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Smart Vehicular Services

Road safety and Efficiency Infotainment

Basic Safety Services

o ‘ Remote Remote Video
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Autonomous Driving

ra Navigation Parking Mobile Office  News
PIatooning Cooperative High-definition

driving map Source: Huawei

Features of Future Smart Cars

v" Always connected v" Environment awareness

v Computing capabilities v’ Storage space




Connected Vehicles

In-Vehicle Processing vs. Connected Vehicle
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@ Limited computing/storage @ Relaxed computing/storage limits
capability
) Blind spot © No blind spot
@ Limited/no traffic updates © Instantaneous traffic updates
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Cloud-based Connected Smart Vehicles

Traditional Cloud Computing Hierarchical Fog/Cloud Computing
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Smart Vehicles

Cloud data center has been
supplemented by fog nodes

@ Low latency
@ High reliability

@ High computational performance

&) Unpredictable latency and
connection reliability
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Latency Challenge

Cloud Data Center

DriVing In the fog Research Problem: A

) Develop approaches to
/N* reduce last-mile latency
FN FN FN _\in existing LTE networks/

RSU RSU RSU

* 3GPP recommends ~ 10 msec RTT for UEs across LTE networks (optimal conditions)

* Recent reports and our measurements suggest that this latency is far too
challenging to achieve in existing LTE networks
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Key Contributions

v AdaptiveFog: Vehicle-to-fog framework for multi-MNO LTE
networks

v Novel distance metric (weighed K-R distance) to quantify
latency performance of different MNO networks

v' Measurement-driven modeling of V-to-fog and V-to-cloud
latencies

v Optimal policy for dynamic selection of LTE provider & fog/cloud

server
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Outline

AdaptiveFog Framework
Latency Measurements & Modeling

Dynamic Network/Server Selection & Adaptation

Conclusions




AdaptiveFog Framework

AdaptiveFog is a novel framework for the UE to

dynamically switch between available MNO
networks and cloud/fog servers on the move
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Latency Measurements

Extensive measurement campaign in two cities (San Francisco & Tucson)

Tens of traces of fog & cloud latencies collected over several months

Fixed-location as well as “in-vehicle” measurements using a custom app

Example routes (Tucson, AZ)

Ave. Fog Latency (MNOI1)<70ms
70ms<= Ave. Fog Latency (MNO1)<90ms
Ave. Fog Latency (MNOI)>=90ms

Ave. Fog Latency (MNO2)<70ms
70<=Ave. Fog Latency (MNO2)<90ms
Ave. Fog Latency (MNO2)>=90ms
eNBLocation (MNO1)

eNBLocation (MNO2)
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Smartphone App
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Delay Explorer
Delay Explorer | rngon | Fige
* Periodically Ping IP address of 15108 pecortingon
* 1t node in LTE network ettings Slatis

Wait C:1000, 1st:1000 ms. Psize:996+8+20 b
Cloud:114=>W:1000=> 1st Node:82<> W:

* Amazon cloud server (West coast) 1000 .0
* Record RTT of two MNOs networks g ol S
. Time: 10:33:54 Accuracy:22.592 m Speed: 0.0
(Sprint and AT&T) m/s
Provider: network
* Record other info (location, time stamp, MobileNetworkDeEIta
+Data State: CONNECTED Data Activity: INOUT
GPS coordinate, etc.) Network Information
Time: 22:50:07 Operator: AT&T Data Net Type:
LTE

ASU: 13 RSRP: -98 dBm RSRQ: -11 dB SNR: 8.0
MCC: 310 MNC: 410 ClI: 97645839
PCI: 243 TAC: 38417 EARFCN: 0

Latest Pings

22:50:09 C(176.32.118.53) P:115 ms, Ex:154
ms

22:50:08 C(172.26.96.161) P:82 ms, Ex:101 ms
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Preliminary Observations
Latency VS. t|me stamp

Latency (ms)
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Latency vs. location
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No correlation between RTT and time stamp
Noticeably different latency patterns at different locations




Latency Statistics

Cloud vs. Fog
/ \
Traces L1 L2 All R1(Dfive) R2(Drive) All
Fixed Fixed Fixed (6/1m/s) (15.7m/8) Drive
Fog Mean 62 72 70)y || / 83 9 \ |~(88
Latency STD 18 16 18 \[[/ 28 29 ] 34
(tns) Median 55 71 63 77 91 85
MNO1 Conf. 90% 85 86 85 115 121 \ 120
Cloud Mean 74 87 (85) ¥ 04 108 “(96)
Latency STD 15 15 71 26 29 13
(tns) Median 71 88 86 92 108 94
Conf. 90% 88 100 104 124 129 128
Fog Mean 72 64 72 85 80 83
Latency STD 14 17 (15) 52 46 (51
(ms) Median 71 03 kot ] 69 67
MNO2 Conf. 90% 84 g7 86 132 112 131
Cloud Mean 87 74 38 19 - 125— 124
Latency STD 13 13 7) 50 47 (54)
(tns) Median 88 71 90 ® 108 117
Conf. 90% 99 87 102 | 166 133 100

Key Observations:
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MNOs vary significantly in some locations.
When averaging over all traces, two MNOs exhibit similar behavior
Difference between cloud and fog is around 10 ms in average

Fixed loc vs. driving




Distance Metric

Weighted Confidence
* Confidence level of service type i

F; = Pr( 1’:<‘)

* Proportionally weighted confidence le‘\ﬁl eight of service i (e.g., probability of

3 service i arrival
F-3 @ |

Set of all supported services
Weighted Kantorovich-Rubinstein (K-R) Distance
* Performance difference between two MNOs/servers (e.g., cloud and fog)

{(F,G) w; |[F; — Gy
Y

Performance of the same service
i offered by two MNOs/servers

IVIax tolerable latency for service i
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Empirical Modeling of Latency

Fixed Location

Cloud PET: Fog
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PDF of fog latency can be fitted by a bimodal Gamma distribution

Difference (~ 33ms) between two peaks is caused by
o SR retransmission periodicity (~ 20 to 40 msec)
o HARQ retransmission delay (~ 1 to 8 msec)
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Empirical Modeling of Latency

While Driving
Cloud Fog
0.30 8'%9(5)-
0.25/ 0.150f
iz, 0.20 L0135
20.157 - £0.100r
0.10f ean: 85.94 ] 0.075¢ Mean: 81.61
el STD: 27.12 | 0.050¢ STD: 29.50
0.05 | 0.025} —
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Compared to fixed location latency:
o Mobility contributes to around 10-20ms latency increase
o Variance increases significantly
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Empirical Modeling of Latency

K-R Distance between Fog and Cloud

Fixedl Location

1
0.87
 0.67
A
“ 0.4
0.27 Cloud Latency
F Fog Node Latency
0 50 100 150 200

Latency (ms)

* Fixed-location

» min K-R distance is at 85 ms (=0.23
» max K-R distance is at 63 ms (=58.6%

* Driving:

» min K-R distance is at 74ms (=0.55%)
» max K-R distance is at 57ms (=18%)
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Negligible for most applications

Compared to fixed loc, K-R dis
in driving is much smaller



Empirical Modeling: Different MNOs

* K-R Distance ,
Almost the same confidence level for both MNOs

loud
| . Cog / l\N)g
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= =
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-------- Cloud Latency (MNO1) (f) =ernnnes Fog Node Latency (MNO1)
Cloud Latency (MNOIZ) o Fog Node Latency (MNO?2)

0 50 100 150 200 0 50 100 150 200
Latency (ms) Latency (ms)
* Cloud:

» max K-R distance at 88ms (=25.79%)
» MNO 2>MNO 1 (<131ms); MNO 2<MNO 1 (>131ms);
* Fog:
» MNO1>MNO2 (<64ms and >125ms); MNO1<MNO?2 (btw. 64ms and 125ms)
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Optimal Network/Server Selection & Adaptation

Formulate network adaptation and
State fog/cloud server selection as a Markov
Driving speed, location and decision process (MDP)
LTE network of UE

Utility Function

Maximize confidence level
for UE

State Transition Function I

Probability of state transitioning Selection & Adaptation




Optimal Network/Server Selection & Adaptation

* Empirical PDFs
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Compared to the single MNO case, AdaptiveFog
o reduces RTT in around 15ms (fog) and 9ms (cloud)
o reduces STD by half
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Optimal Network/Server Selection & Adaptation

* Confidence level

Cloud Fog
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AdaptiveFog

» achieves almost 30% improvement in confidence level for cloud
» achieves almost 50% improvement in confidence level for fog
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Summary

v AdaptiveFog is the first framework supporting the vision of
5GAA for supporting multi-operator connection in smart vehicle

v’ Compared to average/instantaneous latency value, confidence
level is @ more realistic metric to quantify service performance

v’ AdaptiveFog achieves 30% and 50% improvement in confidence
level for fog and cloud

v’ Future work: Extending AdaptiveFog into more generally
scenarios (e.g., with processing latencies offered by different

fog service providers)
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For more information, please contact:

Yong Xiao (yongxiao@hust.edu.cn)
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