:1000, 1st:1000 ms. Psize:996+8+20 b Cloud:114⇔ **W:1000**⇔ 1st Node:82⇔ W: 1000 ⊇

Location

Lat: Lon: Time: 10:33:54 Accuracy: 22:592 m Speed: 0.0 m/s Provider: network

Mobile Network Data

+Data State: CONNECTED Data Activity: INOUT

Network Information

Time: 22:50:07 Operator: AT&T Data Net Type: LTE ASU: 13 RSRP: -98 dBm RSRQ: -11 dB SNR: 8.0 MCC: 310 MNC: 410 CI: 97645839 PCI: 243 TAC: 38417 EARFCN: 0

Latest Pings

22:50:09 C(176.32.118.53) P:115 ms, Ex:154 ms 22:50:08 C(172.26.96.161) P:82 ms, Ex:101 ms

No correlation between RTT and time stamp

THE UNIVERSITY OF ARIZONA. TUCSON ARIZONA

Noticeably different latency patterns at different locations

Latency Statistics

Cloud vs. Fog

Traces			L1	L2	All	R1(Drive)	R2(Drive)	All
			Fixed	Fixed	Fixed	(6.1m/s)	(15.7m/s)	Drive
MNO1	Fog Latency (ms)	Mean	62	72	70	83	96	* 88
		STD	18	16	18	28	29	34
		Median	55	71	68	77	91	85
		Conf. 90%	85	86	85	115	121	120
	Cloud Latency (ms)	Mean	74	87	85 🖌	94	108	96
		STD	15	15	21	26	29	33
		Median	71	88	86	92	108	94
		Conf. 90%	88	100	104	124	129	128
MNO2	Fog Latency (ms)	Mean	72	64	72	85	80	83
		STD	14	17	(15)	52	46	(51)
		Median	71	93	71	69	67	66
		Conf. 90%	84	87	86	132	112	131
	Cloud Latency (ms)	Mean	87	74	88	119	125	124
		STD	13	13	(17)	50	47	54
		Median	88	71	90	108	117	109
		Conf. 90%	99	87	102	166	133	100
				-				-

Key Observations:

THE UNIVERSITY OF ARIZONA

Fixed loc vs. driving

- MNOs vary significantly in some locations.
- When averaging over all traces, two MNOs exhibit similar behavior
- Difference between cloud and fog is around 10 ms in average

Distance Metric

Weighted Confidence

• Confidence level of service type *i*

$$F_i = \Pr\left(x \le r_i\right)$$

Proportionally weighted confidence level

Set of all supported services

Max tolerable latency for service *i*

Weighted Kantorovich-Rubinstein (K-R) Distance

• Performance difference between two MNOs/servers (e.g., cloud and fog)

$$K(F,G) = \sum_{i \in \mathcal{M}} w_i \left[F_i - G_i \right]$$

Performance of the same service *i* offered by two MNOs/servers

Empirical Modeling of Latency

Fixed Location

PDF of fog latency can be fitted by a bimodal Gamma distribution Difference (~ 33ms) between two peaks is caused by

- SR retransmission periodicity (~ 20 to 40 msec)
- HARQ retransmission delay (~ 1 to 8 msec)

THE UNIVERSITY OF ARIZONA

Empirical Modeling of Latency

While Driving

Compared to fixed location latency:

- Mobility contributes to around 10-20ms latency increase
- Variance increases significantly

- Fixed-location
 - min K-R distance is at 85 ms (=0.23%) ____ Negligible for most applications

Compared to fixed loc, K-R dis

in driving is much smaller

- max K-R distance is at 63 ms (=58.6%)
- Driving:
 - min K-R distance is at 74ms (=0.55%)
 - max K-R distance is at 57ms (=18%)

THE UNIVERSITY OF ARIZONA. TUCSON ARIZONA

Empirical Modeling: Different MNOs

- Cloud:
 - max K-R distance at 88ms (=25.79%)
 - MNO 2>MNO 1 (<131ms); MNO 2<MNO 1 (>131ms);
- Fog:

THE UNIVERSITY OF ARIZONA

MNO1>MNO2 (<64ms and >125ms); MNO1<MNO2 (btw. 64ms and 125ms)</p>

Optimal Network/Server Selection & Adaptation

Optimal Network/Server Selection & Adaptation

• Empirical PDFs

Compared to the single MNO case, AdaptiveFog

- o reduces RTT in around 15ms (fog) and 9ms (cloud)
- o reduces STD by half

Optimal Network/Server Selection & Adaptation

• Confidence level

AdaptiveFog

- achieves almost 30% improvement in confidence level for cloud
- achieves almost 50% improvement in confidence level for fog

Summary

- AdaptiveFog is the first framework supporting the vision of
 5GAA for supporting multi-operator connection in smart vehicle
- Compared to average/instantaneous latency value, confidence
 level is a more realistic metric to quantify service performance
- ✓ AdaptiveFog achieves 30% and 50% improvement in confidence level for fog and cloud
- ✓ Future work: Extending AdaptiveFog into more generally scenarios (e.g., with processing latencies offered by different fog service providers)

For more information, please contact:

Yong Xiao (yongxiao@hust.edu.cn)

